You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Senate told renewables developers they’d have a year to start construction and still claim a tax break. Then came an executive order.
Renewable energy advocates breathed a sigh of relief after a last-minute change to the One Big Beautiful Bill Act stipulated that wind and solar projects would be eligible for tax credits as long as they began construction within the next 12 months.
But the new law left an opening for the Trump administration to cut that window short, and now Trump is moving to do just that. The president signed an executive order on Monday directing the Treasury Department to issue new guidance for the clean electricity tax credits “restricting the use of broad safe harbors unless a substantial portion of a subject facility has been built.”
The broad safe harbors in question have to do with the way the government defines the “beginning of construction,” which, in the realm of federal tax credits, is a term of art. Under the current Treasury guidance, developers must either complete “physical work of a significant nature” on a given project or spend at least 5% of its total cost to prove they have started construction during a given year, and are therefore protected from any subsequent tax law changes.
As my colleague Matthew Zeitlin previously reported, oftentimes something as simple as placing an order for certain pieces of equipment, like transformers or solar trackers, will check the box. Still, companies can’t just buy a bunch of equipment to qualify for the tax credits and then sit on it indefinitely. Their projects must be up and operating within four years, or else they must demonstrate “continuous progress” each year to continue to qualify.
As such, under existing rules and Trump’s new law, wind and solar developers would have 12 months to claim eligibility for the investment or production tax credit, and then at least four years to build the project and connect it to the grid. While a year is a much shorter runway than the open-ended extension to the tax credits granted by the Inflation Reduction Act, it’s a much better deal than the House’s original version of the OBBBA, which would have required projects to start construction within two months and be operating by the end of 2028 to qualify.
Or so it seemed.
The tax credits became a key bargaining chip during the final negotiations on the bill. Senator Lisa Murkowski of Alaska fought to retain the 12-month runway for wind and solar, while members of the House Freedom Caucus sought to kill it. Ultimately, the latter group agreed to vote yes after winning assurances from the president that he would “deal” with the subsidies later.
Last week, as all of this was unfolding, I started to hear rumors that the Treasury guidance regarding “beginning of construction” could be a key tool at the president’s disposal to make good on his promise. Industry groups had urged Congress to codify the existing guidance in the bill, but it was ultimately left out.
When I reached out to David Burton, a partner at Norton Rose Fulbright who specializes in energy tax credits, on Thursday, he was already contemplating Trump’s options to exploit that omission.
Burton told me that Trump’s Treasury department could redefine “beginning of construction” in a number of ways, such as by removing the 5% spending safe harbor or requiring companies to get certain permits in order to demonstrate “significant” physical work. It could also shorten the four-year grace period to bring a project to completion.
But Burton was skeptical that the Treasury Department had the staff or expertise to do the work of rewriting the guidance, let alone that Trump would make this a priority. “Does Treasury really want to spend the next couple of months dealing with this?” he said. “Or would it rather deal with implementing bonus depreciation and other taxpayer-favorable rules in the One Big Beautiful Bill instead of being stuck on this tangent, which will be quite a heavy lift and take some time?”
Just days after signing the bill into law, Trump chose the tangent, directing the Treasury to produce new guidance within 45 days. “It’s going to need every one of those days to come out with thoughtful guidance that can actually be applied by taxpayers,” Burton told me when I called him back on Monday night.
The executive order cites “energy dominance, national security, economic growth, and the fiscal health of the Nation” as reasons to end subsidies for wind and solar. The climate advocacy group Evergreen Action said it would help none of these objectives. “Trump is once again abusing his power in a blatant end-run around Congress — and even his own party,” Lena Moffit, the group’s executive director said in a statement. “He’s directing the government to sabotage the very industries that are lowering utility bills, creating jobs, and securing our energy independence.”
Industry groups were still assessing the implications of the executive order, and the ones I reached out to declined to comment for this story. “Now we’re circling the wagons back up to dig into the details,” one industry representative told me, adding that it was “shocking” that Trump would “seemingly double cross Senate leadership and Thune in particular.”
As everyone waits to see what Treasury officials come up with, developers will be racing to “start construction” as defined by the current rules, Burton said. It would be “quite unusual” if the new guidance were retroactive, he added. Although given Trump’s history, he said, “I guess anything is possible.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
“I believe the tariff on copper — we’re going to make it 50%.”
President Trump announced Tuesday during a cabinet meeting that he plans to impose a hefty tax on U.S. copper imports.
“I believe the tariff on copper — we’re going to make it 50%,” he told reporters.
Copper traders and producers have anticipated tariffs on copper since Trump announced in February that his administration would investigate the national security implications of copper imports, calling the metal an “essential material for national security, economic strength, and industrial resilience.”
Trump has already imposed tariffs for similarly strategically and economically important metals such as steel and aluminum. The process for imposing these tariffs under section 232 of the Trade Expansion Act of 1962 involves a finding by the Secretary of Commerce that the product being tariffed is essential to national security, and thus that the United States should be able to supply it on its own.
Copper has been referred to as the “metal of electrification” because of its centrality to a broad array of electrical technologies, including transmission lines, batteries, and electric motors. Electric vehicles contain around 180 pounds of copper on average. “Copper, scrap copper, and copper’s derivative products play a vital role in defense applications, infrastructure, and emerging technologies, including clean energy, electric vehicles, and advanced electronics,” the White House said in February.
Copper prices had risen around 25% this year through Monday. Prices for copper futures jumped by as much as 17% after the tariff announcement and are currently trading at around $5.50 a pound.
The tariffs, when implemented, could provide renewed impetus to expand copper mining in the United States. But tariffs can happen in a matter of months. A copper mine takes years to open — and that’s if investors decide to put the money toward the project in the first place. Congress took a swipe at the electric vehicle market in the U.S. last week, extinguishing subsidies for both consumers and manufacturers as part of the One Big Beautiful Bill Act. That will undoubtedly shrink domestic demand for EV inputs like copper, which could make investors nervous about sinking years and dollars into new or expanded copper mines.
Even if the Trump administration succeeds in its efforts to accelerate permitting for and construction of new copper mines, the copper will need to be smelted and refined before it can be used, and China dominates the copper smelting and refining industry.
The U.S. produced just over 1.1 million tons of copper in 2023, with 850,000 tons being mined from ore and the balance recycled from scrap, according to United States Geological Survey data. It imported almost 900,000 tons.
With the prospect of tariffs driving up prices for domestically mined ore, the immediate beneficiaries are those who already have mines. Shares in Freeport-McMoRan, which operates seven copper mines in Arizona and New Mexico, were up over 4.5% in afternoon trading Tuesday.
Predicting the location and severity of thunderstorms is at the cutting edge of weather science. Now funding for that science is at risk.
Tropical Storm Barry was, by all measures, a boring storm. “Blink and you missed it,” as a piece in Yale Climate Connections put it after Barry formed, then dissipated over 24 hours in late June, having never sustained wind speeds higher than 45 miles per hour. The tropical storm’s main impact, it seemed at the time, was “heavy rains of three to six inches, which likely caused minor flooding” in Tampico, Mexico, where it made landfall.
But a few days later, U.S. meteorologists started to get concerned. The remnants of Barry had swirled northward, pooling wet Gulf air over southern and central Texas and elevating the atmospheric moisture to reach or exceed record levels for July. “Like a waterlogged sponge perched precariously overhead, all the atmosphere needed was a catalyst to wring out the extreme levels of water vapor,” meteorologist Mike Lowry wrote.
More than 100 people — many of them children — ultimately died as extreme rainfall caused the Guadalupe River to rise 34 feet in 90 minutes. But the tragedy was “not really a failure of meteorology,” UCLA and UC Agriculture and Natural Resources climate scientist Daniel Swain said during a public “Office Hours” review of the disaster on Monday. The National Weather Service in San Antonio and Austin first warned the public of the potential for heavy rain on Sunday, June 29 — five days before the floods crested. The agency followed that with a flood watch warning for the Kerrville area on Thursday, July 3, then issued an additional 21 warnings, culminating just after 1 a.m. on Friday, July 4, with a wireless emergency alert sent to the phones of residents, campers, and RVers along the Guadalupe River.
The NWS alerts were both timely and accurate, and even correctly predicted an expected rainfall rate of 2 to 3 inches per hour. If it were possible to consider the science alone, the official response might have been deemed a success.
Of all the storm systems, convective storms — like thunderstorms, hail, tornadoes, and extreme rainstorms — are some of the most difficult to forecast. “We don’t have very good observations of some of these fine-scale weather extremes,” Swain told me after office hours were over, in reference to severe meteorological events that are often relatively short-lived and occur in small geographic areas. “We only know a tornado occurred, for example, if people report it and the Weather Service meteorologists go out afterward and look to see if there’s a circular, radial damage pattern.” A hurricane, by contrast, spans hundreds of miles and is visible from space.
Global weather models, which predict conditions at a planetary scale, are relatively coarse in their spatial resolution and “did not do the best job with this event,” Swain said during his office hours. “They predicted some rain, locally heavy, but nothing anywhere near what transpired.” (And before you ask — artificial intelligence-powered weather models were among the worst at predicting the Texas floods.)
Over the past decade or so, however, due to the unique convective storm risks in the United States, the National Oceanic and Atmospheric Administration and other meteorological agencies have developed specialized high resolution convection-resolving models to better represent and forecast extreme thunderstorms and rainstorms.
NOAA’s cutting-edge specialized models “got this right,” Swain told me of the Texas storms. “Those were the models that alerted the local weather service and the NOAA Weather Prediction Center of the potential for an extreme rain event. That is why the flash flood watches were issued so early, and why there was so much advanced knowledge.”
Writing for The Eyewall, meteorologist Matt Lanza concurred with Swain’s assessment: “By Thursday morning, the [high resolution] model showed as much as 10 to 13 inches in parts of Texas,” he wrote. “By Thursday evening, that was as much as 20 inches. So the [high resolution] model upped the ante all day.”
Most models initialized at 00Z last night indicated the potential for localized excessive rainfall over portions of south-central Texas that led to the tragic and deadly flash flood early this morning. pic.twitter.com/t3DpCfc7dX
— Jeff Frame (@VORTEXJeff) July 4, 2025
To be any more accurate than they ultimately were on the Texas floods, meteorologists would have needed the ability to predict the precise location and volume of rainfall of an individual thunderstorm cell. Although models can provide a fairly accurate picture of the general area where a storm will form, the best current science still can’t achieve that level of precision more than a few hours in advance of a given event.
Climate change itself is another factor making storm behavior even less predictable. “If it weren’t so hot outside, if it wasn’t so humid, if the atmosphere wasn’t holding all that water, then [the system] would have rained and marched along as the storm drifted,” Claudia Benitez-Nelson, an expert on flooding at the University of South Carolina, told me. Instead, slow and low prevailing winds caused the system to stall, pinning it over the same worst-case-scenario location at the confluence of the Hill Country rivers for hours and challenging the limits of science and forecasting.
Though it’s tempting to blame the Trump administration cuts to the staff and budget of the NWS for the tragedy, the local NWS actually had more forecasters on hand than usual in its local field office ahead of the storm, in anticipation of potential disaster. Any budget cuts to the NWS, while potentially disastrous, would not go into effect until fiscal year 2026.
The proposed 2026 budget for NOAA, however, would zero out the upkeep of the models, as well as shutter the National Severe Storms Laboratory in Norman, Oklahoma, which studies thunderstorms and rainstorms, such as the one in Texas. And due to the proprietary, U.S.-specific nature of the high-resolution models, there is no one coming to our rescue if they’re eliminated or degraded by the cuts.
The impending cuts are alarming to the scientists charged with maintaining and adjusting the models to ensure maximum accuracy, too. Computationally, it’s no small task to keep them running 24 hours a day, every day of the year. A weather model doesn’t simply run on its own indefinitely, but rather requires large data transfers as well as intakes of new conditions from its network of observation stations to remain reliable. Although the NOAA high-resolution models have been in use for about a decade, yearly updates keep the programs on the cutting edge of weather science; without constant tweaks, the models’ accuracy slowly degrades as the atmosphere changes and information and technologies become outdated.
It’s difficult to imagine that the Texas floods could have been more catastrophic, and yet the NOAA models and NWS warnings and alerts undoubtedly saved lives. Still, local Texas authorities have attempted to pass the blame, claiming they weren’t adequately informed of the dangers by forecasters. The picture will become clearer as reporting continues to probe why the flood-prone region did not have warning sirens, why camp counselors did not have their phones to receive overnight NWS alarms, why there were not more flood gauges on the rivers, and what, if anything, local officials could have done to save more people. Still, given what is scientifically possible at this stage of modeling, “This was not a forecast failure relative to scientific or weather prediction best practices. That much is clear,” Swain said.
As the climate warms and extreme rainfall events increase as a result, however, it will become ever more crucial to have access to cutting-edge weather models. “What I want to bring attention to is that this is not a one-off,” Benitez-Nelson, the flood expert at the University of South Carolina, told me. “There’s this temptation to say, ‘Oh, it’s a 100-year storm, it’s a 1,000-year storm.’”
“No,” she went on. “This is a growing pattern.”
On the Texas floods, wind and solar restrictions, and an executive order
Current conditions: An extreme heat warning is in place for Phoenix, which could reach 113 degrees Fahrenheit today • Flooding in central North Carolina has killed at least one person after two months’ worth of rain fell in 24 hours • Parts of the U.K. this week will experience their third heatwave in less than a month.
The catastrophic flooding in central Texas that claimed more than 100 lives late last week was intensified by human-driven climate change, according to a rapid attribution report by ClimaMeter, an experimental framework funded by the European Union and the French National Centre for Scientific Research. The researchers compared historic and contemporary weather patterns in Texas’ Hill Country and found that conditions going into Fourth of July weekend were up to 7% wetter than during similar events in the past. “These results suggest that meteorological conditions similar to those of the July 2025 Texas floods are becoming more favorable for extreme precipitation, in line with what would be expected under continued global warming,” the researchers wrote, concluding that “natural variability alone cannot explain the changes in precipitation associated with this very exceptional meteorological condition.”
The development of new wind and solar power plants is “now heavily restricted or outright banned in about one in five counties across the country,” according to a major new survey of public records and local ordinances by my colleagues Robinson Meyer and Charlie Clynes. Their report found bans and restrictions — such as a rule that wind turbines must be placed a certain number of miles from homes, or that solar farms cannot take up more than 1% of a county’s agricultural land — in a total of 605 U.S. counties, including at least 59 municipalities in the more-renewables-friendly Northeast. In total, the bans and restrictions on renewables cover approximately 17% of the continental United States’ total land mass.
Robinson and Charlie’s findings have not been previously reported, and their research involved calling thousands of counties where laws, in some cases, were not in existing public databases. You can access the full project- and county-level data and associated risk assessments via Heatmap Pro, here.
In an executive order on Monday, President Trump directed the Treasury Department to issue “new and revised guidance” restricting which projects will still qualify for wind and solar tax credits. The order builds on the repeal of renewable energy tax credits in the One Big Beautiful Bill Act, which had stipulated that such projects would need to begin construction within a year and come online by 2028 to be eligible for the subsidies. Now the government will take a stricter approach to defining “the beginning of construction” to prevent “the artificial acceleration or manipulation of eligibility” by limiting credits to projects in which “a substantial portion of a subject facility has been built.”
Freedom Caucus members had described the tax credits as a sticking point during their late negotiations over the bill. As my colleagues Jael Holzman and Katie Brigham previously reported, North Carolina Republican Representative Ralph Norman alluded to a conversation with Trump in which the president had assured him that he was “going to deal with [the tax credits] in his own way.” It appears the executive order is the follow-through on that promise. Additionally, Trump’s executive order called for the Department of the Interior to determine whether any of its policies, practices, or regulations “provide preferential treatment to wind and solar facilities in comparison to dispatchable energy sources” and revise them accordingly.
An Energy Department report released Monday warned that blackouts in the U.S. could “increase by 100% in 2030” if the country continues to close its coal and natural gas power plants. The report, completed at the direction of an April executive order by President Trump, anticipates 209 gigawatts of new generation by 2030 to replace 104 gigawatts of retirements — but “only 22 gigawatts would come from firm baseload generation sources,” so that, “even assuming no retirements, the model found increased risk of outages in 2030 by a factor of 34.” The DOE concluded that the U.S. grid “will not be able to sustain the combined impact of coal and other plant closures, an overreliance on intermittent energy sources like wind and solar, and data center growth, highlighting the urgency of increasing dispatchable energy output.”
The DOE’s report sets the stage for the department to continue to prevent the phase-out of old fossil fuel power plants and open new facilities. Many are skeptical of the agency’s logic, however, pointing to renewable-heavy grid success stories like Texas. The Department of Energy “appears to exaggerate the risk of blackouts and undervalue the contributions of entire resource classes, like wind, solar, and battery storage,” Caitlin Marquis, the managing director at Advanced Energy United, said, per Axios.
On Monday, the Trump administration sent letters to 14 countries warning them they’ll face tariffs of up to 40% if they don’t reach a trade deal with the U.S. by an August 1 deadline. Significantly, automaking giants Japan and South Korea — which each account for about 4% of U.S. imports, per The New York Times — were among the recipients, and face 25% tariffs according to the letters. As my colleague Jael Holzman previously reported, Japan in particular had been “positioned to be an ally in U.S. efforts to wean off China-linked minerals and signed a minerals trade agreement under Biden,” with the imposition of such tariffs potentially threatening to tank America’s own “mineral supply chain renaissance.”
Tom Nicholson/Getty Images
The Seine River opened for swimming last weekend for the first time since 1923, following an extensive effort to upgrade the city’s sewer systems and water treatment facilities. “I never imagined being in the water close to the Eiffel Tower,” one swimmer told Reuters.