You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Chinese carmaker says it can charge EVs in 5 minutes. Can America ever catch up?
The Chinese automaker BYD might have cracked one of the toughest problems in electric cars.
On Tuesday, BYD unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes. That’s made possible because of a 1,000-volt architecture and what BYD describes as matching charging capability, which could theoretically add nearly one mile of range every second.
It’s still not entirely clear whether the technology actually works, although BYD has a good track record on that front. But it suggests that the highest-end EVs worldwide could soon add range as fast as gasoline-powered cars can now, eliminating one of the biggest obstacles to EV adoption.
The new charging platform won’t work everywhere. BYD says that it will also build 4,000 chargers across China that will be able to take advantage of these maximum speeds. If this pans out, then BYD will be able to charge its newest vehicles twice as fast as Tesla’s next generation of superchargers can.
“This is a good thing,” Jeremy Wallace, a Chinese studies professor at Johns Hopkins University, told me. “Yes, it’s a Chinese company. And there are geopolitical implications to that. But the better the technology gets, the easier it is to decarbonize.”
“As someone who has waited in line for chargers in Pennsylvania and New Jersey, I look forward to the day when charging doesn’t take that long,” he added.
The announcement also suggests that the Chinese EV sector remains as dynamic as ever and continues to set the global standard for EV innovation — and that American and European carmakers are still struggling to catch up. The Trump administration is doing little to help the industry catch up: It has proposed repealing the Inflation Reduction Act’s tax credits for EV buyers, which provide demand-side support for the fledgling industry, and the Environmental Protection Agency is working to roll back tailpipe-pollution rules that have furnished early profits to EV makers, including Tesla. Against that background, what — if anything — can U.S. companies do to catch up?
The situation isn’t totally hopeless, but it’s not great.
BYD’s mega-charging capability is made possible by two underlying innovations. First, BYD’s new platform — the wiring, battery, and motors that make up the electronic guts of the car — will be capable of channeling up to 1,000 volts. That is only a small step-change above the best platforms available elsewhere— the forthcoming Gravity SUV from the American carmaker Lucid is built on a 926-volt platform, while the Cybertruck’s platform is 800 volts — but BYD will be able to leverage its technological firepower with mass manufacturing capacity unrivaled by any other brand.
Second, BYD’s forthcoming chargers will be capable of using the platform’s full voltage. These chargers may need to be built close to power grid infrastructure because of the amount of electricity that they will demand.
But sitting underneath these innovations is a sprawling technological ecosystem that keeps all Chinese electronics companies ahead — and that guarantees Chinese advantages well into the future.
“China’s decisive advantage over the U.S. when it comes to innovation is that it has an entrenched workforce that is able to continuously iterate on technological advances,” Dan Wang, a researcher of China’s technology industry and a fellow at the Paul Tsai China Center at Yale Law School, told me.
The country is able to innovate so relentlessly because of its abundance of process knowledge, Wang said. This community of engineering practice may have been seeded by Apple’s iPhone-manufacturing effort in the aughts and Tesla’s carmaking prowess in the 2010s, but it has now taken on a life of its own.
“Shenzhen is the center of the world’s hardware manufacturing industry because it has workers rubbing shoulders with academics rubbing shoulders with investors rubbing shoulders with engineers,” Wang told me. “And you have a more hustle-type culture because it’s so much harder to maintain technological moats and technological differentiation, because people are so competitive in these sorts of spaces.”
In a way, Shenzhen is the modern-day version of the hardware and software ecosystem that used to exist in northern California — Silicon Valley. But while the California technology industry now largely focuses on software, China has taken over the hardware side.
That allows the country to debut new technological innovations much faster than any other country can, he added. “The comparison I hear is that if you have a new charging platform or a new battery chemistry, Volkswagen and BMW will say, We’ll hustle to put this into our systems, and we’ll put it in five years from now. Tesla might say, we’ll hustle and get it in a year from now.”
“China can say, we’ll put it in three months from now,” he said.“You have a much more focused concentration of talent in China, which collapses coordination time.”
That culture has allowed the same companies and engineers to rapidly advance in manufacturing skill and complexity. It has helped CATL, which originally made batteries for smartphones, to become one of the world’s top EV battery makers. And it has helped BYD — which is close to unseating Tesla as the world’s No. 1 seller of electric vehicles — move from making lackluster gasoline cars to some of the world’s best and cheapest EVs.
It will be a while until America can duplicate that manufacturing capability, partly because of the number of headwinds it faces, Wang said.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Here at Heatmap, we write a lot about decarbonization — that is, the process of transitioning the global economy away from fossil fuels and toward long-term sustainable technologies for generating energy. What we don’t usually write about is what those technologies actually do. Sure, solar panels convert energy from the sun into electricity — but how, exactly? Why do wind turbines have to be that tall? What’s the difference between carbon capture, carbon offsets, and carbon removal, and why does it matter?
So today, we’re bringing you Climate 101, a primer on some of the key technologies of the energy transition. In this series, we’ll cover everything from what makes silicon a perfect material for solar panels (and computer chips), to what’s going on inside a lithium-ion battery, to the difference between advanced and enhanced geothermal.
There’s something here for everyone, whether you’re already an industry expert or merely climate curious. For instance, did you know that contemporary 17th century readers might have understood Don Quixote’s famous “tilting at windmills” to be an expression of NIMYBism? I sure didn’t! But I do now that I’ve read Jeva Lange’s 101 guide to wind energy.
That said, I’d like to extend an especial welcome to those who’ve come here feeling lost in the climate conversation and looking for a way to make sense of it. All of us at Heatmap have been there at some point or another, and we know how confusing — even scary — it can be. The constant drumbeat of news about heatwaves and floods and net-zero this and parts per million that is a lot to take in. We hope this information will help you start to see the bigger picture — because the sooner you do, the sooner you can join the transition, yourself.
Without further ado, here’s your Climate 101 syllabus:
Once you feel ready to go deeper, here are some more Heatmap stories to check out:
Plus how it’s different from carbon capture — and, while we’re at it, carbon offsets.
At the heart of the climate crisis lies a harsh physical reality: Once carbon dioxide enters the atmosphere, it can stay there for hundreds or even thousands of years. Although some carbon does cycle in and out of the air via plants, soils, and the ocean, we are emitting far more than these systems can handle, meaning that most of it is just piling up. Burning fossil fuels is like continuously stuffing feathers into a duvet blanketing the Earth.
But there may be ways to begin plucking them out. That’s the promise of carbon removal, a category of technologies and interventions that either pull carbon dioxide from the air and store it securely or enhance the systems that naturally absorb carbon today.
Carbon removal is not, inherently, a license to continue emitting — it is far cheaper and easier to reduce the flow of emissions into the atmosphere than it is to remove them after the fact. Climate action has been so slow, however, that removing carbon has become a pressing consideration.
There are many technical, political, and economic challenges to deploying carbon removal at a meaningful scale. This guide will introduce you to some of those challenges, along with the basics of what carbon removal is, the rationale for trying to do it, and the risks and trade-offs we’ll encounter along the way. Let’s dive in.
Variously called carbon removal, carbon dioxide removal, CDR, and negative emissions technologies, all of these terms refer to efforts to suck carbon from the atmosphere and store it in places where it will not warm the planet, such as oceans, soils, plants, and underground. The science behind carbon removal spans atmospheric studies, oceanography, biology, geology, chemistry, and engineering. The carbon removal “industry” overlaps with oil and gas drilling, farming, forestry, mining, and construction — sometimes several of these sectors at once.
Carbon removal encompasses an astonishingly wide range of activities, but the two best known examples are probably the simple practice of planting a tree and the complex engineering project of building a “direct air capture system.” The latter are typically big machines that use industrial-sized fans to blow air through a material that filters carbon dioxide, and then apply heat to extract the carbon from the filter.
But there are many other methods that fall somewhere in between. “Enhanced rock weathering” involves taking minerals that are known to slowly pull carbon from the air as they break down over millennia and trying to speed up those reactions by grinding them into a fine dust and spreading it on agricultural fields. In “ocean alkalinity enhancement,” minerals are deposited directly into the ocean, catalyzing chemical reactions that may enable surface waters to soak up more carbon from the atmosphere. Companies are also experimenting with ways to take carbon-rich organic waste, like sewage, corn stalks, and forest debris, and bury it permanently underground or transform it into more stable materials like biochar.
IPCC Sixth Assessment Report / Working Group III
If you read the words “carbon capture” literally, then yes, carbon removal involves capturing carbon. It’s common to see news articles use the terms interchangeably. But “carbon capture” is also the name for a technology that addresses a very different problem, with different challenges and implications. For that reason, it’s useful to distinguish carbon removal as its own category.
By definition, carbon removal deals with carbon that was previously emitted into the atmosphere — the feathers piling up in the duvet. Carbon capture, by contrast, has historically referred to systems that collect carbon from the flue of an industrial site, like a power plant, before it can enter the atmosphere.
Some carbon removal methods, such as the aforementioned direct air capture machines, share equipment with carbon capture. Both might use materials called sorbents to separate carbon from flue gas or from the air, and both rely on pipelines and drilling to transport the carbon to underground storage wells. But carbon capture cleans up and extends the relevance of present-day industrial processes and fuels. Carbon removal can be deployed concurrent with or independent of today’s energy systems and addresses the legacy carbon still hanging around.
There are different opinions on this. Some consider “geoengineering” to mean any large-scale intervention to counteract climate change. Others reserve the term for interventions that deal only with the effects of climate change, rather than the root cause. For example, solar radiation management, an idea to release tiny particles into the atmosphere that reflect sunlight back into space, would cool the Earth but not change the concentration of carbon in the atmosphere. If we started to do it at scale and then stopped, global warming would rear right back, unless and until the carbon blanketing the atmosphere was removed.
Any global cooling achieved by carbon removal, by contrast, would likely be more durable. To be clear, scientists don’t propose trying to use carbon removal to bring global average temperatures back down to levels seen during the pre-industrial period. It would already take an almost unimaginably large-scale effort to cool the planet just a half a degree or so with carbon removal — more on that in a bit.
While scientists have been talking about carbon removal for decades, a sense of urgency to develop practicable solutions emerged in the years following the 2015 Paris Climate Agreement. The signatories to that United Nations agreement, which included almost every nation in the world, committed to limit warming to “well below 2 degrees Celsius above pre-industrial levels” and strive for no more than 1.5 degrees of warming.
When scientists with the United Nations’ Intergovernmental Panel on Climate Change reviewed more than a thousand modeled scenarios mapping out how the world could achieve these goals, they found that it would be extraordinarily difficult without some degree of carbon removal. We had emitted so much by that point and made so little progress to change our energy systems that success required either cutting emissions at an unfathomably fast clip, cutting emissions more gradually and rapidly scaling up carbon removal to counteract the residuals, or “overshooting” the temperature targets altogether and using carbon removal to back into them.
If limiting warming to 1.5 degrees was a stretch back then, today it’s become even more implausible. “Recent warming trends and the lack of adequate mitigation measures make it clear that the 1.5°C goal will not be met,” reads a January 2025 report from the independent climate science research group Berkeley Earth. The authors expect the threshold to be crossed in the next five to 10 years. Another independent research group, Climate Action Tracker, estimates that current policies put the world on track to warm 2.7 degrees by the end of the century.
To many, carbon removal may seem Sisyphean. As long as we’re still flooding the atmosphere with carbon, trying to take it out bit by bit sounds futile.
But our relatively slow progress cleaning up our energy systems only strengthens the case to develop carbon removal. Just think of all the carbon that’s continuing to accumulate! If we reach a point in the future where energy is cleaner and emissions are significantly lower, carbon removal offers a chance to siphon out some of it and start to reverse the dangerous effects of climate change. If we don’t start building that capacity today, future generations will not have that option.
Scientists also make the case that carbon removal will be essential to halting climate change, never mind reversing it. That’s because there are some human activities that are so difficult or expensive to decarbonize — think commercial aviation, shipping, agriculture — that it may be easier, more economical, or even more environmentally friendly to remove the greenhouse gases they emit after the fact. Stopping the planet from warming does not necessarily require eliminating all emissions. The more likely path is to achieve “net zero,” a point where any remaining emissions are counterbalanced by an equal amount of carbon removal, including from human activities as well as natural carbon sinks.
It would certainly be easier, less expensive, and less resource-intensive to cut emissions today than it will be to remove them in the future. Some scientists have even argued we may be better off assuming carbon removal will not work at scale, as that might motivate more rapid emissions reductions. But the IPCC concluded pretty definitively in 2022 that carbon removal will be required if we want to stabilize global temperatures below 2 degrees this century.
The Paris Agreement temperature targets are not thresholds after which the world falls apart. But every tenth of a degree of warming will strain the Earth’s systems and test human survival more than the last. Abandoning carbon removal means accepting whatever dangerous and devastating effects we fail to avoid.
The latest edition of the “State of CDR” report, put together by a group of leading carbon removal researchers, found that all of the Paris Agreement-consistent scenarios modeled in the scientific literature require removing between 4 billion and 6 billion metric tons of carbon per year by 2035, and between 6 billion and 10 billion metric tons by 2050. For context, they estimate that the world currently removes about 2 billion metric tons of carbon per year over and above what the Earth would naturally absorb without human interference, 99% of which comes from planting trees and managing forests.
These estimates, however, are steeped in uncertainty, as the models make assumptions about the cost and speed of decarbonization and society’s willingness to make behavioral changes such as eating less meat and flying less. We could work toward other futures with less reliance on carbon removal. We could also passively drift toward one that calls for far more.
In short, the amount of carbon removal that may be desirable in the future depends largely on how quickly we reduce emissions and how successful we are in solving the hardest-to-decarbonize parts of the economy. It also depends on what kinds of trade-offs society is willing to make. Large-scale carbon removal would likely be resource-intensive, requiring a lot of land, energy, or both, and could impinge on other sustainability goals.
Afforestation and reforestation are responsible for most carbon removal that happens today, and planting more trees is essential to tackling climate change. But it would be a mistake to bank our carbon removal strategy on that approach alone. For one, depending on how much carbon removal is needed, there may not be enough land that can or should be forested without encroaching on food production or other uses. Large-scale tree planting efforts also often produce monoculture plantations, which are an inexpensive way to maximize carbon sequestration but can harm biodiversity.
The other argument for developing alternative solutions has to do with time. As I explained earlier, carbon dioxide emissions can stay in the atmosphere for millennia. Most tree species do not live longer than 1,000 years, and some are known to survive only for a few decades. The carbon stored in trees is vulnerable to fires, pests, disease, drought, and the simple fact of mortality. Climate change is already increasing these risks.
If we use carbon removal to neutralize residual fossil fuel emissions — which, again, could help us halt warming faster than we otherwise would be able to — the carbon will need to stay out of the atmosphere for as long as the emissions stay in. When we rely on trees to offset CO2 emissions, the climate scientist Zeke Hausfather wrote in a 2022 New York Times op-ed, we “risk merely hitting the climate ‘snooze’ button, kicking the can to future generations who will have to deal with those emissions.”
Every form of carbon removal has trade-offs. Direct air capture uses lots of energy; enhanced rock weathering relies on dirty mining processes and its effectiveness is difficult to measure. It’s still too early to know the extent to which these can be minimized, or to say what the ideal mix of solutions looks like.
There are hundreds of companies and research labs around the world working on various methods to remove carbon from the atmosphere, and the number of real-world projects is growing every year. But the field’s progress is limited by funding. There’s no natural market for carbon removal — it’s essentially a public service. Most of the money going into the field has come from tech companies like Microsoft and Stripe, which have voluntarily paid for carbon removals that haven’t happened yet to help startups access capital to deploy demonstration projects.
Experts across the industry say that in order for carbon removal to scale, governments will need to play a much bigger role. For one, they’ll likely need to pony up for research and development. The U.S. government has been spending about $1 billion per year to support carbon removal research, but according to one estimate, we’ll need to scale that to $100 billion per year by 2050 in order to make the technology set a viable solution. Many argue that compliance markets, in which governments require companies to lower their emissions and permit the purchase of carbon removal to meet targets, will be key to creating sustained demand. (These are not to be confused with carbon offsets, which have also been part of these markets, but have been more focused on projects that avoid emissions.) That’s already starting to happen abroad — this summer, the U.K. decided to incorporate removals into its emissions cap and trade program in 2029, and the E.U. proposed doing the same.
The few programs we do have in the U.S., on the other hand, are currently at risk. Congress appropriated $3.5 billion to the Department of Energy in 2021 to develop several direct air capture “hubs,” but Secretary of Energy Chris Wright may try to cancel the program. The agency also had a pilot program in which it planned to pre-pay for carbon removal, similar to what the tech companies have done, but it’s unclear whether that will move forward. But there’s more action in other countries.
Another central preoccupation in the field today is the development of robust standards that ensure we can accurately measure and report how much carbon is removed by each method. While this is relatively straightforward for a direct air capture system, which is a closed system, it’s much harder for enhanced rock weathering, for example, where there are a lot of outside variables that could affect the fate of the carbon.
The world’s largest source of renewable energy has a long history.
Was Don Quixote a NIMBY?
Miguel de Cervantes’ hero admittedly wasn’t tilting at turbines in 1605, but for some of his contemporary readers in 17th-century Spain, windmills for grinding wheat into flour were viewed as a “dangerous new technology,” author Simon Winchester writes in his forthcoming book, The Breath of the Gods: The History and Future of the Wind. One interpretation of Cervantes’ novel might be that Quixote was “actually doing battle with progress.”
Nearly four and a half centuries later, harnessing the energy of the wind remains controversial, even if the breeze is one of humankind’s longest-utilized resources. While wind is the largest source of renewable electricity generation in the United States today, high construction costs and local opposition have more recently stymied the industry’s continued expansion. The new presidential administration — suspicious of wind’s reliability and place in the American energy mix — has also been doing its very best to stunt any future growth in the sector.
Whether you’re catching up on Trump’s latest regulatory moves, you have your own concerns about the safety of the technology, or this is your first time even thinking about this energy resource, here is the blow-by-blow — sorry! — on wind power in the U.S.
At their most basic conceptual level, wind turbines work by converting kinetic energy — the energy of an object in motion; in this case, air particles — into electrical energy that can be used to power homes, buildings, factories, and data centers.
Like hydroelectric dams, turbines do this by first converting kinetic energy into mechanical energy. The wind turns the turbine blades, which spin a rotor that is connected to a generator. Inside the generator are magnets that rotate around coils of copper wire, creating a magnetic field that pushes and pulls the electrons within the copper. Voilà — and with gratitude to Michael Faraday — now you have an electrical current that can be distributed to the grid.
Turbines typically require an average wind speed of about 9 miles per hour to generate electricity, which is why they are constructed in deserts, mountain passes, on top of hills, or in shallow coastal waters offshore, where there is less in the way to obstruct the flow of wind. Higher elevations are also windier, so utility-scale wind turbines are frequently around 330 feet tall (though the largest turbines tower 600 feet or higher).
It depends on the size of the turbine and also the wind speed. The average capacity of a new land-based wind turbine in the U.S. was 3.4 megawatts in 2023 — but that’s the “nameplate capacity,” or what the turbine would generate if it ran at optimal capacity around the clock.
U.S. Department of Energy
In the U.S., the average capacity factor (i.e. the actual energy output) for a turbine is more like 42%, or close to two-fifths of its theoretical maximum output. The general rule of thumb is that one commercial turbine in the U.S. can power nearly 1,000 homes per month. In 2023, the latest year of data available, land-based and offshore wind turbines in the U.S. generated 425,235 gigawatt-hours of electricity, or enough to power 39 million American homes per year.
A common criticism of wind power is that it “stops working” if the wind isn’t blowing. While it’s true that wind is an intermittent resource, grid operators are used to coping with this. A renewables-heavy grid should combine different energy sources and utilize offline backup generators to prevent service interruptions during doldrums. Battery storage can also help handle fluctuations in demand and increase reliability.
At the same time, wind power is indeed dependent on, well, the wind. In 2023, for example, U.S. wind power generation dropped below 2022 levels due to lower-than-average wind speeds in parts of the Midwest. When you see a turbine that isn’t spinning, though, it isn’t necessarily because there isn’t enough wind. Turbines also have a “cut out” point at which they stop turning if it gets too windy, which protects the structural integrity of the blades and prevents Twisters-like mishaps, as well as keeps the rotor from over-spinning, which could strain or break the turbine’s internal rotating components used to generate electricity.
Though Americans have used wind power in various forms since the late 1800s, the oil crisis of the 1970s brought new interest, development, and investment in wind energy. “The American industry really got going after the suggestion from the Finns, the Swedes, the Danes,” who’d already been making advances in the technology, albeit on single-turbine scales, Winchester, the author of the forthcoming history of wind power, The Breath of the Gods, told me.
In the early 1970s, the Department of Energy issued a grant to William Heronemus, a professor at the University of Massachusetts, Amherst, to explore the potential of wind energy. Heronemus became “really enthusiastic and built wind generators on the campus,” helping to modernize turbines into the more familiar construction we see widely today, Winchester said.
Some of Heronemus’ former students helped build the world’s first multi-turbine wind farm in New Hampshire in 1981. Though the blades of that farm interfered with nearby television reception — they had to be paused during prime time — the technology “seemed to everyone to make sense,” Winchester said. The Energy Policy Act of 1992, which introduced production tax credits for renewables, spurred further development through the end of the millennium.
Heronemus, a former Naval architect, had dreamed in the 1970s of building a flotilla of floating turbines mounted on “wind ships” that were powered by converting seawater into hydrogen fuel. Early experiments in offshore wind by the Energy Research and Development Administration, the progenitor of the Department of Energy, weren’t promising due to the technological limitations of the era — even commercial onshore wind was still in its infancy, and Heronemus’ plans looked like science-fiction.
In 1991, though, the Danes — ever the leaders in wind energy — successfully constructed the Vindeby Offshore Wind Farm, complete with 11 turbines and a total installed capacity of 5 megawatts. The Blyth offshore wind farm in northern Wales soon followed, with the United States finally constructing its first grid-connected offshore wind turbines off of Maine in 2013. The Block Island wind farm, with a capacity of 30 megawatts, is frequently cited as the first true offshore wind farm in the U.S., and began operating off the coast of Rhode Island in 2016.
Though offshore wind taps into higher and more consistent wind speeds off the ocean — and, as a result, is generally considered more efficient than onshore wind — building turbines at sea comes with its own set of challenges. Due to increased installation costs and the greater wear-and-tear of enduring saltwater and storms at sea, offshore wind is generally calculated to be about twice as expensive as onshore wind. “It’s unclear if offshore wind will ever be as cheap as onshore — even the most optimistic projections documented by the National Renewable Energy Laboratory have offshore wind more expensive than the current price of onshore in 2035,” according to Brian Potter in his newsletter, Construction Physics, though he notes that “past projections have underestimated the future cost reductions of wind turbines.”
Scott Eisen/Getty Images
In the decade from 2014 to 2023, total wind capacity in the U.S. doubled. Onshore and offshore wind power is now responsible for over 10% of utility-scale electricity generation in the U.S., and has been the highest-producing renewable energy source in the nation since 2019. (Hydropower, the next highest-producing renewable energy source, is responsible for about 5.7% of the energy mix, by comparison.) In six states — Iowa, Kansas, Oklahoma, New Mexico, South Dakota, and North Dakota — onshore wind makes up more than a third of the current electricity mix, Climate Central reports.
Offshore wind has been slower to grow in the U.S. Even during the Biden administration, when the government targeted developing 30 gigawatts of offshore wind capacity by 2030, the industry faced financing challenges, transmission and integration obstacles, and limits in access to a skilled workforce, per a 2024 paper in Energy Research & Social Science. That same year, the Department of Energy reported that the nation had a total of 80,523 megawatts for offshore wind in operation and in the pipeline, which, under ideal conditions, could power 26 million homes. Many of those offshore projects and plans now face an uncertain future under the Trump administration.
Though we’re far removed from the 1880s, when suspicious Scots dismissed wind energy pioneer James Blyth’s home turbine as “the devil’s work,” there are still plenty of persistent concerns about the safety of wind power to people and animals.
Some worry about onshore wind turbines’ effects on people, including the perceived dangers of electromagnetic fields, shadow flicker from the turning blades, and sleep disturbance or stress. Per a 2014 systematic review of 60 peer-reviewed studies on wind turbines and human health by the National Institutes of Health, while there was “evidence to suggest that wind turbines can be a source of annoyance to some people, there was no evidence demonstrating a direct causal link between living in proximity to wind turbines and more serious physiological health effects.” The topic has since been extensively studied, with no reputable research concluding that turbines have poor health impacts on those who live near them.
Last year, the blade of a turbine at Vineyard Wind 1 broke and fell into the water, causing the temporary closure of beaches in Nantucket to protect people from the fiberglass debris. While no one was ultimately injured, GE Vernova, which owns Vineyard Wind, agreed earlier this year to settle with the town for $10.5 million to compensate for the tourism and business losses that resulted from the failure. Thankfully, as my colleague Jael Holzman has written, “major errors like blade failures are incredibly rare.”
There are also concerns about the dangers of wind turbines to some wildlife. Turbines do kill birds, including endangered golden eagles, which has led to opposition from environmental and local activist groups. But context is also important: The U.S. Fish & Wildlife Service has found that wind farms “represent just 0.03% of all human-related bird deaths in the U.S.” (Illegal shootings, for example, are the greatest cause of golden eagle deaths.) The continued use of fossil fuels and the ecological impacts of climate change also pose a far graver threat to birds than wind farms do. Still, there is room for discussion and improvement: The California Department of Fish and Wildlife issued a call earlier this year for proposals to help protect golden eagles from turbine collisions in its major wind resource areas.
Perhaps the strongest objection to offshore wind has come from concern for whales. Though there has been an ongoing “unusual mortality event” for whales off the East Coast dating back to 2016 — about the same time the burgeoning offshore wind industry took off in the United States — the two have been falsely correlated (especially by groups with ties to the fossil fuel industry). A recent government impact report ordered by Republicans even found that “NOAA Fisheries does not anticipate any death or serious injury to whales from offshore wind-related actions and has not recorded marine mammal deaths from offshore wind activities.” Still, that hasn’t stopped Republican leaders — including the president — from claiming offshore wind is making whales “a little batty.”
Polling by Heatmap has found that potential harm to wildlife is a top concern of both Democrats and Republicans when it comes to the deployment of renewable energy. Although there has been “no evidence to date that the offshore wind build-out off the Atlantic coast has harmed a single whale … studies have shown that activities related to offshore wind could harm a whale, which appears to be enough to override the benefits for some people,” my colleague Jael has explained. A number of environmental groups are attempting to prevent offshore and land-based wind development on conservationist grounds, to varying degrees of success. Despite these reservations, though, our polling has found that Americans on the coast largely support offshore wind development.
Aesthetic concerns are another reason wind faces opposition. The proposed Lava Ridge wind farm in Idaho, which was Heatmap’s most imperiled renewable energy project last year, faced intense opposition, ostensibly due to the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp. Coastal homeowners have raised the same complaint about offshore wind that would be visible from the beach, like the Skipjack offshore wind project, which would be situated off the coast of Maryland.
Not good. As one of President Trump’s first acts in office, he issued an executive order that the government “shall not issue new or renewed approvals, rights of way, permits, leases, or loans for onshore or offshore wind projects” until the completion of a “comprehensive assessment” of the industry’s impacts on the economy and the environment. Eight months later, federal agencies were still not processing applications for onshore wind projects.
Offshore wind is in even more trouble because such projects are sited entirely in federal waters. As of late July, the Bureau of Ocean Energy Management had rescinded all designated wind energy areas — a decision that applies to some 3.5 million acres of federal waters, including the Central Atlantic, California, and Oregon. The Department of the Interior has also made moves to end what it calls the “special treatment for unreliable energy sources, such as wind,” including by “evaluating whether to stop onshore wind development on some federal lands and halting future offshore wind lease sales.” The Interior Department will also look into how “constructing and operating wind turbines might affect migratory bird populations.”
The One Big Beautiful Bill Act, meanwhile, put strict restrictions on tax credits available to wind developers. Per Cleanview, the bill jeopardizes some 114 gigawatts of wind energy projects, while the Center for American Progress writes that “more than 17,000 jobs are connected to offshore wind power projects that are already canceled, on hold, or at risk from the Trump administration’s attacks on wind power.”
The year 2024 marked a record for new wind power capacity, with 117 gigawatts of wind energy installed globally. China in particular has taken a keen interest in constructing new wind farms, installing 26 gigawatts worth, or about 5,300 turbines, between January and May of last year alone.
Still, there are significant obstacles to the buildout of wind energy even outside of the United States, including competition from solar, which is now the cheapest and most widely deployed renewable energy resource in the world. High initial construction costs, deepened by inflation and supply-chain issues, have also stymied wind development.
There are an estimated 424 terawatts worth of wind energy available on the planet, and current wind turbines tap into just half a percent of that. According to Columbia Business School’s accounting, if maximized, wind has the potential to “abate 10% to 20% of CO2 emissions by 2050, through the clean electrification of power, heat, and road transport.”
Wind is also a heavy player in the Net Zero Emissions by 2050 Scenario, which aims for
7,100 terawatt hours of wind electricity generation worldwide by the end of the decade, per the International Energy Agency. But current annual growth would need to increase annual capacity additions from about 115 gigawatts in 2023 to 340 gigawatts in 2030. “Far greater policy and private-sector efforts are needed to achieve this level of capacity growth,” IEA notes, “with the most important areas for improvement being facilitating permitting for onshore wind and cost reductions for offshore wind.”
Wind turbines continue to become more efficient and more economical. Many of the advances have come in the form of bigger turbines, with the average height of a hub for a land-based turbine increasing 83% since the late 1990s. The world’s most powerful offshore turbine, Vestas’ V236-15.0 megawatt prototype, is, not coincidentally, also the world’s tallest, at 919 feet.
Advanced manufacturing techniques, such as the use of carbon fiber composites in rotor blades and 3D printed materials, could also lead to increases in efficiency. In a 2024 report, NREL anticipated that such innovations could potentially “unlock 80% more economically viable wind energy capacity within the contiguous United States.”
Floating offshore wind farms are another area of active innovation. Unlike the fixed-foundation turbines mainly used offshore today, floating turbines could be installed in deep waters and allow for development on trickier coastlines like off of Oregon and Washington state. Though there are no floating offshore wind farms in the United States yet, there are an estimated 266 gigawatts of floating turbine capacity in the pipeline globally.