You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The science is still out — but some of the industry’s key players are moving ahead regardless.

The ocean is by far the world’s largest carbon sink, capturing about 30% of human-caused CO2 emissions and about 90% of the excess heat energy from said emissions. For about as long as scientists have known these numbers, there’s been intrigue around engineering the ocean to absorb even more. And more recently, a few startups have gotten closer to making this a reality.
Last week, one of them got a vote of confidence from leading carbon removal registry Isometric, which for the first time validated “ocean alkalinity enhancement” credits sold by the startup Planetary — 625.6 to be exact, representing 625.6 metric tons of carbon removed. No other registry has issued credits for this type of carbon removal.
When the ocean absorbs carbon, the CO2 in the air reacts with the water to form carbonic acid, which quickly breaks down into hydrogen ions and bicarbonate. The excess hydrogen increases the acidity of the ocean, changing its chemistry to make it less effective at absorbing CO2, like a sponge that’s already damp. As levels of atmospheric CO2 increase, the ocean is getting more acidic overall, threatening marine ecosystems.
Planetary is working to make the ocean less acidic, so that it can take in more carbon. At its pilot plant in Nova Scotia, the company adds alkalizing magnesium hydroxide to wastewater after it’s been used to cool a coastal power plant and before it’s discharged back into the ocean. When the alkaline substance (which, if you remember your high school chemistry, is also known as a base) dissolves in the water, it releases hydroxide ions, which combine with and neutralize hydrogen ions. This in turn reduces local acidity and raises the ocean’s pH, thus increasing its capacity to absorb more carbon dioxide. That CO2 is then stored as a stable bicarbonate for thousands of years.
“The ocean has just got such a vast amount of capacity to store carbon within it,” Will Burt, Planetary’s vice president of science and product, told me. Because ocean alkalinity enhancement mimics a natural process, there are fewer ecosystem concerns than with some other means of ocean-based carbon removal, such as stimulating algae blooms. And unlike biomass or soil-related carbon removal methods, it has a very minimal land footprint. For this reason, Burt told me “the massiveness of the ocean is going to be the key to climate relevance” for the carbon dioxide removal industry as a whole.
But that’s no guarantee. As with any open system where carbon can flow in and out, how much carbon the ocean actually absorbs is tricky to measure and verify. The best oceanography models we have still don’t always align with observational data.
Given this, is it too soon for Planetary to issue credits? It’s just not possible right now for the startup — or anyone in the field — to quantify the exact amount of carbon that this process is removing. And while the company incorporates error bars into its calculations and crediting mechanisms, scientists simply aren’t certain about the degree of uncertainty that remains.
“I think we still have a lot of work to do to actually characterize the uncertainty bars and make ourselves confident that there aren’t unknown unknowns that we are not thinking about,” Freya Chay, a program lead at CarbonPlan, told me. The nonprofit aims to analyze the efficacy of various carbon removal pathways, and has worked with Planetary to evaluate and inform its approach to ocean alkalinity enhancement.
Planetary’s process for measurement and verification employs a combination of near field observational data and extensive ocean modeling to estimate the rate, efficiency, and permanence of carbon uptake. Close to the point where it releases the magnesium hydroxide, the company uses autonomous sensors at and below the ocean’s surface to measure pH and other variables. This real-time data then feeds into ocean models intended to simulate large-scale processes such as how alkalinity disperses and dissolves, the dynamics of CO2 absorption, and ultimately how much carbon is locked away for the long-term.
But though Planetary’s models are peer-reviewed and best in class, they have their limits. One of the largest remaining unknowns is how natural changes in ocean alkalinity feed into the whole equation — that is, it’s possible that artificially alkalizing the ocean could prevent the uptake of naturally occurring bases. If this is happening at scale, it would call into question the “enhancement” part of alkalinity enhancement.
There’s also the issue of regional and seasonal variability in the efficiency of CO2 uptake, which makes it difficult to put any hard numbers to the efficacy of this solution overall. To this end, CarbonPlan has worked with the marine carbon removal research organization [C]Worthy to develop an interactive tool that allows companies to explore how alkalinity moves through the ocean and removes carbon in various regions over time.
As Chay explained, though, not all the models agree on just how much carbon is removed by a given base in a given location at a given time. “You can characterize how different the models are from each other, but then you also have to figure out which ones best represent the real world,” she told me. “And I think we have a lot of work to do on that front.”
From Chay’s perspective, whether or not Planetary is “ready” to start selling carbon removal credits largely depends on the claims that its buyers are trying to make. One way to think about it, she told me, is to imagine how these credits would stand up in a hypothetical compliance carbon market, in which a polluter could buy a certain amount of ocean alkalinity credits that would then allow them to release an equivalent amount of emissions under a legally mandated cap.
“When I think about that, I have a very clear instinctual reaction, which is, No, we are far from ready,” Chay told me.
Of course, we don’t live in a world with a compliance carbon market, and most of Planetary’s customers thus far — Stripe, Shopify, and the larger carbon removal coalition, Frontier, that they’re members of — have refrained from making concrete claims about how their voluntary carbon removal purchases impact broader emissions goals. But another customer, British Airways, does appear to tout its purchases from Planetary and others as one of many pathways it’s pursuing to reach net zero. Much like the carbon market itself, such claims are not formally regulated.
All of this, Chay told me, makes trying to discern the most responsible way to support nascent solutions all the more “squishy.”
Matt Long, CEO and co-founder of [C]Worthy, told me that he thinks it’s both appropriate and important to start issuing credits for ocean alkalinity enhancement — while also acknowledging that “we have robust reason to believe that we can do a lot better” when it comes to assessing these removals.
For the time being, he calls Planetary’s approach to measurement “largely credible.”
“What we need to adopt is a permissive stance towards uncertainty in the early days, such that the industry can get off the ground and we can leverage commercial pilot deployments, like the one that Planetary has engaged in, as opportunities to advance the science and practice of removal quantification,” Long told me.
Indeed, for these early-stage removal technologies there are virtually no other viable paths to market beyond selling credits on the voluntary market. This, of course, is the very raison d’etre of the Frontier coalition, which was formed to help emerging CO2 removal technologies by pre-purchasing significant quantities of carbon removal. Today’s investors are banking on the hope that one day, the federal government will establish a domestic compliance market that allows companies to offset emissions by purchasing removal credits. But until then, there’s not really a pool of buyers willing to fund no-strings-attached CO2 removal.
Isometric — an early-stage startup itself — says its goal is to restore trust in the voluntary carbon market, which has a history of issuing bogus offset credits. By contrast, Isometric only issues “carbon removal” credits, which — unlike offsets — are intended to represent a permanent drawdown of CO2 from the atmosphere, which the company defines as 1,000 years or longer. Isometric’s credits also must align with the registry’s peer-reviewed carbon removal protocols, though these are often written in collaboration with startups such as Planetary that are looking to get their methodologies approved.
The initial carbon removal methods that Isometric dove into — bio-oil geological storage, biomass geological storage, direct air capture — are very measurable. But Isometric has since branched beyond the easy wins to develop protocols for potentially less permanent and more difficult to quantify carbon removal methods, including enhanced weathering, biochar production, and reforestation.
Thus, the core tension remains. Because while Isometric’s website boasts that corporations can “be confident every credit is a guaranteed tonne of carbon removal,” the way researchers like Chay and Long talk about Planetary makes it sound much more like a promising science project that’s being refined and iterated upon in the public sphere.
For his part, Burt told me he knows that Planetary’s current methodologies have room for improvement, and that being transparent about that is what will ultimately move the company forward. “I am constantly talking to oceanography forums about, Here’s how we’re doing it. We know it’s not perfect. How do we improve it?” he said.
While Planetary wouldn’t reveal its current price per ton of CO2 removed, the company told me in an emailed statement that it expects its approach “to ultimately be the lowest-cost form” of carbon removal. Burt said that today, the majority of a credit’s cost — and its embedded emissions — comes from transporting bases from the company’s current source in Spain to its pilot project in Nova Scotia. In the future, the startup plans to mitigate this by co-locating its projects and alkalinity sources, and by clustering project sites in the same area.
“You could probably have another one of these sites 2 kilometers down the coast,” he told me, referring to the Nova Scotia project. “You could do another 100,000 tonnes there, and that would not be too much for the system, because the ocean is very quickly diluted.”
The company has a long way to go before reaching that type of scale though. From the latter half of last year until now, Planetary has released about 1,100 metric tons of material into the ocean, which it says will lead to about 1,000 metric tons of carbon removal.
But as I was reminded by everyone, we’re still in the first inning of the ocean alkalinity enhancement era. For its part, [C]Worthy is now working to create the data and modeling infrastructure that startups such as Planetary will one day use to more precisely quantify their carbon removal benefits.
“We do not have the system in place that we will have. But as a community, we have to recognize the requirement for carbon removal is very large, and that the implication is that we need to be building this industry now,” Long told me.
In other words: Ready or not, here we come.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The battery recycling company announced a $425 million Series E round after pivoting to power data centers.
Amidst a two year-long slump in lithium prices, the Nevada-based battery recycling company Redwood Materials announced last summer that it had begun a new venture focused on grid-scale energy storage. Today, it’s clear just how much that bet has paid off.
The company announced a $425 million round of Series E funding for the new venture, known as Redwood Energy. That came from some big names in artificial intelligence, including Google and Nvidia’s venture capital arm, NVentures. This marks the final close of the funding round, increasing the total from $350 million announced in October.
Redwood Energy adapts the company’s original mission — breaking down spent batteries to recover, refine, and resell critical minerals — to suit the data center revolution. Instead of merely extracting battery materials, the company can now also repurpose electric vehicle batteries that still have some life left in them as energy storage solutions for AI data centers, allowing Redwood to get value from the battery throughout its lifecycle.
“Regardless of where lithium prices are, if we can put [a lithium-ion battery] in a large-scale energy storage system, it can have a lot more value before we break it down into critical materials,” Claire McConnell, Redwood’s new VP of business development for energy storage, told me.
Over the past 12 to 18 months, she explained that the company had started to receive more and more used electric vehicle battery packs “in better condition than we initially anticipated.” Given the substantial electricity load growth underway, McConnell said the company saw it as “perfect moment” to “develop something that could be really unique for that market.”
At the time of Redwood Energy’s launch last June, the company announced that it had stockpiled over a gigawatt-hour of used EV batteries, with an additional 5 gigawatt-hours expected over the following year. Its first microgrid pilot is already live and generating revenue in Sparks, Nevada, operating in partnership with the data center owner and operator Crusoe Energy. That project is off-grid, supplying solar-generated electricity directly to Crusoe’s data center. Future projects could be grid-connected though, storing energy when prices are low and dispatching it when there are spikes in demand.
The company also isn’t limiting itself to used battery packs, McConnell told me. Plenty of manufacturers, she said, are sitting on a surplus of new batteries that they’re willing to offload to Redwood. The potential reasons for that glut are easy to see: already-slower-than-expected EV adoption compounded by Trump’s rollback of incentives has left many automakers with lower than projected EV sales. And even in the best of times, automakers routinely retool their product lines, which could leave them with excess inventory from an older model.
While McConnell wouldn’t reveal what percent of packs are new, she did tell me they make up a “pretty meaningful percentage of our inventory right now,” pointing to a recently announced partnership with General Motors meant to accelerate deployment of both new and used battery packs for energy storage.
While Redwood isn’t abandoning its battery recycling roots, this shift in priorities toward data center energy storage comes after a tough few years for the battery recycling sector overall. By last June, lithium prices had fallen precipitously from their record highs in 2022, making mineral recycling far less competitive. Then came Trump’s cuts to consumer electric vehicle incentives, further weakening demand. On top of that, the rise of lithium-iron phosphate batteries — which now dominate the battery storage sector and are increasingly common in EVs — have reduced the need for nickel and cobalt in particular, as they’re not a part of this cheaper battery chemistry.
All this helped create the conditions for the bankruptcy of one of Redwood’s main competitors, Li-Cycle, in May 2025. The company went public via a SPAC merger in 2021, aiming to commercialize its proprietary technique for shredding whole lithium-ion battery packs at once. But it ultimately couldn’t secure the funds to finish building out its recycling hub in Rochester, New York, and it was acquired by the commodities trading and mining company Glencore last summer.
“We started really early, and in a way we started Redwood almost too early,” JB Straubel, Redwood’s founder and Tesla’s co-founder, told TechCrunch last summer. He was alluding to the fact that in 2017, when Redwood was founded, there just weren’t that many aging EVs on the road — nor are there yet today. So while an influx of used EV batteries is eventually expected, slower than anticipated EV adoption means there just may not be enough supply yet to sustain a company like Redwood on that business model alone.
In the meantime, Redwood has also worked to recycle and refine critical minerals from battery manufacturing scrap and used lithium-ion from consumer electronics. Partnerships with automakers such as Toyota, Volkswagen, and General Motors, as well as global battery manufacturer Panasonic, have helped bolster both its EV battery recycling business and new storage endeavor. The goal of building a domestic supply chain for battery materials such as lithium, nickel, cobalt, and copper also remains as bipartisan as ever, meaning Redwood certainly isn’t dropping the recycling and refining arm of its business, even as it shifts focus toward energy storage.
For instance, it’s also still working on the buildout of a recycling and battery component production facility in Charleston, South Carolina. While three years ago the company announced that this plant would eventually produce over 100 gigawatt-hours of cathode and anode battery components annually, operations on this front appear to be delayed. When Redwood announced that recycling and refining operations had begun in Charleston late last year, it made no mention of when battery component production would start up.
It’s possible that this could be taking a backburner to the company’s big plans to expand its storage business. While the initial Crusoe facility offers 63 megawatt-hours of battery energy storage, McConnell told me that Redwood is now working on projects “in the hundreds of megawatt-hours, looking to gigawatt-hour scale” that it hopes to announce soon.
The market potential is larger than any of us might realize. Over the next five or so years, McConnell said, “We expect that repurposed electric vehicle battery packs could make up 50% of the energy storage market.”
Fossil fuel companies colluded to stifle competition from clean energy, the state argues.
A new kind of climate lawsuit just dropped.
Last week the state of Michigan joined the parade of governments at all levels suing fossil fuel companies for climate change-related damages. But it’s testing a decidedly different strategy: Rather than allege that Big Oil deceived the public about the dangers of its products, Michigan is bringing an antitrust case, arguing that the industry worked as a cartel to stifle competition from non-fossil fuel resources.
Starting in the 1980s, the complaint says, ExxonMobil, Chevron, Shell, BP, and their trade association, the American Petroleum Institute, conspired “to delay the transition from fossil fuels to renewable energy” and “unlawfully colluded to reduce innovation” in Michigan’s transportation and energy markets. This, it alleges, is a key driver of Michigan’s (and the country’s) present-day struggles with energy affordability. If the companies had not suppressed renewable energy and electric vehicles, the argument goes, these technologies would have become competitive sooner and resulted in lower transportation and energy costs.
The framing may enable Michigan to sidestep some of the challenges other climate lawsuits have faced. Ten states have attempted to hold Big Oil accountable for climate impacts, mostly by arguing that the industry concealed the harms their products would cause. One suit filed by the City of New York has been dismissed, and many others have been delayed due to arguments over whether the proceedings belong in state or federal court, and haven’t yet gotten to the substance of the claims. Michigan’s tactic “maybe speeds up getting to the merits of the case,” Margaret Barry, a climate litigation fellow at Columbia University’s Sabin Center for Climate Change Law, told me, “because those jurisdictional issues aren’t going to be part of the court’s review.”
The fossil fuel industry’s primary defense in these suits has been that cities and states cannot fault oil companies for greenhouse gas emissions because regulating those emissions is the job of the federal government, per the Clean Air Act. Making the case about competition may “avoid arguments about whether this lawsuit is really about regulation,” Rachel Rothschild, an assistant professor of law at the University of Michigan, told me.
The biggest hurdle Michigan will face is proving the existence of a coordinated plot. Geoffrey Kozen, a partner at the law firm Robins Kaplan who works on antitrust cases, told me that companies in these kinds of suits tend to argue that they were simply reacting independently to the same market pressures and responding as any rational market actor would.
There are two main ways for a plaintiff to overcome that kind of argument, Kozen explained. In rare cases, there is a smoking gun — a memo that all of the parties signed saying they were going to act together, for example. More often, attorneys attempt to demonstrate a combination of “parallel conduct,” i.e., showing that all of the parties did the same thing, and “plus factors,” or layers of evidence that make it more likely that there was some kind of underlying agreement.
According to Michigan’s lawsuit, the collusion story in this case goes like this. In 1979, the American Petroleum Institute started a group called the CO2 and Climate Task Force. By that time, Exxon had come to understand that fossil fuel consumption was warming the planet and would cause devastation costing trillions of dollars. The company’s scientists had concluded that cleaner alternatives to fossil fuels would have to make up an increasing amount of the world’s energy if such effects were to be avoided.
“A self-interested and law-abiding rational firm would have used this insight to innovate and compete in the energy market by offering superior and cheaper energy products to consumers,” the complaint says. Michigan alleges that instead, Exxon shared its findings with the other companies in the task force and conspired with them to suppress clean alternatives to fossil fuels. They worked together to “synchronize assessments of climate risks, monitor each other’s scientific and industry outlooks, align their responses to competitive threats, and coordinate their efforts to suppress technologies likely to displace gasoline or other fossil fuels through collusion rather than competition,” according to the complaint.
Michigan’s lawyers point to evidence showing that the named companies shut down internal research programs, withheld products from the market, and used their control of patents to stifle progress away from fossil fuels. The companies were all early leaders in developing clean technologies — with innovations in rechargeable batteries, hybrid cars, and solar panels — but began to sabotage or abandon those efforts after the formation of the task force, the lawsuit alleges.
The case will likely turn on whether the judge finds it credible that these actions would have been against the companies’ self-interest had they not known their peers would be doing the same thing, Kozen told me.
“The actions differ between defendants. They are over a wide range of time periods. And so the question is, is that pursuant to an actual agreement? Or is it pursuant to a bunch of oil executives who are all thinking in similar ways?” he said. “I think that’s going to be the number one point where success or failure is probably going to tip.”
Another challenge for Michigan will be to prove what the world would have looked like had this collusion not taken place. In the parlance of antitrust, this is known as the “but-for world.” Without the Big Oil conspiracy, the lawsuit says, electric vehicles would be “a common sight in every neighborhood,” there would be ubiquitous “reliable and fast chargers,” and renewable energy would be “supplied at scale.” It argues that economic models show that Michigan’s energy prices would also have been significantly lower. While such arguments are common in antitrust cases, it’s a lot more difficult to quantify the effects of stifled innovation than something more straightforward like price fixing.
The companies, of course, reject Michigan’s narrative. A spokeswoman for Exxon told the New York Times it was “yet another legally incoherent effort to regulate by lawsuit.”
If the state can gather enough plausible evidence of harm, however, it may be able to get past the companies’ inevitable motion to dismiss the case and on to discovery. While the case is built on heaps of internal emails and leaked memos that have been made public over the years through congressional investigations, who knows how much of the story has yet to be revealed.
“It’s, in my experience, almost impossible, if someone is actually a member of a cartel, to hide all the evidence,” said Kozen. “Whatever it is, it always comes out.”
Current conditions: Temperatures as low as 30 degrees Fahrenheit below average are expected to persist for at least another week throughout the Northeast, including in New York City • Midsummer heat is driving temperatures up near 100 degrees in Paraguay • Antarctica is facing intense katabatic winds that pull cold air from high altitudes to lower ones.

The United States has, once again, exited the Paris Agreement, the first global carbon-cutting pact to include the world’s two top emitters. President Donald Trump initiated the withdrawal on his first day back in office last year — unlike the last time Trump quit the Paris accords, after a prolonged will-he-won’t-he game in 2017. That process took three years to complete, allowing newly installed President Joe Biden to rejoin in 2021 after just a brief lapse. This time, the process took only a year to wrap up, meaning the U.S. will remain outside the pact for years at least. “Trump is making unilateral decisions to remove the United States from any meaningful global climate action,” Katie Harris, the vice president of federal affairs at the union-affiliated BlueGreen Alliance, said in a statement. “His personal vendetta against clean energy and climate action will hurt workers and our environment.” Now, as Heatmap’s Katie Brigham wrote last year, at “all Paris-related meetings (which comprise much of the conference), the U.S. would have to attend as an ‘observer’ with no decision-making power, the same category as lobbyists.”
America has not yet completed its withdrawal from the United Nations Framework Convention on Climate Change, the overarching group through which the Paris Agreement was negotiated, which Trump initiated this month. That won’t be final until next year. That Trump is even planning to quit the body shows how much more aggressive the administration’s approach to climate policy is this time around. Trump remained within the UNFCCC during his first term, preferring to stay engaged in negotiations even after quitting the Paris Agreement.
Just weeks after a federal judge struck down the Trump administration’s stop work order on the Revolution Wind project off Rhode Island’s shores, another federal judge has overturned the order halting construction on the Vineyard Wind project off Massachusetts. That, as Heatmap’s Emily Pontecorvo wrote last night, “makes four offshore wind farms that have now won preliminary injunctions against Trump’s freeze on the industry.” Besides Revolution Wind, Dominion Energy’s Coastal Virginia offshore wind project and Equinor’s Empire Wind plant off Long Island have each prevailed in their challenges to the administration’s blanket order to abandon construction on dubious national security grounds.
Meanwhile, the White House is potentially starving another major infrastructure project of funding. The Gateway rail project to build a new tunnel under the Hudson River between New Jersey and New York City could run out of money and halt construction by the end of next week, the project manager warned Tuesday. Washington had promised billions to get the project done, but the money stopped flowing in October during the government shutdown. Officials at the Department of Transportation said the funding would remain suspended until, as The New York Times reported, the project’s contracts could be reviewed for compliance with new rules about businesses owned by women and minorities.
Sign up to receive Heatmap AM in your inbox every morning:
A new transmission line connecting New England’s power-starved and gas-addicted grid to Quebec’s carbon-free hydroelectric system just came online this month. But electricity abruptly stopped flowing onto the New England Clean Energy Connect as the Canadian province’s state-owned utility, Hydro-Quebec, withheld power to meet skyrocketing demand at home amid the Arctic chill. Power plant owners in New England and New York, where Hydro-Quebec is building another line down the Hudson River to connect to New York City, complained that deals with the utility focused on maintaining supplies during the summer, when air conditioning traditionally surges power to peak demand. Hydro-Quebec restored power to the line on Monday.
The storm represented a force majeure event. If it hadn’t, the utility would have needed to pay penalties. But the incident is sure to fuel more criticism from power plant owners, most of which are fossil fueled, who oppose increased competition from the Quebecois. “I hate to say it, but a lot of the issues and concerns that we have been talking about for years have played out this weekend,” Dan Dolan — who leads the New England Power Generators Association, a trade group representing power plant owners — told E&E News. “This is a very expensive contract for a product that predominantly comes in non-stressed periods in the winter,” he said.
Europe has signed what the European Commission president Urusula von der Leyen called “the mother of all deals” with India, “a free trade zone of 2 billion people.” As part of the deal, the world’s second-largest market and the most populous nation plan to ramp up exports of steel, plastics, chemicals, and pharmaceuticals. But don’t expect Brussels to give New Delhi a break on its growing share of the global emissions. The EU’s carbon border adjustment mechanism — the first major tariff in the world based on the carbon intensity of imports — just took effect this month, and will remain intact for Indian goods, Reuters reported.
The Department of the Interior has ordered staff at the National Park Service to remove or edit signs and other informational materials in at least 17 parks out West to scrub mentions of climate change or hardship inflicted by settlers on Native Americans. The effort comes as part of what The Washington Post called a renewed push to implement Trump’s executive order on “restoring truth and sanity to American history.” Park staff have interpreted those orders, the newspaper reported, to mean eliminating any reference to historic racism, sexism, LGBTQ rights, and climate change. Just last week, officials removed an exhibit at Independence National Historical Park on George Washington’s ownership of slaves.
Tesla is going trucking. The electric automaker inked a deal Tuesday with Pilot Travel Centers, the nation’s largest operator of highway pit stops, to install Tesla’s Semi Chargers for heavy-duty electric vehicle charging. The stations are set to be built at select Pilot locations along Interstate 5, Interstate 10, and several other major corridors where heavy-duty charging is highest. The first sites are scheduled to open this summer.