You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Florida insurance market took another hit this week when Farmers announced it would pull out of the state, leaving around 100,000 customers unable to renew their policies.
While the news garnered headlines, it was exceptional not so much for Farmers pulling out, but for how long the insurance giant had stayed in the Florida market. Other national carriers had long since left and remaining Florida-specific carriers have been suffering under the weight of the state’s dangerous weather and uniquely lawsuit friendly legal environment.
At the same time that Farmers announced its departure, records were being set for ocean temperature in Florida, crossing 90 degrees in the waters off the southern part of the state. And the state may be in for nasty storms later this year. Forecasters at Colorado State University last week projected an “above-average” Atlantic hurricane season .
Farmers’ departure from Florida is also just the latest example of a major national carrier leaving a large, disaster-prone state. Allstate and State Farm said earlier this year they were leaving the California property market.
Farmers “looked at their book and determined they needed to reduce their catastrophe exposure. Most national carriers made that decision a long time ago,” RJ Lehmann, editor-in-chief and senior fellow at the International Center for Law and Economics, told me.
Customers with Farmers-branded home, auto, or umbrella insurance will not be able to renew their policy as their terms expires. The changes will not begin to take effect for 90 days.
“This business decision was necessary to effectively manage risk exposure,” Farmers spokesperson Trevor Chapman said in a statement. The company will continue to offer insurance through other brands it owns, Bristol West and Foremost.
The future of Florida’s insurance industry could be a harbinger for the rest of the country as it deals with extreme weather exacerbated by rising temperatures. Florida is a tough insurance market for the obvious reasons — property damage caused by wind, rain, and flooding from tropical storms (not to mention wildfires and tornadoes) — as well as its unique (although changing) legal environment.
While more and more of Florida’s insurance business is being taken on by the state-run Citizens Property Insurance Corporation, some followers of the state's economy are cautiously optimistic that insurers could eventually return to the state. But that return would likely be conditioned on a market and legal environment far more friendly to insurance companies, one with high premium and reduced rights for policyholders. After all, Florida’s high insurance rates have hardly stopped people from moving in, but the combination of extreme weather and high homeowner insurance rates could put the Florida dream of home ownership in America’s tropical climate out of reach for many.
The legal environment is changing thanks to reforms of Florida’s uniquely insurance company-unfriendly litigation system that have been signed by Governor Ron DeSantis over the past few years. This included eliminating Florida’s distinctive “one-way” attorney fees set-up, whereby if a policyholder won any amount of money from an insurer, the insurance company would pay attorneys fees for both sides. This system was obviously disliked by insurance companies, who argued that it led to the flowering of a Florida-specific cottage industry for trial attorneys; while those attorneys argued it gave policyholders a shot in prevailing against well-funded insurance companies.
Another bill banned the practice of letting policyholders “assign” the right to pursue a claim — and sue insurers — to contractors, another practice blamed by the industry for increased litigation.
Florida had over 75 percent of homeowners’ lawsuits in the country as a whole, despite only having 7 percent of the homeowners’ insurance claims, according to data from the Florida Office of Insurance Regulation.
Jeff Brandes, a former Republican state legislator who has long advocated to litigation reforms, predicted that the legislation, which was passed in April, will take somewhere between 18 and 24 months to have an effect on the market.
“I fully expect three-five companies to pull out and rates to go up 10 to 15 percent next year,” Brandes said, although he noted that he expected rates to stabilize in 2025.
In February, the St. Petersburg-based United Property & Casualty Insurance Company was deemed insolvent by state regulators. Some 15 insurers became insolvent between 2020 and the end of 2022.
Since 2016, Florida property insurance companies have been losing money on their underwriting — premiums collected minus claims paid — and only in the first quarter of this year did the industry as a whole turn a net profit, and that was thanks to investment earnings; underwriting profit was still negative.
Even if insurers return to the state, that doesn’t mean that said insurance will necessarily be attractive to homeowners: Part of why a less litigation-friendly market may be tempting to insurers is the very high rates that Florida policyholders pay for home insurance.
Average premiums in the state range from $1,651 in Sumter County in Central Florida to as high as $5,665 in Miami-Dade or $5,710 in Palm Beach, according to the Florida Office of Insurance Regulation. The nationwide average is around $1,900.
“We’re getting to a place where the availability problem will get better,” Lehmann said. “The affordability problem? We live on a low-lying peninsula with some of the most hurricane prone waters in the world.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The rapid increase in demand for artificial intelligence is creating a seemingly vexing national dilemma: How can we meet the vast energy demands of a breakthrough industry without compromising our energy goals?
If that challenge sounds familiar, that’s because it is. The U.S. has a long history of rising to the electricity demands of innovative new industries. Our energy needs grew far more quickly in the four decades following World War II than what we are facing today. More recently, we have squared off against the energy requirements of new clean technologies that require significant energy to produce — most notably hydrogen.
Courtesy of Rhodium Group
The lesson we have learned time and again is that it is possible to scale technological innovation in a way that also scales energy innovation. Rather than accepting a zero-sum trade-off between innovation and our clean energy goals, we should focus on policies that leverage the growth of AI to scale the growth of clean energy.
At the core of this approach is the concept of additionality: Companies operating massive data centers — often referred to as “hyperscalers” — as well as utilities should have incentives to bring online new, additional clean energy to power new computing needs. That way, we leverage demand in one sector to scale up another. We drive innovation in key sectors that are critical to our nation’s competitiveness, we reward market leaders who are already moving in this direction with a stable, long-term regulatory framework for growth, and we stay on track to meet our nation’s climate commitments.
All of this is possible, but only if we take bold action now.
AI technologies have the potential to significantly boost America’s economic productivity and enhance our national security. AI also has the potential to accelerate the energy transition itself, from optimizing the electricity grid, to improving weather forecasting, to accelerating the discovery of chemicals and material breakthroughs that reduce reliance on fossil fuels. Powering AI, however, is itself incredibly energy intensive. Projections suggest that data centers could consume 9% of U.S. electricity generation by 2030, up from 4% today. Without a national policy response, this surge in energy demand risks increasing our long-term reliance on fossil fuels. By some estimates, around 20 gigawatts of additional natural gas generating capacity will come online by 2030, and coal plant retirements are already being delayed.
Avoiding this outcome will require creative focus on additionality. Hydrogen represents a particularly relevant case study here. It, too, is energy-intensive to produce — a single kilogram of hydrogen requires double the average household’s electricity consumption. And while hydrogen holds great promise to decarbonize parts of our economy, hydrogen is not per se good for our clean energy goals. Indeed, today’s fossil fuel-driven methods of hydrogen production generate more emissions than the entire aviation sector. While we can make zero-emissions hydrogen by using clean electricity to split hydrogen from water, the source of that electricity matters a lot. Similar to data centers, if the power for hydrogen production comes from the existing electricity grid, then ramping up electrolytic production of hydrogen could significantly increase emissions by growing overall energy demand without cleaning the energy mix.
This challenge led to the development of an “additionality” framework for hydrogen. The Inflation Reduction Act offers generous subsidies to hydrogen producers, but to qualify, they must match their electricity consumption with additional (read: newly built) clean energy generation close enough to them that they can actually use it.
This approach, which is being refined in proposed guidance from the U.S. Treasury Department, is designed to make sure that hydrogen’s energy demand becomes a catalyst for investment in new clean electricity generation and decarbonization technologies. Industry leaders are already responding, stating their readiness to build over 50 gigawatts of clean electrolyzer projects because of the long term certainty this framework provides.
While the scale and technology requirements are different, meeting AI’s energy needs presents a similar challenge. Powering data centers from the existing electricity grid mix means that more demand will create more emissions; even when data centers are drawing on clean electricity, if that energy is being diverted from existing sources rather than coming from new, additional clean electricity supply, the result is the same. Amazon’s recent $650 million investment in a data center campus next to an existing nuclear power plant in Pennsylvania illustrates the challenge: While diverting those clean electrons from Pennsylvania homes and businesses to the data center reduces Amazon’s reported emissions, by increasing demand on the grid without building additional clean capacity, it creates a need for new capacity in the region that will likely be met by fossil fuels (while also shifting up to $140 million of additional costs per year onto local customers).
Neither hyperscalers nor utilities should be expected to resolve this complex tension on their own. As with hydrogen, it is in our national interest to find a path forward.
What we need, then, is a national solution to make sure that as we expand our AI capabilities, we bring online new clean energy, as well, strengthening our competitive position in both industries and forestalling the economic and ecological consequences of higher electricity prices and higher carbon emissions.
In short, we should adopt a National AI Additionality Framework.
Under this framework, for any significant data center project, companies would need to show how they are securing new, additional clean power from a zero-emissions generation source. They could do this either by building new “behind-the-meter” clean energy to power their operations directly, or by partnering with a utility to pay a specified rate to secure new grid-connected clean energy coming online.
If companies are unwilling or unable to secure dedicated additional clean energy capacity, they would pay a fee into a clean deployment fund at the Department of Energy that would go toward high-value investments to expand clean electricity capacity. These could range from research and deployment incentives for so-called “clean firm electricity generation technologies like nuclear and geothermal, to investments in transmission capacity in highly congested areas, to expanding manufacturing capacity for supply-constrained electrical grid equipment like transformers, to cleaning up rural electric cooperatives that serve areas attractive to data centers. Given the variance in grid and transmission issues, the fund would explicitly approach its investment with a regional lens.
Several states operate similar systems: Under Massachusetts’ Renewable Portfolio Standard, utilities are required to provide a certain percentage of electricity they serve from clean energy facilities or pay an “alternative compliance payment” for every megawatt-hour they are short of their obligation. Dollars collected from these payments go toward the development and expansion of clean energy projects and infrastructure in the state. Facing increasing capacity constraints on the PJM grid, Pennsylvania legislators are now exploring a state Baseload Energy Development Fund to provide low-interest grants and loans for new electricity generation facilities.
A national additionality framework should not only challenge the industry to scale innovation in a way that scales clean technology, it must also clear pathways to build clean energy at scale. We should establish a dedicated fast-track approval process to move these clean energy projects through federal, state, and local permitting and siting on an accelerated basis. This will help companies already investing in additional clean energy to move faster and more effectively – and make it more difficult for anyone to hide behind the excuse that building new clean energy capacity is too hard or too slow. Likewise, under this framework, utilities that stand in the way of progress should be held accountable and incentivized to adopt innovative new technologies and business models that enable them to move at historic speed.
For hyperscalers committed to net-zero goals, this national approach provides both an opportunity and a level playing field — an opportunity to deliver on those commitments in a genuine way, and a reliable long-term framework that will reward their investments to make that happen. This approach would also build public trust in corporate climate accountability and diminish the risk that those building data centers in the U.S. stand accused of greenwashing or shifting the cost of development onto ratepayers and communities. The policy clarity of an additionality requirement can also encourage cutting edge artificial intelligence technology to be built here in the United States. Moreover, it is a model that can be extended to address other sectors facing growing energy demand.
The good news is that many industry players are already moving in this direction. A new agreement between Google and a Nevada utility, for example, would allow Google to pay a higher rate for 24/7 clean electricity from a new geothermal project. In the Carolinas, Duke Energy announced its intent to explore a new clean tariff to support carbon-free energy generation for large customers like Google and Microsoft.
A national framework that builds on this progress is critical, though it will not be easy; it will require quick Congressional action, executive leadership, and new models of state and local partnership. But we have a unique opportunity to build a strange bedfellow coalition to get it done – across big tech, climate tech, environmentalists, permitting reform advocates, and those invested in America’s national security and technology leadership. Together, this framework can turn a vexing trade-off into an opportunity. We can ensure that the hundreds of billions of dollars invested in building an industry of the future actually accelerates the energy transition, all while strengthening the U.S.’s position in innovating cutting- edge AI and clean energy technology.
Almost half of developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
The solar energy industry has a big farm problem cropping up. And if it isn’t careful, it’ll be dealing with it for years to come.
Researchers at SI2, an independent research arm of the Solar Energy Industries Association, released a study of farm workers and solar developers this morning that said almost half of all developers believe it is “somewhat or significantly harder to do” projects on farmland, despite the clear advantages that kind of property has for harnessing solar power.
Unveiled in conjunction with RE+, the largest renewable energy conference in the U.S., the federally-funded research includes a warning sign that permitting is far and away the single largest impediment for solar developers trying to build projects on farmland. If this trend continues or metastasizes into a national movement, it could indefinitely lock developers out from some of the nation’s best land for generating carbon-free electricity.
“If a significant minority opposes and perhaps leads to additional moratoria, [developers] will lose a foot in the door for any future projects,” Shawn Rumery, SI2’s senior program director and the survey lead, told me. “They may not have access to that community any more because that moratoria is in place.”
SI2’s research comes on the heels of similar findings from Heatmap Pro. A poll conducted for the platform last month found 70% of respondents who had more than 50 acres of property — i.e. the kinds of large landowners sought after by energy developers — are concerned that renewable energy “takes up farmland,” by far the greatest objection among that cohort.
Good farmland is theoretically perfect for building solar farms. What could be better for powering homes than the same strong sunlight that helps grow fields of yummy corn, beans and vegetables? And there’s a clear financial incentive for farmers to get in on the solar industry, not just because of the potential cash in letting developers use their acres but also the longer-term risks climate change and extreme weather can pose to agriculture writ large.
But not all farmers are warming up to solar power, leading towns and counties across the country to enact moratoria restricting or banning solar and wind development on and near “prime farmland.” Meanwhile at the federal level, Republicans and Democrats alike are voicing concern about taking farmland for crop production to generate renewable energy.
Seeking to best understand this phenomena, SI2 put out a call out for ag industry representatives and solar developers to tell them how they feel about these two industries co-mingling. They received 355 responses of varying detail over roughly three months earlier this year, including 163 responses from agriculture workers, 170 from solar developers as well as almost two dozen individuals in the utility sector.
A key hurdle to development, per the survey, is local opposition in farm communities. SI2’s publicity announcement for the research focuses on a hopeful statistic: up to 70% of farmers surveyed said they were “open to large-scale solar.” But for many, that was only under certain conditions that allow for dual usage of the land or agrivoltaics. In other words, they’d want to be able to keep raising livestock, a practice known as solar grazing, or planting crops unimpeded by the solar panels.
The remaining percentage of farmers surveyed “consistently opposed large-scale solar under any condition,” the survey found.
“Some of the messages we got were over my dead body,” Rumery said.
Meanwhile a “non-trivial” number of solar developers reported being unwilling or disinterested in adopting the solar-ag overlap that farmers want due to the increased cost, Rumery said. While some companies expect large portions of their business to be on farmland in the future, and many who responded to the survey expect to use agrivoltaic designs, Rumery voiced concern at the percentage of companies unwilling to integrate simultaneous agrarian activities into their planning.
In fact, Rumery said some developers’ reticence is part of what drove him and his colleagues to release the survey while at RE+.
As we discussed last week, failing to address the concerns of local communities can lead to unintended consequences with industry-wide ramifications. Rumery said developers trying to build on farmland should consider adopting dual-use strategies and focus on community engagement and education to avoid triggering future moratoria.
“One of the open-ended responses that best encapsulated the problem was a developer who said until the cost of permitting is so high that it forces us to do this, we’re going to continue to develop projects as they are,” he said. “That’s a cold way to look at it.”
Meanwhile, who is driving opposition to solar and other projects on farmland? Are many small farm owners in rural communities really against renewables? Is the fossil fuel lobby colluding with Big Ag? Could building these projects on fertile soil really impede future prospects at crop yields?
These are big questions we’ll be tackling in far more depth in next week’s edition of The Fight. Trust me, the answers will surprise you.
Here are the most notable renewable energy conflicts over the past week.
1. Worcester County, Maryland –Ocean City is preparing to go to court “if necessary” to undo the Bureau of Ocean Energy Management’s approval last week of U.S. Wind’s Maryland Offshore Wind Project, town mayor Rick Meehan told me in a statement this week.
2. Magic Valley, Idaho – The Lava Ridge Wind Project would be Idaho’s biggest wind farm. But it’s facing public outcry over the impacts it could have on a historic site for remembering the impact of World War II on Japanese residents in the United States.
3. Kossuth County, Iowa – Iowa’s largest county – Kossuth – is in the process of approving a nine-month moratorium on large-scale solar development.
Here’s a few more hotspots I’m watching…