You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Having a true green hydrogen industry depends on that not happening.
In late December, the Treasury Department proposed draft regulations to implement the Inflation Reduction Act’s generous hydrogen production tax credit. Under Section 45V of the tax code, eligible projects must show that their life cycle greenhouse gas emissions fall below exacting benchmarks. Treasury’s final rules will determine how hydrogen projects are allowed to calculate their emissions and direct the flow of tens of billions of tax dollars — or more.
Most of the discussion that followed focused on the draft rule’s proposed guardrails for green hydrogen, which is produced from water using clean electricity. The climate policy community in particular largely approved of Treasury’s approach, in part because it lays the groundwork for hourly emissions accounting in the electricity sector — essentially, making sure that clean energy is being made and used in real time, a foundational shift needed for deep decarbonization.
But when it comes to producing hydrogen from methane — which is how nearly all hydrogen is made today — Treasury’s draft was incomplete. In place of a concrete proposal, the draft regulations raised detailed technical questions about what should be allowed in the final rule. Among these was the suggestion that hydrogen production from fossil fuels might qualify for tax credits by using methane offsets. This, quite simply, would undermine the tax credit’s entire purpose.
If the final regulations authorize methane offsets, then the 45V tax credit could end up subsidizing fossil fuel projects, stifling the nascent green hydrogen industry and locking in emissions-intensive infrastructure for decades to come. Just as concerning, authorizing offsets for the hydrogen production tax credit would also pave the way for similar treatment in the upcoming implementation of technology-neutral clean energy production ( Section 45Y) and investment tax credits (Section 48E).
To understand how offsets could affect the strategic outlook for the hydrogen industry, we looked at how the Treasury Department calculates the life cycle emissions of hydrogen production from natural gas, which is essentially just methane. Treasury’s draft regulations propose to use a bespoke life cycle analysis model to determine whether hydrogen projects qualify for the tax credit, and if so, what level of support they will receive.
This model has several important features: It accounts for CO2 emitted in the process of producing hydrogen from methane, which is straightforward, as well as methane emissions from upstream gas production, processing, and pipeline transportation, which is not. (Unfortunately, it doesn’t include impacts from hydrogen, which itself is an indirect greenhouse gas that contributes to global warming.)
The model’s treatment of methane emissions is particularly important. Although the academic literature suggests a national average above 2% and finds impacts above 9% in some cases, the model assumes that gas supply chains emit only 0.9% of the methane they deliver. Differences in methane emissions matter a lot, even when they look small. That’s because methane traps about 30 times as much heat as CO2 over a 100-year period, so its calculated CO2-equivalence is that much larger.
As a result, Treasury’s proposed approach undercounts the true climate impacts of hydrogen production, particularly hydrogen made from methane. Even so, fossil hydrogen production faces a narrow path to qualifying for the tax credit. For example, a fossil hydrogen project would have to capture more than 70% of its CO2 emissions and buy enough clean electricity to power all its operations — either directly as energy or indirectly as energy credits — even to qualify for the lower tiers of the tax credit. And even though projects’ actual methane emissions are likely to be undercounted, the model’s assumptions are enough to disqualify fossil projects from the highest tax credit tier, which is substantially more lucrative than any of the others.
Because of the difficulty of achieving high CO2 capture rates, some analysts have argued that fossil hydrogen projects will instead wind up applying for tax credits under Section 45Q of the IRA, which provides incentives for sequestering CO2 underground without the hydrogen tax credit’s exacting emissions standards.
But a fossil hydrogen project can claim totally different outcomes if it’s allowed to buy environmental certificates that claim to avoid methane emissions in the first place, a.k.a. methane offsets. The logic goes like this: If someone else was going to emit methane to the atmosphere, but agrees instead to capture and inject it into a gas pipeline network, then a hydrogen producer can buy a certificate from that other methane producer representing that same captured gas and potentially treat their own fossil gas as negative emissions.
For example, consider a large dairy that sends cow manure to uncovered manure lagoons, which produce significant methane emissions. Suppose the dairy installs a methane capture system and sells credits to a hydrogen producer, which then claims to have avoided the dairy’s methane emissions — even if these emissions could be avoided in other ways, like alternative manure management or flaring. Because methane is considered almost 30 times more impactful than CO2 over a 100-year period, the CO2-equivalence of avoiding methane emissions is larger than the project’s direct CO2 emissions, and therefore the resulting hydrogen production process gets a negative carbon intensity score.
If your head is spinning at this point, welcome to the world of offsets. Outcomes depend on counterfactual scenarios that can’t be measured or observed, burning fossil fuels can supposedly reduce pollution, and even the verb tenses are hard to parse.
Vertigo aside, the practical implications of methane offsets for the hydrogen production tax credit are enormous. Without methane offsets, fossil hydrogen projects couldn’t benefit much from the hydrogen tax credit; even with strict carbon capture and storage pollution controls, they can't meet the life cycle requirements for the top tier and would likely prefer to claim a smaller carbon storage tax credit instead. But if projects can use methane offsets, they can easily reduce their calculated emissions to qualify for the top tier of the hydrogen production tax credit.
This would also mean these fossil projects could undercut truly clean hydrogen projects. Green hydrogen projects that comply with the draft guardrails will have to invest in novel electrolyzer technologies and new clean power sources. The top tier of the tax credit provides enough money to make clean hydrogen projects competitive, but methane offsets are a lot less expensive than electrolyzers. If fossil producers can qualify with cheap offsets, they can pocket the difference and outcompete clean producers who have to invest in costly infrastructure.
We set out to estimate the amount of methane offsetting needed to qualify fossil projects for the top production tax credit tier. You can review our calculations here; for the carbon intensity of putatively negative emissions feedstocks, we used a conservative estimate that is about half the level of what other researchers use.
Remarkably, a fossil hydrogen project without carbon capture could qualify for the top production tax credit by offsetting just 25% of its fuel use. And a fossil hydrogen project that abates 90% of its CO2 emissions could earn the top tier of the tax credit if it bought offsets for just 4% of its fuel use.
So far a lot of the discussion about negative carbon intensity scores has focused on methane captured from livestock manure, but Treasury’s draft regulations also make reference to the possibility of capturing “fugitive emissions,” which could include methane emitted from the oil and gas sector or even from coal mines. If methane offsets are made eligible across a wide range of fugitive emissions, the hydrogen tax credit — which was designed as a generous incentive to promote innovation in new technologies — could end up subsidizing incumbent emitters.
Treasury’s hydrogen regulations will also set an important precedent for how offsets are treated in other government policies. The last set of tax credits in the IRA, a pair of technology-neutral investment and production tax credits for clean electricity generation, are under development this year. It’s great news that soon the U.S. federal government will support a full range of clean technologies, not just solar and wind — but not if those policies encourage higher-emitting activities that claim to be clean through the use of offsets. There are a few existing markets for methane offsets already, and certain segments of the economy — particularly the dairy industry — are hungry for more.
At the end of the day, the Biden administration faces a similar set of issues when it comes to producing hydrogen from methane that it did with clean hydrogen produced from electricity and water. If the tax credits encourage green hydrogen projects in places where it is difficult to supply cheap and clean electricity, then those projects risk becoming stranded assets when the tax credits expire. Similarly, if the tax credits encourage hydrogen production from chemical feedstocks and methane offsets, they will prop up fossil fuel infrastructure that could keep operating long after the requirement to buy offsets expires.
For all the complexity, though, one thing is clear: We won’t get a true green hydrogen industry if the Treasury Department decides to subsidize methane offsets — which, when you put it like that, doesn’t make much sense in the first place.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Businesses were already bracing for a crash. Then came another 50% tariff on Chinese goods.
When I wrote Heatmap’s guide to driving less last year, I didn’t anticipate that a good motivation for doing so would be that every car in America was about to get a lot more expensive.
Then again, no one saw the breadth and depth of the Trump administration’s tariffs coming. “We would characterize this slate of tariffs as ‘worse than the worst case scenario,’” one group of veteran securities analysts wrote in a note to investors last week, a sentiment echoed across Wall Street and reflected in four days of stock market turmoil so far.
But if the economic downturn has renewed your interest in purchasing a bike or e-bike, you’ll want to act fast — and it may already be too late. Because Trump’s “Liberation Day” tariffs stack on top of his other tariffs and duties, the U.S. bicycle trade association PeopleForBikes calculated that beginning on April 9, the day the newest tariffs come into effect, the duty on e-bikes from China would be 79%, up from nothing at all under President Biden. The tariff on most non-electric bikes from China, meanwhile, would spike to 90%, up from 11% on January 1 of this year. Then on Tuesday, the White House announced that it would add another 50% tariff on China on top of that whole tariff stack, starting Wednesday, in retaliation for Beijing’s counter-tariffs.
Prior to the latest announcement, Jay Townley, a founding partner of the cycling industry consulting firm Human Powered Solutions, had told me that if the Trump administration actually followed through on a retaliatory 50% tariff on top of those duties, then “we’re out of business because nobody can afford to bring in a bicycle product at 100% or more in tariffs.”
It’s difficult to overstate how existential the tariffs are for the bicycle industry. Imports account for 97% of the bikes purchased in the United States, of which 87% come from China, making it “one of the most import-dependent and China-dependent industries in the U.S.,” according to a 2021 analysis by the Coalition for a Prosperous America, which advocates for trade-protectionist policies.
Many U.S. cycling brands have grumbled for years about America’s relatively generous de minimis exemption, a policy of waiving duties on items valued at less than $800. The loophole — which is what enables shoppers to buy dirt-cheap clothes from brands like Temu, Shein, and Alibaba — has also allowed for uncertified helmets and non-compliant e-bikes and e-bike batteries to flood the U.S. market. These batteries, which are often falsely marketed as meeting international safety standards, have been responsible for deadly e-bike fires in places like New York City. “A going retail for a good lithium-ion replacement battery for an e-bike is $800 to $1,000,” Townley said. “You look online, and you’ll see batteries at $350, $400, that come direct to you from China under the de minimis exemption.”
Cyclingnews reported recently that Robert Margevicius, the executive vice president of the American bicycle giant Specialized, had filed a complaint with the Trump administration over losing “billions in collectable tariffs” through the loophole. A spokesperson for Specialized defended Margevicius’ comment by calling it an “industry-wide position that is aligned with PeopleForBikes.” (Specialized did not respond to a request for clarification from Heatmap, though a spokesperson told Cyclingnews that de minimis imports permit “unsafe products and intellectual property violation.” PeopleForBikes’ general and policy counsel Matt Moore told me in an email that “we have supported reforming the way the U.S. treats low-value de minimis imports for several years.”)
Trump indeed axed China’s de minimis exemption as part of his April 2 tariffs — a small win for the U.S. bicycle brands. But any protection afforded by duties on cheap imported bikes and e-bikes will be erased by the damage from high tariffs imposed on China and other Asian countries. Fewer than 500,000 bicycles in a 10 million-unit market are even assembled in the United States, and essentially none is entirely manufactured here. “We do not know how to make a bike,” Townley told me flatly. Though a number of major U.S. brands employ engineers to design their bikes, when it comes to home-shoring manufacturing, “all of that knowledge resides in Taiwan, China, Vietnam. It isn’t here.”
In recent years, Chinese factories had become “very proficient at shipping goods from third-party countries” in order to avoid European anti-dumping duties, as well as leftover tariffs from Trump’s first term, Rick Vosper, an industry veteran and columnist at Bicycle Retailer and Industry News, told me. “Many Chinese companies built bicycle assembly plants in Vietnam specifically so the sourcing sticker would not say ‘made in China,’” he added. Of course, those bikes and component parts are now also subject to Trump’s tariffs, which are as high as 57% for Vietnam, 60% for Cambodia, and 43% for Taiwan for most bikes. (A potential added tariff on countries that import oil from Venezuela could bump them even higher.)
The tariffs could not come at a worse time for the industry. 2019 marked one of the slowest years for the U.S. specialty retail bike business in two decades, so when COVID hit — and suddenly everyone wanted a bicycle as a way of exercising and getting around — there was “no inventory to be had, but a huge influx of customers,” Vosper told me. In response, “major players put in huge increases in their orders.”
But by 2023, the COVID-induced demand had evaporated, leaving suppliers with hundreds of millions of dollars in inventory that they couldn’t move. Even by discounting wholesale prices below their own cost to make the product and offering buy-one-get-one deals, dealers couldn’t get the bikes off their hands. “All the people who wanted to buy a bike during COVID have bought a bike and are not ready to buy another one anytime soon,” Vosper said.
Going into 2025, many retailers were still dealing with the COVID-induced bicycle glut; Mike Blok, the founder of Brooklyn Carbon Bike Company in New York City, told me he could think of three or four tristate-area shops off the top of his head that have closed in recent months because they were sitting on inventory.
Blok, however, was cautiously optimistic about his own position. While he stressed that he isn’t a fan of the tariffs, he also largely sells pre-owned bikes. On the low end of the market, the tariffs will likely raise prices no more than about $15 or $20, which might not make much of a difference to consumer behavior. But for something like a higher-end carbon fiber bike, which can run $2,700 or higher and is almost entirely produced in Taiwan, the tariffs could mean an increase of hundreds of dollars for customers. “I think what that will mean for me is that more folks will be open to the pre-owned option,” Blok said, although he also anticipates his input costs for repairs and tuning will go up.
But there’s a bigger, and perhaps even more obvious, problem for bike retailers beyond their products becoming more expensive. “What I sell is not a staple good; people don’t need a bike,” Blok reminded me. “So as folks’ discretionary income diminishes because other things become more expensive, they’ll have less to spend on discretionary items.”
Townley, the industry consultant, confirmed that many major cycling brands had already seen the writing on the wall before Trump announced his tariffs and begun to pivot to re-sale. Bicycling Magazine, a hobbyist publication, is even promoting “buying used” as one of its “tips to help you save” under Trump’s tariffs. Savvy retailers might be able to pivot and rely on their service, customer loyalty, and re-sale businesses to stay afloat during the hard days ahead; Moore of PeopleForBikes also noted that “repair services may increase” as people look to fix what they already have.
And if you don’t have a bike or e-bike but were thinking about getting one as a way to lighten your car dependency, decarbonize your life, or just because they’re cool, “there are still good values to be found,” Moore went on. “Now is a great time to avoid a likely increase in prices.” Townley anticipated that depending on inventory, we’re likely 30 to 40 days away from seeing prices go up.
In the meantime, cycling organizations are scrambling to keep their members abreast of the coming changes. “PeopleForBikes is encouraging our members to contact their elected representatives about the very real impacts these tariffs will have on their companies and our industry,” Moore told me. The National Bicycle Dealers Association, a nonprofit supporting specialty bicycle retailers, has teamed up with the D.C.-based League of American Bicyclists, a ridership organization, to explore lobbying lawmakers for the first time in decades in the hopes that some might oppose the tariffs or explore carve-outs for the industry.
But Townley, whose firm Human Powered Solutions is assisting in NBDA’s effort, shared a grim conversation he had at a recent trade show in Las Vegas, where a new board member at a cycling organization had asked him “what can we do” about Trump’s tariffs.
“I said, ‘You’re out of time,” Townley recalled. “There isn’t much that can be done. All we can do is react.”
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.