You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
New federal safety regulations could push PET plastic-makers out of the country for good.
There are an estimated 40,000 to 60,000 chemicals used commercially today worldwide, and the vast majority of them haven’t been tested for human safety. Many that have been tested are linked to serious human health risks like cancer and reproductive harm. And yet, they continue to pollute our air, water, food, and consumer products.
Among these is 1,4-dioxane, a chemical solvent that’s been linked to liver cancer in lab rodents and classified as a probable human carcinogen. It’s a multipurpose petrochemical, issuing from the brownfields of defunct industrial sites, chemical plants, and factories that use it in solvents, paint strippers, and degreasers. It shows up as an unintentional contaminant in consumer personal care products, detergents, and cleaning products and then goes down the drain into sewer systems.
It is also an unavoidable byproduct from the production of polyethylene terephthalate, more commonly known as PET, one of the most ubiquitous materials in the world. PET is the clear, odorless, food-safe plastic bottle you drink water out of. It’s also the basis of the world’s most popular fabric, used in everything from yoga leggings to baby onesies and area rugs; more than half of all fabric manufactured worldwide today is polyester. “You can't make PET polyester without creating this toxic byproduct 1,4-dioxane,” Mike Belliveau, co-founder of the advocacy organization Defend Our Health, told me. “It’s uniquely tied to the chemistry of the polymer.”
To be clear, there is no 1,4-dioxane in polyester products themselves. But like so-called “forever chemicals,” 1,4-dioxane dissolves quickly and completely into water, making it almost impossible to remove once it gets into a river or reservoir.
In 2012, the U.S. Environmental Protection Agency included 1,4-dioxane in the third iteration of what’s called the Unregulated Contaminant Monitoring Rule, a list the agency puts out every five years of chemicals it considers suspicious and wants states to start testing for. The EPA’s Toxic Release Inventory data shows that in 2019, the top four industrial producers of 1,4-dioxane in the U.S. were PET plastic or polyester factories; in 2022, it was five out of the top 10. That same year, a polyester manufacturer lost its permit to dispose of its waste at a treatment plant in New Jersey after state authorities discovered 1,4-dioxane in the drinking water and traced it back to the company.
Now, nearly 12 years later, not only has 1,4-dioxane proved to be shockingly prevalent, it has also been shown to be shockingly dangerous. The EPA may be on the verge of declaring, effectively, that almost any exposure to 1,4-dioxane constitutes an unreasonable risk to human health. Doing so would rock the American chemical and plastics manufacturing industry. But the alternative is being okay with rising cancer rates – an inconvenient fact the chemical industry would rather you not think about when you’re at the store.
North Carolina offers one representative case study. In 2013, a team from NC State University began testing for and finding 1,4-dioxane throughout the Cape Fear watershed, a network of rivers that starts in the mountains above Greensboro and flows southeast through Fayetteville and Wilmington before emptying into the ocean. At first, it was unclear exactly who the culprit of this widespread carcinogenic contamination could be. But by 2015, researchers had pinpointed a handful of sources: the wastewater treatment plants of Asheboro, Greensboro, and Reidsville.
Greensboro processed wastewater from an industrial waste transporter and chemical plant, Asheboro from a plastics plant, and Reidsville from Dystar, a dye and chemical manufacturer, and Unifi, a polyester manufacturer. DAK (now known as Alpek), another plastic manufacturer in Fayetteville, was also releasing 1,4-dioxane into the Lower Cape Fear River near Wilmington at a high enough level to consistently violate its permit. It is impossible at the moment to distinguish 1,4-dioxane’s impact on the health of people in the Cape Fear watershed from the impact of the more infamous class of carcinogenic forever chemicals that also lurk there: PFAS. But as with many pollutants, in the U.S., 1,4-dioxane’s is disproportionately found in Black and Brown communities.
Wherever PET or polyester is made, from the Gulf Coast to the Nakdonggang watershed in Korea, 1,4-dioxane is a problem. Typical water treatment technology can’t remove it, so when polyester manufacturers or other industries discharge contaminated wastewater to municipal treatment plants, the carcinogen flows right through and ends up in the groundwater or watershed.
In North Carolina, the state, the cities, and manufacturers began arguing about what could, and should, be done about it. “My biggest concern in drinking water in North Carolina right now, it’s 1-4 dioxane,” Tom Reeder, Assistant Secretary for the Environment at the state Department of Environmental Quality, said in 2016.
Dystar and Unifi submitted remediation plans to Reidsville, and Dystar told the NC Department of Environmental Quality’s Division of Water Resources that it was distilling the 1,4-dioxane out of its wastewater and storing it on-site. Dystar didn’t answer Heatmap’s questions, and Unifi said the spokesperson qualified to speak on the topic wasn’t available. The NC DEQ referred Heatmap to Reidsville, which didn’t respond to calls and emails. The lead 1,4-dioxane researcher at NC State also did not respond to requests for information or an interview.
Perhaps this is because of how contentious this issue has been for all involved parties. In 2022, the NC Environmental Management Commission attempted to make a rule limiting 1,4-dioxane in factory wastewater to .35 parts per billion. Unifi and Dystar wrote letters protesting the rule and Asheboro filed a lawsuit against the limits, with Reidsville attempting to join. The rule was eventually nullified because it didn’t fully consider the financial burden it would impose on these cities.
But the way the science is going, these decisions may be taken out of North Carolina’s hands.
In 2016, Congress passed an amendment to the Toxic Substances Control Act (TSCA, or “toss kuh”) instructing the EPA to fast-track risk analyses of chemicals of concern. Under the new law, if the EPA finds that a chemical poses an “unreasonable risk” to human health, it is required to regulate it down to reasonable levels — regardless of the economic impact. One of the first 10 chemicals on the docket was 1,4-dioxane.
Then, of course, came 2017 and the arrival of the Trump administration, which interfered to weaken EPA’s published toxicity findings to make them cheaper for industry to comply with. For example, the 1,4-dioxane analysis excluded the risk of exposure via drinking water, even though more than 7 million people in the U.S. have drinking water with detectable levels of 1,4-dioxane. Many of the findings were repeatedly challenged in court.
When the Biden administration reanalyzed 1,4-dioxane, the draft findings published in 2023 said that 1,4-dioxane poses an “unreasonable risk” to the health of PET and polyester plant workers and people with contaminated drinking water. “As high as 2.3 in 100 exposed workers would be at risk of cancer over a lifetime of exposure,” Jon Kalmuss-Katz, a senior attorney with Earthjustice, which has submitted comments to the EPA, told me. “The EPA considers the range of unreasonable risk to be one in 10,000 to one in a million.” That’s a 100- to 10,000-fold difference.
Some advocates saw a death knell for any remaining environmental arguments for polyester. “The federal government basically concluded that polyester PET poses an unreasonable risk to human health,” Belliveau told me.
The risk evaluation has already gone through a comment period and a peer-review process, and the EPA expects to finalize its evaluation this year. When asked for comment, an EPA representative said, “Actual conditions and releases are highly variable and subject to site-by-site process conditions. The draft supplement to the risk evaluation should not be interpreted to suggest all sites that manufacture PET or polyester present unreasonable risk.”
Despite letters from the American Chemistry Council, the Cleaning Institute, the Plastics Industry Association, and the PET manufacturer Alpek (formerly DAK) attempting to poke holes in the science, the advocates I spoke to were confident the “unreasonable risk” determination will stay.
At that point, the EPA has several tools it can use. “EPA can regulate manufacturing, can ban the chemical, can ban uses of the chemical, can restrict releases of the chemical to the environment,” says Kalmuss-Katz. “But the underlying mandate is always the same. EPA has to ensure that the chemical no longer presents an unreasonable risk.”
According to Thomas Mohr, a hydrogeologist who wrote the book on the investigation and remediation of 1,4-dioxane, polyester plants could simply require employees to wear respirators, and there are commercially available technologies available to filter out the chemical from wastewater — things like vacuum stripping and incineration, collecting it on a resin, or blasting it with ultraviolet light. But these processes are specialized and come with added costs.
That latter consideration is important for an industry that is already struggling to compete with low-cost polyester from China and other developing countries. Of the 115 American polyester manufacturing companies in the 1970s, only 12 remain in business today, according to a history book by Unifi, the polyester manufacturer in Reidsville.
Unifi barely survived the great textile offshoring of the late 1990s and early 2000s, mostly by shrinking and laying off large swaths of its workforce, buying and setting up plants in China and South America, and specializing in premium recycled polyester in its North Carolina plant. At the beginning of February, Unifi announced it would cut costs to shore up its finances. Adding a high-price treatment unit might be too much for it to bear. (Unifi said its spokesperson on this topic was not available for comment.)
Belliveau of Defend Our Health said he would be happy to see PET and polyester go away. But that’s a far-off vision for such a popular material. “EPA is not known for its radical vision, so I doubt they’re going to call for the shut-down of PET polyester in the U.S.,” he told me. “They might say that we need to adopt a drinking water standard or put better control in plants for workers.”
“Often there is a multi-year phase-out period,” Kalmuss-Katz said. “There is time to respond to innovate and to develop safer alternatives and to get those out into use.” Some of those alternatives could be polyester recycling technologies. France-based Carbios and California-based Ambercycle, both startups working on textile-to-textile polyester recycling, say their processes don’t produce 1,4-dioxane. A representative for Circ, a Virginia-based textile recycling startup, would only say that it, “is adhering to all local and federal regulations to ensure its process is in line with the highest regulatory standards for safe chemistry… this is something the team will be following closely as data becomes more available.”
Polyester has become a core part of almost everyone’s wardrobe, used for its high performance, versatility, and affordability. More importantly for the Carolinas, it provides some of the few remaining jobs in a formerly vibrant textile center. To that, Kalmuss-Katz said, “Congress made pretty clear that the price of producing polyester cannot be fenceline communities are left with disproportionate and unreasonable cancer burdens.”
Still, even if the EPA’s decision is the final nail in the coffin of the PET and polyester industry in the U.S., it doesn’t really solve the problem, or rather, not for everyone. Like other industries before it — leather tanning, rayon manufacturing, dye houses and dye manufacturing — it will continue to exist in its dirtiest form in other, less regulated countries. If the United States’ past history of offshoring turns out to be prologue, most consumers probably won’t notice the difference, except perhaps in slightly cheaper prices. Fashion companies will certainly notice, but are incentivized to look the other way.
For a few people paying attention, polyester will simply join a long list of products — chocolate, electronics, cheap meat — that come with a niggling feeling in the back of our minds: this has probably harmed someone on its way to me.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On environmental justice grants, melting glaciers, and Amazon’s carbon credits
Current conditions: Severe thunderstorms are expected across the Mississippi Valley this weekend • Storm Martinho pushed Portugal’s wind power generation to “historic maximums” • It’s 62 degrees Fahrenheit, cloudy, and very quiet at Heathrow Airport outside London, where a large fire at an electricity substation forced the international travel hub to close.
President Trump invoked emergency powers Thursday to expand production of critical minerals and reduce the nation’s reliance on other countries. The executive order relies on the Defense Production Act, which “grants the president powers to ensure the nation’s defense by expanding and expediting the supply of materials and services from the domestic industrial base.”
Former President Biden invoked the act several times during his term, once to accelerate domestic clean energy production, and another time to boost mining and critical minerals for the nation’s large-capacity battery supply chain. Trump’s order calls for identifying “priority projects” for which permits can be expedited, and directs the Department of the Interior to prioritize mineral production and mining as the “primary land uses” of federal lands that are known to contain minerals.
Critical minerals are used in all kinds of clean tech, including solar panels, EV batteries, and wind turbines. Trump’s executive order doesn’t mention these technologies, but says “transportation, infrastructure, defense capabilities, and the next generation of technology rely upon a secure, predictable, and affordable supply of minerals.”
Anonymous current and former staffers at the Environmental Protection Agency have penned an open letter to the American people, slamming the Trump administration’s attacks on climate grants awarded to nonprofits under the Inflation Reduction Act’s Greenhouse Gas Reduction Fund. The letter, published in Environmental Health News, focuses mostly on the grants that were supposed to go toward environmental justice programs, but have since been frozen under the current administration. For example, Climate United was awarded nearly $7 billion to finance clean energy projects in rural, Tribal, and low-income communities.
“It is a waste of taxpayer dollars for the U.S. government to cancel its agreements with grantees and contractors,” the letter states. “It is fraud for the U.S. government to delay payments for services already received. And it is an abuse of power for the Trump administration to block the IRA laws that were mandated by Congress.”
The lives of 2 billion people, or about a quarter of the human population, are threatened by melting glaciers due to climate change. That’s according to UNESCO’s new World Water Development Report, released to correspond with the UN’s first World Day for Glaciers. “As the world warms, glaciers are melting faster than ever, making the water cycle more unpredictable and extreme,” the report says. “And because of glacial retreat, floods, droughts, landslides, and sea-level rise are intensifying, with devastating consequences for people and nature.” Some key stats about the state of the world’s glaciers:
In case you missed it: Amazon has started selling “high-integrity science-based carbon credits” to its suppliers and business customers, as well as companies that have committed to being net-zero by 2040 in line with Amazon’s Climate Pledge, to help them offset their greenhouse gas emissions.
“The voluntary carbon market has been challenged with issues of transparency, credibility, and the availability of high-quality carbon credits, which has led to skepticism about nature and technological carbon removal as an effective tool to combat climate change,” said Kara Hurst, chief sustainability officer at Amazon. “However, the science is clear: We must halt and reverse deforestation and restore millions of miles of forests to slow the worst effects of climate change. We’re using our size and high vetting standards to help promote additional investments in nature, and we are excited to share this new opportunity with companies who are also committed to the difficult work of decarbonizing their operations.”
The Bureau of Land Management is close to approving the environmental review for a transmission line that would connect to BluEarth Renewables’ Lucky Star wind project, Heatmap’s Jael Holzman reports in The Fight. “This is a huge deal,” she says. “For the last two months it has seemed like nothing wind-related could be approved by the Trump administration. But that may be about to change.”
BLM sent local officials an email March 6 with a draft environmental assessment for the transmission line, which is required for the federal government to approve its right-of-way under the National Environmental Policy Act. According to the draft, the entirety of the wind project is sited on private property and “no longer will require access to BLM-administered land.”
The email suggests this draft environmental assessment may soon be available for public comment. BLM’s web page for the transmission line now states an approval granting right-of-way may come as soon as May. BLM last week did something similar with a transmission line that would go to a solar project proposed entirely on private lands. Holzman wonders: “Could private lands become the workaround du jour under Trump?”
Saudi Aramco, the world’s largest oil producer, this week launched a pilot direct air capture unit capable of removing 12 tons of carbon dioxide per year. In 2023 alone, the company’s Scope 1 and Scope 2 emissions totalled 72.6 million metric tons of carbon dioxide equivalent.
If you live in Illinois or Massachusetts, you may yet get your robust electric vehicle infrastructure.
Robust incentive programs to build out electric vehicle charging stations are alive and well — in Illinois, at least. ComEd, a utility provider for the Chicago area, is pushing forward with $100 million worth of rebates to spur the installation of EV chargers in homes, businesses, and public locations around the Windy City. The program follows up a similar $87 million investment a year ago.
Federal dollars, once the most visible source of financial incentives for EVs and EV infrastructure, are critically endangered. Automakers and EV shoppers fear the Trump administration will attack tax credits for purchasing or leasing EVs. Executive orders have already suspended the $5 billion National Electric Vehicle Infrastructure Formula Program, a.k.a. NEVI, which was set up to funnel money to states to build chargers along heavily trafficked corridors. With federal support frozen, it’s increasingly up to the automakers, utilities, and the states — the ones with EV-friendly regimes, at least — to pick up the slack.
Illinois’ investment has been four years in the making. In 2021, the state established an initiative to have a million EVs on its roads by 2030, and ComEd’s new program is a direct outgrowth. The new $100 million investment includes $53 million in rebates for business and public sector EV fleet purchases, $38 million for upgrades necessary to install public and private Level 2 and Level 3 chargers, stations for non-residential customers, and $9 million to residential customers who buy and install home chargers, with rebates of up to $3,750 per charger.
Massachusetts passed similar, sweeping legislation last November. Its bill was aimed to “accelerate clean energy development, improve energy affordability, create an equitable infrastructure siting process, allow for multistate clean energy procurements, promote non-gas heating, expand access to electric vehicles and create jobs and support workers throughout the energy transition.” Amid that list of hifalutin ambition, the state included something interesting and forward-looking: a pilot program of 100 bidirectional chargers meant to demonstrate the power of vehicle-to-grid, vehicle-to-home, and other two-way charging integrations that could help make the grid of the future more resilient.
Many states, blue ones especially, have had EV charging rebates in places for years. Now, with evaporating federal funding for EVs, they have to take over as the primary benefactor for businesses and residents looking to electrify, as well as a financial level to help states reach their public targets for electrification.
Illinois, for example, saw nearly 29,000 more EVs added to its roads in 2024 than 2023, but that growth rate was actually slower than the previous year, which mirrors the national narrative of EV sales continuing to grow, but more slowly than before. In the time of hostile federal government, the state’s goal of jumping from about 130,000 EVs now to a million in 2030 may be out of reach. But making it more affordable for residents and small businesses to take the leap should send the numbers in the right direction, as will a state-backed attempt to create more public EV chargers.
The private sector is trying to juice charger expansion, too. Federal funding or not, the car companies need a robust nationwide charging network to boost public confidence as they roll out more electric offerings. Ionna — the charging station partnership funded by the likes of Hyundai, BMW, General Motors, Honda, Kia, Mercedes-Benz, Stellantis, and Toyota — is opening new chargers at Sheetz gas stations. It promises to open 1,000 new charging bays this year and 30,000 by 2030.
Hyundai, being the number two EV company in America behind much-maligned Tesla, has plenty at stake with this and similar ventures. No surprise, then, that its spokesperson told Automotive Dive that Ionna doesn’t rely on federal dollars and will press on regardless of what happens in Washington. Regardless of the prevailing winds in D.C., Hyundai/Kia is motivated to support a growing national network to boost the sales of models on the market like the Hyundai Ioniq5 and Kia EV6, as well as the company’s many new EVs in the pipeline. They’re not alone. Mercedes-Benz, for example, is building a small supply of branded high-power charging stations so its EV drivers can refill their batteries in Mercedes luxury.
The fate of the federal NEVI dollars is still up in the air. The clearinghouse on this funding shows a state-by-state patchwork. More than a dozen states have some NEVI-funded chargers operational, but a few have gotten no further than having their plans for fiscal year 2024 approved. Only Rhode Island has fully built out its planned network. It’s possible that monies already allocated will go out, despite the administration’s attempt to kill the program.
In the meantime, Tesla’s Supercharger network is still king of the hill, and with a growing number of its stations now open to EVs from other brands (and a growing number of brands building their new EVs with the Tesla NACS charging port), Superchargers will be the most convenient option for lots of electric drivers on road trips. Unless the alternatives can become far more widespread and reliable, that is.
The increasing state and private focus on building chargers is good for all EV drivers, starting with those who haven’t gone in on an electric car yet and are still worried about range or charger wait times on the road to their destination. It is also, by the way, good news for the growing number of EV folks looking to avoid Elon Musk at all cost.
From Kansas to Brooklyn, the fire is turning battery skeptics into outright opponents.
The symbol of the American battery backlash can be found in the tiny town of Halstead, Kansas.
Angry residents protesting a large storage project proposed by Boston developer Concurrent LLC have begun brandishing flashy yard signs picturing the Moss Landing battery plant blaze, all while freaking out local officials with their intensity. The modern storage project bears little if any resemblance to the Moss Landing facility, which uses older technology,, but that hasn’t calmed down anxious locals or stopped news stations from replaying footage of the blaze in their coverage of the conflict.
The city of Halstead, under pressure from these locals, is now developing a battery storage zoning ordinance – and explicitly saying this will not mean a project “has been formally approved or can be built in the city.” The backlash is now so intense that Halstead’s mayor Dennis Travis has taken to fighting back against criticism on Facebook, writing in a series of posts about individuals in his community “trying to rule by MOB mentality, pushing out false information and intimidating” volunteers working for the city. “I’m exercising MY First Amendment Right and well, if you don’t like it you can kiss my grits,” he wrote. Other posts shared information on the financial benefits of building battery storage and facts to dispel worries about battery fires. “You might want to close your eyes and wish this technology away but that is not going to happen,” another post declared. “Isn’t it better to be able to regulate it in our community?”
What’s happening in Halstead is a sign of a slow-spreading public relations wildfire that’s nudging communities that were already skeptical of battery storage over the edge into outright opposition. We’re not seeing any evidence that communities are transforming from supportive to hostile – but we are seeing new areas that were predisposed to dislike battery storage grow more aggressive and aghast at the idea of new projects.
Heatmap Pro data actually tells the story quite neatly: Halstead is located in Harvey County, a high risk area for developers that already has a restrictive ordinance banning all large-scale solar and wind development. There’s nothing about battery storage on the books yet, but our own opinion poll modeling shows that individuals in this county are more likely to oppose battery storage than renewable energy.
We’re seeing this phenomenon play out elsewhere as well. Take Fannin County, Texas, where residents have begun brandishing the example of Moss Landing to rail against an Engie battery storage project, and our modeling similarly shows an intense hostility to battery projects. The same can be said about Brooklyn, New York, where anti-battery concerns are far higher in our polling forecasts – and opposition to battery storage on the ground is gaining steam.