You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Is the East Coast’s most abundant source of renewable energy too expensive?
You may have heard about the problems offshore wind projects are having with whales — specifically the coalition of coastal homeowners, right-wing advocacy groups, the fishing industry, and Tucker Carlson that’s been promoting speculative claims about turbines killing them. But opposition to renewable energy is nothing new. A much bigger problem for offshore wind is less TV-friendly, but much more serious: It’s more expensive than originally thought.
Up and down the East Coast and even in Britain, offshore wind projects have been delayed or even cancelled thanks to costs rising faster than expected.
Until this summer, offshore wind had seem primed for a big breakout. The Biden White House has set a goal for 30 gigawatts of offshore wind by 2030. Many states, especially in the Northeast, are also relying on offshore wind to do much of the work decarbonizing their electric grids. With ample coastline and relatively little open space compared to the wind corridor of the Great Plains, these states envision large offshore wind sites delivering about a gigawatt of power from massive turbines that are far enough away to be hardly visible from the shore but close enough to major population centers to avoid some of the interconnection and transmission issues that plague renewable development.
Yet instead of a breakout, there’s been a constriction.
Just this week, the utility Rhode Island Energy pulled the plug on its Revolution Wind II project, a planned 884-megawatt wind farm that could have powered 500,000 homes. It only attracted a single bidder, a joint venture between Orsted and Eversource.
In Massachusetts, the companies behind Commonwealth Wind, a planned 1,200 megawatt project, asked in December to get out of a power purchase agreement with state utilities, citing higher costs. This week the companies agreed to pay $48 million in termination penalties.
New Jersey legislators passed a bill earlier this month to direct federal tax credits to Orsted, the developer of its Ocean Wind I project, leading the developer of another wind project to ask for “an industry-wide solution,” saying that “[t]ens of thousands of real, well-paid and unionized jobs are at risk. Hundreds of millions in infrastructure investments will be forgone without a path forward.”
And in New York in June, offshore wind developers, responsible for over 4,000 megawatts worth of planned projects, petitioned the state’s Public Service Commission for more money, citing inflation.
This is a lot of lost capacity. Amazingly, there are still only two operational offshore wind projects in the United States, adding up to just 42 megawatts — about 0.14% of what the Biden administration wants installed by the end of the decade and less than 2% of the offshore wind capacity of Belgium. The American Clean Power Association estimated in May there were 50 gigawatts worth of projects in some stage of development, albeit with a small fraction actually under construction and the majority in “early development.” But now that pipeline has gotten a little longer and a lot more expensive.
“I’m actually pretty concerned over some of the cost dynamics that we’ve seen in terms of longer term impacts in terms of pace and scale we can deploy,” Allegra Dawes, a fellow at the Center for Strategic and International Studies, told me.
Rhode Island Energy said the bid for its Revolution Wind II project would not “reduce energy costs," essentially meaning what the utility would have to charge its customers to pay for the construction wouldn’t ultimately be worth it. Rhode Island Energy specifically cited “[h]igher interest rates, increased costs of capital, and supply chain expenses, as well as the uncertainty of federal tax credits” as “all likely contribut[ing] to higher proposed contract costs. Those costs were ultimately deemed too expensive for customers to bear.”
The surge in costs has put developers into a difficult spot, explained Dawes. “They look at projects and the agreed upon price and are not seeing a path to profitability.”
While Orsted, the project developer for the cancelled Rhode Island project (and several other East Coast wind projects), was optimistic about the deal earlier this year, its executives have been clear-eyed that the industry has seen costs go up.
“We believe that generally we are operating in an industry which is clearly realizing that the conditions have changed both in terms of cost of capital and the Capex inflation,” Orsted’s Chief Executive Mads Nipper said in the company’s May call with analysts. The company's Chief Financial Officer Daniel Lerup further warned, “It is our clear expectation that we will see prices go up in the coming auctions.”
Analysts and the industry have blamed a bevy of factors for costs growing. Higher interest rates drive financing costs up. There’s also the higher costs for materials like steel, which wind developers blamed both on generalized inflation and specifically the Russian invasion of Ukraine, which led to price spikes across all sorts of commodities.
Last year, major wind turbine manufacturers hiked their prices, which Commonwealth Wind blamed in a December filing to get out of an agreement with the Massachusetts utilities that would buy power from its wind project.
“The prolonged war in Ukraine has unsettled markets and increased costs for many products, inflation has been persistent, interest rates have increased in a manner unprecedented in recent times, commodity prices have risen sharply, and supply shortages and supply-chain constraints once thought to be temporary remain pervasive ... Simply put, it is now far more expensive to construct the Project than could have been reasonably foreseen even earlier this year,” Commonwealth Wind said in its December filing.
The cost issues were so dramatic that the companies were willing to pay some $48 million in fees. But that doesn’t mean that ratepayers are out of the woods. The companies are expected to re-bid on the projects at a higher price.
These problems aren’t distinct to the East Coast. The Swedish energy company Vattenfall said Thursday it was cancelling a planned wind project in the North Sea due to 40 percent cost increases. “Higher inflation and capital costs are affecting the entire energy sector, but the geopolitical situation has made offshore wind and its supply chain particularly vulnerable,” its chief executive Anna Borg said in in the company’s interim financial report.
None of this bodes well for the future of offshore wind. Thanks to larger turbines and stronger winds, offshore windfarms tend to produce more of their potential power than onshore wind or solar, but building them is also more logistically complicated and expensive. They thus require hefty financing — Vineyard Wind, for example, secured a $2.3 billion construction loan in 2021 — and can be quite sensitive to the cost of financing, i.e. interest rates.
If offshore windfarms can't show how they‘ll eventually recuperate these investments, coastal areas around the world may lose a vital source of renewable energy — or their residents will pay the price.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On the budget debate, MethaneSAT’s untimely demise, and Nvidia
Current conditions: The northwestern U.S. faces “above average significant wildfire potential” for July • A month’s worth of rain fell over just 12 hours in China’s Hubei province, forcing evacuations • The top floor of the Eiffel Tower is closed today due to extreme heat.
The Senate finally passed its version of Trump’s One Big Beautiful Bill Act Tuesday morning, sending the tax package back to the House in hopes of delivering it to Trump by the July 4 holiday. The excise tax on renewables that had been stuffed into the bill over the weekend was removed after Senator Lisa Murkowski of Alaska struck a deal with the Senate leadership designed to secure her vote. In her piece examining exactly what’s in the bill, Heatmap’s Emily Pontecorvo explains that even without the excise tax, the bill would “gum up the works for clean energy projects across the spectrum due to new phase-out schedules for tax credits and fast-approaching deadlines to meet complex foreign sourcing rules.” Debate on the legislation begins on the House floor today. House Speaker Mike Johnson has said he doesn’t like the legislation, and a handful of other Republicans have already signaled they won’t vote for it.
The Environmental Protection Agency this week sent the White House a proposal that is expected to severely weaken the federal government’s ability to rein in planet-warming pollution. Details of the proposal, titled “Greenhouse Gas Endangerment Finding and Motor Vehicle Reconsideration,” aren’t clear yet, but EPA Administrator Lee Zeldin has reportedly been urging the Trump administration to repeal the 2009 “endangerment finding,” which explicitly identified greenhouse gases as a public health threat and gave the EPA the authority to regulate them. Striking down that finding would “free EPA from the legal obligation to regulate climate pollution from most sources, including power plants, cars and trucks, and virtually any other source,” wrote Alex Guillén at Politico. The title of the proposal suggests it aims to roll back EPA tailpipe emissions standards, as well.
Get Heatmap AM directly in your inbox every morning:
So long, MethaneSAT, we hardly knew ye. The Environmental Defense Fund said Tuesday that it had lost contact with its $88 million methane-detecting satellite, and that the spacecraft was “likely not recoverable.” The team is still trying to figure out exactly what happened. MethaneSAT launched into orbit last March and was collecting data about methane pollution from global fossil fuel infrastructure. “Thanks to MethaneSAT, we have gained critical insight about the distribution and volume of methane being released from oil and gas production areas,” EDF said. “We have also developed an unprecedented capability to interpret the measurements from space and translate them into volumes of methane released. This capacity will be valuable to other missions.“ The good news is that MethaneSAT was far from the only methane-tracking satellite in orbit.
Nvidia is backing a D.C.-based startup called Emerald AI that “enables AI data centers to flexibly adjust their power consumption from the electricity grid on demand.” Its goal is to make the grid more reliable while still meeting the growing energy demands of AI computing. The startup emerged from stealth this week with a $24.5 million seed round led by Radical Ventures and including funding from Nvidia. Emerald AI’s platform “acts as a smart mediator between the grid and a data center,” Nvidia explains. A field test of the software during a grid stress event in Phoenix, Arizona, demonstrated a 25% reduction in the energy consumption of AI workloads over three hours. “Renewable energy, which is intermittent and variable, is easier to add to a grid if that grid has lots of shock absorbers that can shift with changes in power supply,” said Ayse Coskun, Emerald AI’s chief scientist and a professor at Boston University. “Data centers can become some of those shock absorbers.”
In case you missed it: California Governor Gavin Newsom on Monday rolled back the state’s landmark Environmental Quality Act. The law, which had been in place since 1970, required environmental reviews for construction projects and had become a target for those looking to alleviate the state’s housing crisis. The change “means most urban developers will no longer have to study, predict, and mitigate the ways that new housing might affect local traffic, air pollution, flora and fauna, noise levels, groundwater quality, and objects of historic or archeological significance,” explainedCal Matters. On the other hand, it could also mean that much-needed housing projects get approved more quickly.
Tesla is expected to report its Q2 deliveries today, and analysts are projecting a year-over-year drop somewhere from 11% to 13%.
Jesse teaches Rob the basics of energy, power, and what it all has to do with the grid.
What is the difference between energy and power? How does the power grid work? And what’s the difference between a megawatt and a megawatt-hour?
On this week’s episode, we answer those questions and many, many more. This is the start of a new series: Shift Key Summer School. It’s a series of introductory “lecture conversations” meant to cover the basics of energy and the power grid for listeners of every experience level and background. In less than an hour, we try to get you up to speed on how to think about energy, power, horsepower, volts, amps, and what uses (approximately) 1 watt-hour, 1 kilowatt-hour, 1 megawatt-hour, and 1 gigawatt-hour.
Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jesse Jenkins: Let’s start with the joule. The joule is the SI unit for both work and energy. And the basic definition of energy is the ability to do work — not work in a job, but like work in the physics sense, meaning we are moving or displacing an object around. So a joule is defined as 1 newton-meter, among other things. It has an electrical equivalent, too. A newton is a unit of force, and force is accelerating a mass, from basic physics, over some distance in this case. So 1 meter of distance.
So we can break that down further, right? And we can describe the newton as 1 kilogram accelerated at 1 meter per second, squared. And then the work part is over a distance of one meter. So that kind of gives us a sense of something you feel. A kilogram, right, that’s 2.2 pounds. I don’t know, it’s like … I’m trying to think of something in my life that weighs a kilogram. Rob, can you think of something? A couple pounds of food, I guess. A liter of water weighs a kilogram by definition, as well. So if you’ve got like a liter bottle of soda, there’s your kilogram.
Then I want to move it over a meter. So I have a distance I’m displacing it. And then the question is, how fast do I want to do that? How quickly do I want to accelerate that movement? And that’s the acceleration part. And so from there, you kind of get a physical sense of this. If something requires more energy, if I’m moving more mass around, or if I’m moving that mass over a longer distance — 1 meter versus 100 meters versus a kilometer, right? — or if I want to accelerate that mass faster over that distance, so zero to 60 in three seconds versus zero to 60 in 10 seconds in your car, that’s going to take more energy.
Robinson Meyer: I am looking up what weighs … Oh, here we go: A 13-inch MacBook Air weighs about, a little more than a kilogram.
Jenkins: So your laptop. If you want to throw your laptop over a meter, accelerating at a pace of 1 meter per second, squared …
Meyer: That’s about a joule.
Jenkins: … that’s about a joule.
Mentioned:
This episode of Shift Key is sponsored by …
The Yale Center for Business and the Environment’s online clean energy programs equip you with tangible skills and powerful networks—and you can continue working while learning. In just five hours a week, propel your career and make a difference.
Music for Shift Key is by Adam Kromelow.
If the Senate reconciliation bill gets enacted as written, you’ve got about 92 days left to seal the deal.
If you were thinking about buying or leasing an electric vehicle at some point, you should probably get on it like, right now. Because while it is not guaranteed that the House will approve the budget reconciliation bill that cleared the Senate Tuesday, it is highly likely. Assuming the bill as it’s currently written becomes law, EV tax credits will be gone as of October 1.
The Senate bill guts the subsidies for consumer purchases of electric vehicles, a longstanding goal of the Trump administration. Specifically, it would scrap the 30D tax credit by September 30 of this year, a harsher cut-off than the version of the bill that passed the House, which would have axed the credit by the end of 2025 except for automakers that had sold fewer than 200,000 electric vehicles. The credit as it exists now is worth up to $7,500 for cars with an MSRP below $55,000 (and trucks and sports utility vehicles under $80,000), and, under the Inflation Reduction Act, would have lasted through the end of 2032. The Senate bill also axes the $4,000 used EV tax credit at the end of September.
“Long story short, the credits under the current legislation are only going to be on the books through the end of September,” Corey Cantor, the research director of the Zero Emission Transportation Association, told me. “Now is definitely a good time, if you’re interested in an EV, to look at the market.”
The Senate applied the same strict timeline to credits for clean commercial vehicles, both new and used. For home EV chargers, the tax credit will now expire at the end of June next year.
While EVs were on the road well before the 2022 passage of the Inflation Reduction Act, what the new tax credit did was help build out a truly domestic electric vehicle market, Cantor said. “You have a bunch of refreshed EV models from major automakers,” Cantor told me, including “more affordable models in different segments, and many of them qualify for the credit.”
These include cars produceddomestically by Kia,Hyundai, and Chevrolet. But of course, the biggest winner from the credit is Tesla, whose Model Y was the best-selling car in the world in 2023.
Tesla shares were down over 5.5% in Tuesday afternoon trading, though not just because of Congress. JPMorgan also released an analyst report Monday arguing that the decline in sales seen in the first quarter would accelerate in the second quarter. President Trump, with whom Tesla CEO Elon Musk had an extremely public falling out last month, suggested on social media Monday night that the government efficiency department Musk himself formerly led should “take a good, hard, look” at the subsidies Musk receives across his many businesses. Trump also said that he would “take a look” at Musk’s United States citizenship in response to reporters’ questions about it.
Cantor told me that he expects a surge of consumer attention to the EV market if the bill passes in its current form. “You’ve seen more customers pull their purchase ahead” when subsidies cut-offs are imminent, he said.
But overall, the end of the subsidy is likely to reduce EV sales from their previously expected levels.
Harvard researchers have estimated that the termination of the EV tax credit “would cut the EV share of new vehicle sales in 2030 by 6.0 percentage points,” from 48% of new sales by 2030 to 42%. Combined with other Trump initiatives such as terminating the National Electric Vehicle Infrastructure program for publicly funded chargers (currently being litigated) and eliminating California’s waiver under the Clean Air Act that allowed it to set tighter vehicle emissions standards, the share of new car sales that are electric could fall to 32% in 2030.
But not all government support for electric vehicles will end by October 1, even if the bill gets the president’s signature in its current form.
“It’s important for consumers to know there are many states that offer subsidies, such as New York, and Colorado,” Cantor told me. That also goes for California, New Jersey, Nevada, and New Mexico. You can find the full list here.
Editor’s note: This story has been edited to include a higher cost limit for trucks and SUVs.