You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Daron Acemoglu and William Nordhaus have some disagreements.
This year’s Economics Nobel is not a climate prize — that happened in 2018, when Yale economist William Nordhaus won the prize for his work on modeling the effects of climate change and economic growth together, providing the intellectual basis for carbon taxation and more generally for regulating greenhouse gas emissions because of the “social cost” they impose on everyone.
Instead, this year’s prize, awarded to MIT’s Daron Acemoglu and Simon Johnson and University of Chicago’s James Robinson is for their work demonstrating “the importance of societal institutions for a country’s prosperity,” i.e. why some countries are rich and others are poor. To do so, the trio looked at the history of those countries’ institutions — laws, modes of government, relationship between the state and individuals — and drew out which are conducive to wealth and which lead to poverty.
Long story short, “extractive” institutions set up to reward a narrow elite tend to hurt economic development over time, as in much of Africa, which was colonized by Europeans who didn’t actually live there. “Inclusive” institutions, by contrast, arose in the United States and Canada, where there was significantly more European migration, thus incentivizing the ruling elite to set up institutions that benefitted a broader range of (again, European) residents.
While this research rests heavily on the climate (the reason Europeans avoided African colonies was because of the high rate of disease in tropical climates), it does not touch on climate change specifically. But Acemoglu especially is an incredibly wide-ranging scholar and has devoted some time to the specific questions of climate change — and in so doing has been a direct critic of Nordhaus, Stockholm’s preferred climate economist.
“Existing approaches in economics still do not provide the right framework for managing the problems that will confront us over the next several decades,” Acemoglu wrote in a 2021 essay titled “What Climate Change Requires of Economics,” referring directly to Nordhaus’s Nobel-winning work. “Although the economics discipline has evolved over time to acknowledge environmental risks and costs, it has yet to rise to the challenge of climate change. A problem as massive as this one will require a fundamental reconsideration of some of the field's most deeply held assumptions.”
His criticisms included that Nordhaus’s more gradualistic approach — the latest version of his model spits out that a 1.5 degree Celsius warming target is “infeasible,” and the “cost vs. benefit optimal” amount of warming as 2.6 degrees Celsius over pre-industrial levels with a carbon price that rises to $115 per ton by 2050 — ignores both the best way to reduce emissions and the risk of not doing so fast enough.
Acemoglu is far more optimistic about how policy can direct technological development and less sanguine about additional warming over and above the Paris Agreement limits. He argues that the possibility of theoretical “tipping points,” where exceeding certain climate thresholds by even a small amount may cause dramatic damages, make the risk of such overshoot far too great.
He also took issue with the discount rate applied to spending later vs. spending now in Nordhaus’s models. The basic idea is that a dollar spent today to mitigate the effects of climate change is more valuable than one spent in 2050. But the rates Nordhaus uses — which he derives from real-world investment returns — implies that in order for spending now to be worth it later, the benefits in 2050 or 2100 must be very, very large.
“There is a plausible economic (and philosophical) case to be made for why future essential public goods should be valued differently than private goods or other types of public consumption,” Acemoglu wrote in 2021, arguing that discount rates derived from investment returns, like the ones Nordhaus uses, might not be the best guide to public policy.
So what does the latest Nobel laureate want instead? Well, something like what the United States has been doing the past few years.
Accounting for the economic benefits of domestic or “endogenous” technological development, Acemoglu’s research finds that "the transition to cleaner energy is much more important than simply reducing energy consumption, and that technological interventions need to be redirected far more aggressively than they have been.” He explored how this process could work in papers he wrote over more than a decade, developing a model for this kind of directed technological change and applying it to the United States, starting as far back as 2012.
Across all his work on climate change, Acemoglu argues that a focus on pricing the “externalities” of carbon emissions — the harm emissions impose on everyone that isn’t reflected in the prices of fossil fuels — is myopic. Instead, the challenge is both restricting emissions and fostering clean technologies that can take the place of dirty ones, which have had a remarkable head start in investment.
In “The Environment and Directed Technical Change,” published in 2012 and co-written with Philippe Aghion, Leonardo Bursztyn, and David Hemous, Acemoglu argues that a mixture of carbon taxes and research subsides could “redirect technical change and avoid an environmental disaster” by imposing a cost on dirty technology and boosting clean technology.
Such an approach would probably rest heavily on positive subsidies and encouraging clean technology and less on a carbon tax, the four write (although a carbon tax would still help to “discourage research” into polluting technologies). It would also need to happen soon.
“Directed technical change also calls for immediate and decisive action in contrast to the implications of several exogenous technology models used in previous economic analyses.”
This framework does not precisely match United States policy — we have no carbon tax — but it does somewhat approximate it. The Biden administration’s approach to climate policy centers on large-scale investments in clean technologies, whether they’re tax credits for non-carbon-emitting electricity production or financing for clean energy projects from the Loan Programs Office, combined with a suite of Environmental Protection Agency rules that are intended to reduce pollution from fossil fuel power plants (along with an actual direct fee on methane emissions).
This approach is embedded within an overall industrial policy that’s supposed to make the economy more productive — a counter-argument to the idea that climate spending is an economic drag that trades off with environmental harms in the future. Acemoglu, too, questions the idea that there’s a tradeoff between economic growth and spending to combat climate change. Not only could renewables be cheaper than fossil fuels, “an energy transition can improve productive capacity and thus lead to an expansion of output, because transition to cleaner technologies can boost investment and the rate of technological progress,” he and his co-authors write.
Acemoglu has also weighed in on one the more controversial questions in climate policy and economics: the shale gas boom. In a 2023 paper written, again with Aghion, Hemous, and Lint Barrage, he weighed the effects of dramatic increase of domestically extracted natural gas, focusing on the importance of technological development. The Environmental Protection Agency attributes the decline in US greenhouse gas emissions since 2010 in part to “the growing use of natural gas and renewables to generate electricity in place of more carbon-intensive fuels,” due to natural gas replacing coal electricity generation. While this logic has come under fire from some activists and researchers who say the government’s models underestimate methane leakage from natural gas operations, Acemoglu took a different tack.
Yes, natural gas substituting for coal reduces short-run emissions, he and his co-authors concluded, but also, “the natural gas boom discourages innovation directed at clean energy, which delays and can even permanently prevent the energy transition to zero carbon.” They backed up this assertion by pointing to a decline in the total share of patents rewarded to renewable energy innovation between 2009 and 2016.
The way out is that same mix of carbon prices and technology subsidies Acemoglu has been recommending in some form since Kelly Clarkson was last on top of the charts, which “enables emission reductions in the short run, while optimal policy would ensure that the long-run green transition is not disrupted.”
If the Biden Administration’s climate policy works out, it will look something like that, and the prize will be far greater than anything given out in Stockholm.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “super soaker” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the super soaker collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the super soaker collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the super soaker, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.