Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

The Latest Nobel Winner Has a Different Approach to Solving Climate Change

Daron Acemoglu and William Nordhaus have some disagreements.

Daron Acemoglu.
Heatmap Illustration/Wikimedia Commons-MeJudice1, Getty Images

This year’s Economics Nobel is not a climate prize — that happened in 2018, when Yale economist William Nordhaus won the prize for his work on modeling the effects of climate change and economic growth together, providing the intellectual basis for carbon taxation and more generally for regulating greenhouse gas emissions because of the “social cost” they impose on everyone.

Instead, this year’s prize, awarded to MIT’s Daron Acemoglu and Simon Johnson and University of Chicago’s James Robinson is for their work demonstrating “the importance of societal institutions for a country’s prosperity,” i.e. why some countries are rich and others are poor. To do so, the trio looked at the history of those countries’ institutions — laws, modes of government, relationship between the state and individuals — and drew out which are conducive to wealth and which lead to poverty.

Long story short, “extractive” institutions set up to reward a narrow elite tend to hurt economic development over time, as in much of Africa, which was colonized by Europeans who didn’t actually live there. “Inclusive” institutions, by contrast, arose in the United States and Canada, where there was significantly more European migration, thus incentivizing the ruling elite to set up institutions that benefitted a broader range of (again, European) residents.

While this research rests heavily on the climate (the reason Europeans avoided African colonies was because of the high rate of disease in tropical climates), it does not touch on climate change specifically. But Acemoglu especially is an incredibly wide-ranging scholar and has devoted some time to the specific questions of climate change — and in so doing has been a direct critic of Nordhaus, Stockholm’s preferred climate economist.

“Existing approaches in economics still do not provide the right framework for managing the problems that will confront us over the next several decades,” Acemoglu wrote in a 2021 essay titled “What Climate Change Requires of Economics,” referring directly to Nordhaus’s Nobel-winning work. “Although the economics discipline has evolved over time to acknowledge environmental risks and costs, it has yet to rise to the challenge of climate change. A problem as massive as this one will require a fundamental reconsideration of some of the field's most deeply held assumptions.”

His criticisms included that Nordhaus’s more gradualistic approach — the latest version of his model spits out that a 1.5 degree Celsius warming target is “infeasible,” and the “cost vs. benefit optimal” amount of warming as 2.6 degrees Celsius over pre-industrial levels with a carbon price that rises to $115 per ton by 2050 — ignores both the best way to reduce emissions and the risk of not doing so fast enough.

Acemoglu is far more optimistic about how policy can direct technological development and less sanguine about additional warming over and above the Paris Agreement limits. He argues that the possibility of theoretical “tipping points,” where exceeding certain climate thresholds by even a small amount may cause dramatic damages, make the risk of such overshoot far too great.

He also took issue with the discount rate applied to spending later vs. spending now in Nordhaus’s models. The basic idea is that a dollar spent today to mitigate the effects of climate change is more valuable than one spent in 2050. But the rates Nordhaus uses — which he derives from real-world investment returns — implies that in order for spending now to be worth it later, the benefits in 2050 or 2100 must be very, very large.

“There is a plausible economic (and philosophical) case to be made for why future essential public goods should be valued differently than private goods or other types of public consumption,” Acemoglu wrote in 2021, arguing that discount rates derived from investment returns, like the ones Nordhaus uses, might not be the best guide to public policy.

So what does the latest Nobel laureate want instead? Well, something like what the United States has been doing the past few years.

Accounting for the economic benefits of domestic or “endogenous” technological development, Acemoglu’s research finds that "the transition to cleaner energy is much more important than simply reducing energy consumption, and that technological interventions need to be redirected far more aggressively than they have been.” He explored how this process could work in papers he wrote over more than a decade, developing a model for this kind of directed technological change and applying it to the United States, starting as far back as 2012.

Across all his work on climate change, Acemoglu argues that a focus on pricing the “externalities” of carbon emissions — the harm emissions impose on everyone that isn’t reflected in the prices of fossil fuels — is myopic. Instead, the challenge is both restricting emissions and fostering clean technologies that can take the place of dirty ones, which have had a remarkable head start in investment.

In “The Environment and Directed Technical Change,” published in 2012 and co-written with Philippe Aghion, Leonardo Bursztyn, and David Hemous, Acemoglu argues that a mixture of carbon taxes and research subsides could “redirect technical change and avoid an environmental disaster” by imposing a cost on dirty technology and boosting clean technology.

Such an approach would probably rest heavily on positive subsidies and encouraging clean technology and less on a carbon tax, the four write (although a carbon tax would still help to “discourage research” into polluting technologies). It would also need to happen soon.

“Directed technical change also calls for immediate and decisive action in contrast to the implications of several exogenous technology models used in previous economic analyses.”

This framework does not precisely match United States policy — we have no carbon tax — but it does somewhat approximate it. The Biden administration’s approach to climate policy centers on large-scale investments in clean technologies, whether they’re tax credits for non-carbon-emitting electricity production or financing for clean energy projects from the Loan Programs Office, combined with a suite of Environmental Protection Agency rules that are intended to reduce pollution from fossil fuel power plants (along with an actual direct fee on methane emissions).

This approach is embedded within an overall industrial policy that’s supposed to make the economy more productive — a counter-argument to the idea that climate spending is an economic drag that trades off with environmental harms in the future. Acemoglu, too, questions the idea that there’s a tradeoff between economic growth and spending to combat climate change. Not only could renewables be cheaper than fossil fuels, “an energy transition can improve productive capacity and thus lead to an expansion of output, because transition to cleaner technologies can boost investment and the rate of technological progress,” he and his co-authors write.

Acemoglu has also weighed in on one the more controversial questions in climate policy and economics: the shale gas boom. In a 2023 paper written, again with Aghion, Hemous, and Lint Barrage, he weighed the effects of dramatic increase of domestically extracted natural gas, focusing on the importance of technological development. The Environmental Protection Agency attributes the decline in US greenhouse gas emissions since 2010 in part to “the growing use of natural gas and renewables to generate electricity in place of more carbon-intensive fuels,” due to natural gas replacing coal electricity generation. While this logic has come under fire from some activists and researchers who say the government’s models underestimate methane leakage from natural gas operations, Acemoglu took a different tack.

Yes, natural gas substituting for coal reduces short-run emissions, he and his co-authors concluded, but also, “the natural gas boom discourages innovation directed at clean energy, which delays and can even permanently prevent the energy transition to zero carbon.” They backed up this assertion by pointing to a decline in the total share of patents rewarded to renewable energy innovation between 2009 and 2016.

The way out is that same mix of carbon prices and technology subsidies Acemoglu has been recommending in some form since Kelly Clarkson was last on top of the charts, which “enables emission reductions in the short run, while optimal policy would ensure that the long-run green transition is not disrupted.”

If the Biden Administration’s climate policy works out, it will look something like that, and the prize will be far greater than anything given out in Stockholm.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Sparks

Trump’s Offshore Wind Ban Is Coming, Congressman Says

Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.

A very large elephant and a wind turbine.
Heatmap Illustration/Getty Images

President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.

“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”

Keep reading...Show less
Climate

An Unexpected Obstacle to Putting Out the L.A. Fires

That sick drone shot is not worth it.

A drone operator and flames.
Heatmap Illustration/Getty Images

Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.

You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.

Keep reading...Show less
Climate

What Started the Fires in Los Angeles?

Plus 3 more outstanding questions about this ongoing emergency.

Los Angeles.
Heatmap Illustration/Getty Images

As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?

Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.

Keep reading...Show less
Green