You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
New federal safety regulations could push PET plastic-makers out of the country for good.
There are an estimated 40,000 to 60,000 chemicals used commercially today worldwide, and the vast majority of them haven’t been tested for human safety. Many that have been tested are linked to serious human health risks like cancer and reproductive harm. And yet, they continue to pollute our air, water, food, and consumer products.
Among these is 1,4-dioxane, a chemical solvent that’s been linked to liver cancer in lab rodents and classified as a probable human carcinogen. It’s a multipurpose petrochemical, issuing from the brownfields of defunct industrial sites, chemical plants, and factories that use it in solvents, paint strippers, and degreasers. It shows up as an unintentional contaminant in consumer personal care products, detergents, and cleaning products and then goes down the drain into sewer systems.
It is also an unavoidable byproduct from the production of polyethylene terephthalate, more commonly known as PET, one of the most ubiquitous materials in the world. PET is the clear, odorless, food-safe plastic bottle you drink water out of. It’s also the basis of the world’s most popular fabric, used in everything from yoga leggings to baby onesies and area rugs; more than half of all fabric manufactured worldwide today is polyester. “You can't make PET polyester without creating this toxic byproduct 1,4-dioxane,” Mike Belliveau, co-founder of the advocacy organization Defend Our Health, told me. “It’s uniquely tied to the chemistry of the polymer.”
To be clear, there is no 1,4-dioxane in polyester products themselves. But like so-called “forever chemicals,” 1,4-dioxane dissolves quickly and completely into water, making it almost impossible to remove once it gets into a river or reservoir.
In 2012, the U.S. Environmental Protection Agency included 1,4-dioxane in the third iteration of what’s called the Unregulated Contaminant Monitoring Rule, a list the agency puts out every five years of chemicals it considers suspicious and wants states to start testing for. The EPA’s Toxic Release Inventory data shows that in 2019, the top four industrial producers of 1,4-dioxane in the U.S. were PET plastic or polyester factories; in 2022, it was five out of the top 10. That same year, a polyester manufacturer lost its permit to dispose of its waste at a treatment plant in New Jersey after state authorities discovered 1,4-dioxane in the drinking water and traced it back to the company.
Now, nearly 12 years later, not only has 1,4-dioxane proved to be shockingly prevalent, it has also been shown to be shockingly dangerous. The EPA may be on the verge of declaring, effectively, that almost any exposure to 1,4-dioxane constitutes an unreasonable risk to human health. Doing so would rock the American chemical and plastics manufacturing industry. But the alternative is being okay with rising cancer rates – an inconvenient fact the chemical industry would rather you not think about when you’re at the store.
North Carolina offers one representative case study. In 2013, a team from NC State University began testing for and finding 1,4-dioxane throughout the Cape Fear watershed, a network of rivers that starts in the mountains above Greensboro and flows southeast through Fayetteville and Wilmington before emptying into the ocean. At first, it was unclear exactly who the culprit of this widespread carcinogenic contamination could be. But by 2015, researchers had pinpointed a handful of sources: the wastewater treatment plants of Asheboro, Greensboro, and Reidsville.
Greensboro processed wastewater from an industrial waste transporter and chemical plant, Asheboro from a plastics plant, and Reidsville from Dystar, a dye and chemical manufacturer, and Unifi, a polyester manufacturer. DAK (now known as Alpek), another plastic manufacturer in Fayetteville, was also releasing 1,4-dioxane into the Lower Cape Fear River near Wilmington at a high enough level to consistently violate its permit. It is impossible at the moment to distinguish 1,4-dioxane’s impact on the health of people in the Cape Fear watershed from the impact of the more infamous class of carcinogenic forever chemicals that also lurk there: PFAS. But as with many pollutants, in the U.S., 1,4-dioxane’s is disproportionately found in Black and Brown communities.
Wherever PET or polyester is made, from the Gulf Coast to the Nakdonggang watershed in Korea, 1,4-dioxane is a problem. Typical water treatment technology can’t remove it, so when polyester manufacturers or other industries discharge contaminated wastewater to municipal treatment plants, the carcinogen flows right through and ends up in the groundwater or watershed.
In North Carolina, the state, the cities, and manufacturers began arguing about what could, and should, be done about it. “My biggest concern in drinking water in North Carolina right now, it’s 1-4 dioxane,” Tom Reeder, Assistant Secretary for the Environment at the state Department of Environmental Quality, said in 2016.
Dystar and Unifi submitted remediation plans to Reidsville, and Dystar told the NC Department of Environmental Quality’s Division of Water Resources that it was distilling the 1,4-dioxane out of its wastewater and storing it on-site. Dystar didn’t answer Heatmap’s questions, and Unifi said the spokesperson qualified to speak on the topic wasn’t available. The NC DEQ referred Heatmap to Reidsville, which didn’t respond to calls and emails. The lead 1,4-dioxane researcher at NC State also did not respond to requests for information or an interview.
Perhaps this is because of how contentious this issue has been for all involved parties. In 2022, the NC Environmental Management Commission attempted to make a rule limiting 1,4-dioxane in factory wastewater to .35 parts per billion. Unifi and Dystar wrote letters protesting the rule and Asheboro filed a lawsuit against the limits, with Reidsville attempting to join. The rule was eventually nullified because it didn’t fully consider the financial burden it would impose on these cities.
But the way the science is going, these decisions may be taken out of North Carolina’s hands.
In 2016, Congress passed an amendment to the Toxic Substances Control Act (TSCA, or “toss kuh”) instructing the EPA to fast-track risk analyses of chemicals of concern. Under the new law, if the EPA finds that a chemical poses an “unreasonable risk” to human health, it is required to regulate it down to reasonable levels — regardless of the economic impact. One of the first 10 chemicals on the docket was 1,4-dioxane.
Then, of course, came 2017 and the arrival of the Trump administration, which interfered to weaken EPA’s published toxicity findings to make them cheaper for industry to comply with. For example, the 1,4-dioxane analysis excluded the risk of exposure via drinking water, even though more than 7 million people in the U.S. have drinking water with detectable levels of 1,4-dioxane. Many of the findings were repeatedly challenged in court.
When the Biden administration reanalyzed 1,4-dioxane, the draft findings published in 2023 said that 1,4-dioxane poses an “unreasonable risk” to the health of PET and polyester plant workers and people with contaminated drinking water. “As high as 2.3 in 100 exposed workers would be at risk of cancer over a lifetime of exposure,” Jon Kalmuss-Katz, a senior attorney with Earthjustice, which has submitted comments to the EPA, told me. “The EPA considers the range of unreasonable risk to be one in 10,000 to one in a million.” That’s a 100- to 10,000-fold difference.
Some advocates saw a death knell for any remaining environmental arguments for polyester. “The federal government basically concluded that polyester PET poses an unreasonable risk to human health,” Belliveau told me.
The risk evaluation has already gone through a comment period and a peer-review process, and the EPA expects to finalize its evaluation this year. When asked for comment, an EPA representative said, “Actual conditions and releases are highly variable and subject to site-by-site process conditions. The draft supplement to the risk evaluation should not be interpreted to suggest all sites that manufacture PET or polyester present unreasonable risk.”
Despite letters from the American Chemistry Council, the Cleaning Institute, the Plastics Industry Association, and the PET manufacturer Alpek (formerly DAK) attempting to poke holes in the science, the advocates I spoke to were confident the “unreasonable risk” determination will stay.
At that point, the EPA has several tools it can use. “EPA can regulate manufacturing, can ban the chemical, can ban uses of the chemical, can restrict releases of the chemical to the environment,” says Kalmuss-Katz. “But the underlying mandate is always the same. EPA has to ensure that the chemical no longer presents an unreasonable risk.”
According to Thomas Mohr, a hydrogeologist who wrote the book on the investigation and remediation of 1,4-dioxane, polyester plants could simply require employees to wear respirators, and there are commercially available technologies available to filter out the chemical from wastewater — things like vacuum stripping and incineration, collecting it on a resin, or blasting it with ultraviolet light. But these processes are specialized and come with added costs.
That latter consideration is important for an industry that is already struggling to compete with low-cost polyester from China and other developing countries. Of the 115 American polyester manufacturing companies in the 1970s, only 12 remain in business today, according to a history book by Unifi, the polyester manufacturer in Reidsville.
Unifi barely survived the great textile offshoring of the late 1990s and early 2000s, mostly by shrinking and laying off large swaths of its workforce, buying and setting up plants in China and South America, and specializing in premium recycled polyester in its North Carolina plant. At the beginning of February, Unifi announced it would cut costs to shore up its finances. Adding a high-price treatment unit might be too much for it to bear. (Unifi said its spokesperson on this topic was not available for comment.)
Belliveau of Defend Our Health said he would be happy to see PET and polyester go away. But that’s a far-off vision for such a popular material. “EPA is not known for its radical vision, so I doubt they’re going to call for the shut-down of PET polyester in the U.S.,” he told me. “They might say that we need to adopt a drinking water standard or put better control in plants for workers.”
“Often there is a multi-year phase-out period,” Kalmuss-Katz said. “There is time to respond to innovate and to develop safer alternatives and to get those out into use.” Some of those alternatives could be polyester recycling technologies. France-based Carbios and California-based Ambercycle, both startups working on textile-to-textile polyester recycling, say their processes don’t produce 1,4-dioxane. A representative for Circ, a Virginia-based textile recycling startup, would only say that it, “is adhering to all local and federal regulations to ensure its process is in line with the highest regulatory standards for safe chemistry… this is something the team will be following closely as data becomes more available.”
Polyester has become a core part of almost everyone’s wardrobe, used for its high performance, versatility, and affordability. More importantly for the Carolinas, it provides some of the few remaining jobs in a formerly vibrant textile center. To that, Kalmuss-Katz said, “Congress made pretty clear that the price of producing polyester cannot be fenceline communities are left with disproportionate and unreasonable cancer burdens.”
Still, even if the EPA’s decision is the final nail in the coffin of the PET and polyester industry in the U.S., it doesn’t really solve the problem, or rather, not for everyone. Like other industries before it — leather tanning, rayon manufacturing, dye houses and dye manufacturing — it will continue to exist in its dirtiest form in other, less regulated countries. If the United States’ past history of offshoring turns out to be prologue, most consumers probably won’t notice the difference, except perhaps in slightly cheaper prices. Fashion companies will certainly notice, but are incentivized to look the other way.
For a few people paying attention, polyester will simply join a long list of products — chocolate, electronics, cheap meat — that come with a niggling feeling in the back of our minds: this has probably harmed someone on its way to me.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.
On the shifting energy mix, tariff impacts, and carbon capture
Current conditions: Europe just experienced its warmest March since record-keeping began 47 years ago • It’s 105 degrees Fahrenheit in India’s capital Delhi where heat warnings are in effect • The risk of severe flooding remains high across much of the Mississippi and Ohio Valleys.
The severe weather outbreak that has brought tornadoes, extreme rainfall, hail, and flash flooding to states across the central U.S. over the past week has already caused between $80 billion and $90 billion in damages and economic losses, according to a preliminary estimate from AccuWeather. The true toll is likely to be costlier because some areas have yet to report their damages, and the flooding is ongoing. “A rare atmospheric river continually resupplying a firehose of deep tropical moisture into the central U.S., combined with a series of storms traversing the same area in rapid succession, created a ‘perfect storm’ for catastrophic flooding and devastating tornadoes,” said AccuWeather’s chief meteorologist Jonathan Porter. The estimate takes into account damages to buildings and infrastructure, as well as secondary effects like supply chain and shipping disruptions, extended power outages, and travel delays. So far 23 people are known to have died in the storms. “This is the third preliminary estimate for total damage and economic loss that AccuWeather experts have issued so far this year,” the outlet noted in a release, “outpacing the frequency of major, costly weather disasters since AccuWeather began issuing estimates in 2017.”
AccuWeather
Low-emission energy sources accounted for 41% of global electricity generation in 2024, up from 39.4% in 2023, according to energy think tank Ember’s annual Global Electricity Review. That includes renewables as well as nuclear. If nuclear is left out of the equation, renewables alone made up 32% of power generation last year. Overall, renewables added a record 858 terawatt hours, nearly 50% more than the previous record set in 2022. Hydro was the largest source of low-carbon power, followed by nuclear. But wind and solar combined overtook hydro last year, while nuclear’s share of the energy mix reached a 45-year low. More solar capacity was installed in 2024 than in any other single year.
Ember
The report notes that demand for electricity rose thanks to heat waves and air conditioning use. This resulted in a slight, 1.4% annual increase in fossil-fuel power generation and pushed power-sector emissions to a new all-time high of 14.5 billion metric tons. “Clean electricity generation met 96% of the demand growth not caused by hotter temperatures,” the report said.
President Trump’s new tariffs will have a “limited” effect on the amount of solar components the U.S. imports from Asia because the U.S. already imposes tariffs on these products, according to a report from research firm BMI. That said, the U.S. still relies heavily on imported solar cells, and the new fees are likely to raise costs for domestic manufacturers and developers, which will ultimately be passed on to buyers and could slow solar growth. “Since the U.S.’s manufacturing capacity is insufficient to meet demand for solar, wind, and grid components, we do expect that costs will increase for developers due to the tariffs which will now be imposed upon these components,” BMI wrote.
In other tariff news, the British government is adjusting its 2030 target of ending the sale of new internal combustion engine cars to ease some of the pain from President Trump’s new 25% auto tariffs. Under the U.K.’s new EV mandate, carmakers will be able to sell new hybrids through 2035 (whereas the previous version of the rules banned them by 2030), and gas and diesel vans can also be sold through 2035. The changes also carve out exemptions for luxury supercar brands like McLaren and Aston Martin, which will be allowed to keep selling new ICE vehicles beyond 2030 because, the government says, they produce so few. The goal is to “help ease the transition and give industry more time to prepare.” British Transport Secretary Heidi Alexander insisted the changes have been “carefully calibrated” and their impact on carbon emissions is “negligible.” As The New York Timesnoted, the U.S. is the largest single-country export market for British cars.
The Environmental Protection Agency has approved Occidental Petroleum’s application to capture and sequester carbon dioxide at its direct air capture facility in Texas, and issued permits that will allow the company to drill and inject the gas more than one mile underground. The Stratos DAC plant is being developed by Occidental subsidiary 1PointFive. As Heatmap’s Katie Brigham has reported, Stratos is designed to remove up to 500,000 metric tons of CO2 annually and set to come online later this year. Its success (or failure) could shape the future of DAC investment at a time when the Trump administration is hollowing out the Department of Energy’s nascent Carbon Dioxide Removal team and casting doubt over the future of the DOE’s $3.5 billion Regional Direct Air Capture Hubs program. While Stratos is not a part of the hubs program, it will use the same technology as Occidental’s South Texas DAC hub.
The Bezos Earth Fund and the Global Methane Hub are launching a $27 million effort to fund research into selectively breeding cattle that emit less methane.