You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Changli is weird, about $1,000, and a surprisingly compelling vision of the future.

If you’re trying to solve a problem, it’s unlikely that anyone is going to look over your efforts, scribble things on a pad, scowl, and then say, “Have you tried half-assing it? Really phone it in?” This almost never happens. And yet it's precisely what I think needs to happen for electric cars to live up to their potential. They need to suck far, far more than they currently do. I know this sounds like what many experts would call “a terrible idea” and “stupid,” but I’m confident in this belief for one very notable reason: I’ve lived it.
For the past few years, I’ve used and enjoyed an electric car that is, by the standards of any EV available on the mass market today, terrible. I’m talking about something with about 1/10th the range, about 1/250th the horsepower (and that’s being generous), and maybe 1/5th the maximum speed of a modern EV. These are the sort of specs that should be charitably considered garbage.
And yet, despite it all, what I’ve learned is that not only are such meager capabilities enough for a shocking amount of my transportation needs, the whole experience has been downright fun. Yes, fun.
The car I’m talking about is called the Changli Freeman, and I believe it is the cheapest car in the world. In fact, that was the initial reason I bought it. You see, my job is to write about and do things with interesting cars, so when the pandemic arrived in 2020, that put a real crimp in my usual plans of traveling to people with strange cars all over the country and driving them, on video, to the delight of audiences in the high severals.
So, stuck at home, I hatched a new plan: I’d bring the interesting cars to me! Well, one interesting car, and that interesting car would be the cheapest new car one could buy.
My research brought me to a category of automobile that is known in their native land, China, as 老头乐, something that translates to “old man happy car.” That’s because this type of car is primarily sold to elderly folks in second-tier cities who need something to get to the market or pick up grandkids from school. Slow is just fine, and the legality of these cars, even in their native China, is muddy, at best. But they are definitely cars, of a sort.
At $930, the Changli was the cheapest of the cheap. Add in the necessary five 12V lead-acid batteries, which aren’t included in the base price, and the bill lurches up to $1,200, still absolutely, impossibly, floor-settingly dirt cheap for a new car of any kind.
Oh, and perhaps equally incredibly, I found this car on the website Alibaba.com, and bought it online, just like you would buy a video game console that looks like a Playstation 5 but perversely only plays 40-year-old Nintendo games.
Sure, shipping from China and all of the related customs hassles brought the total cost to about $3,300, but even so, we’re still talking about something wildly inexpensive. We’re still comfortably lying down on that bottom tier, and if you need further proof of this, here’s a video of me when I first got it and had to take it out of the massive cardboard box it shipped in:
Unboxing The World's Cheapest New Car Reveals It's So Much Better Than You Thinkwww.youtube.com
Now, aside from the fact that my new car arrived in a cardboard box, what you should note is my raw, unmitigated delight.
I had been genuinely ready to accept what would effectively be a plastic porta-potty-type body on a crude, flimsy chassis with a chain-driven axle and an effective operational lifespan roughly on par with your average mosquito. But that’s not what I got. What I got was a very cleverly-designed little car with an all-steel body, all the required legal lights and indicators, a windshield wiper, heater, radio with an MP3 player, and even a freaking backup camera. It was so much better than I ever could have imagined.
I later brought the Changli to Munro and Associates, one of the leading vehicular evaluation companies in the world, a place where major automotive manufacturers bring competitors' products to determine how they’re built and how much it costs to make them.
Sandy Munro, who runs the company, was genuinely stunned by what the Changli had to offer, and how it was made:
Sandy Munro Attempts To Demystify The Absurdly Low Cost Of The Changliwww.youtube.com
Remember, these are the reactions of someone who has torn down every major electric car on the market, from Teslas to Fords to BMWs. He knows what he’s talking about.
The specs on the car aren’t exactly impressive: 1.1 horsepower electric motor, 60V of batteries which gave a (tested) range of 27 miles, and a top speed of about 25 mph or so, though something around 20 was more common. My kid is able to run up a hill faster than the Changli can get up it. And yet, somehow, it works.
Here's What The World's Cheapest Electric Car Is Like To Drivewww.youtube.com
It actually does more than just work; it’s a usable transportation solution for far more of my normal transportation needs than I’d have ever guessed. While it may have come into my life as a curio, it very rapidly became an actually useful conveyance.
I used it to go to the grocery store. I sometimes took my kid to school in it, or to a friend’s house. I picked up take-out. I got parts from the auto parts store when one or more of my “real” cars needed repair. I met friends out at restaurants or galleries or clubs in town, and when I did, I could always park where no one else could, nose-to-curb or in tiny nooks behind dumpsters or any number of other small, forgotten spaces.
I did all of the sorts of mundane, low-distance, low-speed personal transportation acts that we all do, and which command a far larger percentage of our day-to-day transportation needs than many of us realize.
Now, I live in an environment where this sort of thing is perhaps unusually possible. It’s a college town, so there’s a lot of fairly dense commerce surrounded by a lot of low-speed streets, which makes it ideal for using a low-speed neighborhood electric vehicle (as it’s technically classed). According to the rules of this vehicle classification, which varies a lot from state-to-state, I can drive my absurd little machine on any street with a speed limit of 35 mph or less, though I think I can cross streets with higher limits.
There’s no highway travel, of course, but that’s not a restriction I’d need to be told to obey, as trying to drive this thing on a highway would be like shoving a sloth into the path of a cattle stampede. Were I to be in an accident with something like an F-150, I’d probably end up accordian’d like a cartoon coyote.
What I learned was that about 75% of my daily transportation needs could be accomplished with this shockingly minimal machine, and, even better, done with more fun than getting in a full-sized car. It was even easier than driving my regular cars! It was quiet and leisurely and everyone who saw this refugee from Cartoonistan greeted it with amused bewilderment or a smile or both.
Compared to a real EV like, say, a Tesla Model 3, this thing is a joke. But it’s a joke that can get to and from the grocery store in about the same amount of time when driving through town, and accomplish pretty much the same job, for a tiny fraction of the price and without hauling around an extra 3,000 pounds of car and battery that were, for the purposes of a trip like a grocery run, just dead weight.
There’s something in the automotive industry known as “vehicle demand energy,” which basically refers to the amount of energy needed to simply put the whole car in motion. The vehicle demand energy of a Tesla or a Ford Mach-E or even a Nissan Leaf is orders of magnitude higher than what the Changli demands, and for an awful lot of driving, that’s wasted energy.
If we’re really serious about using EVs to make a real dent in climate issues and energy usage, then we should adjust our thinking to make room for Changli-type vehicles.
Side by side with a “real car,” the Changli looks like a comical, shrunken subset, but compared to other minimalistic electric, low-speed transportation solutions like an e-bike, it feels like being carried in a luxurious, silken-draped litter. Unlike an e-bike, you’re still enjoying complete protection from the weather, and since you’re not teetering on a pair of wheels, but are rather cozily lounging inside a metal box, you can carry so much more stuff.
That’s why a minimal car-esque EV like the Changli is viable for transporting, say, tubs of Chinese food home or taking your kid to school: It’s a car, not a bike. It’s an obvious thing to note, but it’s a big deal when it comes to actually using the thing.
Sure, you can’t take a roadtrip in a Changli, but you knew that from the moment you looked at it. It is just a case of the right tool for the right job. Live somewhere dense, with a lot of low-speed travel? Maybe a Changli makes sense! Live on a compound and it’s a 45-minute trip if you need dental floss? Maybe not. There will always be a place for long-range, comfortable and safe EVs, capable of high speeds and long road trips, but they don’t need to be your daily driver.
Perhaps many of us will have small, fun, a-bit-better-than-Changli-type vehicles that we drive day-to-day, and then take majestic powerful, long-range EVs on the occasional road trip.
This doesn’t have to be a punishment. I’m a gearhead, I love cars and driving, and I can honestly say my driving experiences in the Changli have been a blast. I even took it to a track event. I’m pretty sure I hit 26 mph, and, like any car at its limit, it was pretty fun, making those bagel-sized tires squeal and feeling that tall, silly body lean and tilt like a drunk on an escalator.
Already in Europe we’re starting to see some realization that this sort of category is viable; French carmaker Citroën has a cheap, $10,000-ish car called the Ami that is classified under European quadracycle laws, which is essentially a category for low-speed city cars, which make a lot of sense the dense urban landscapes found all over Europe.
The Ami’s speed is limited to 28 mph (I suspect it’s technically capable of more), and it can go about 47 miles on a full charge, both of which are enough for the job it’s designed to do. The more I think about cars like the Changli and the Ami, the more I think they should be far, far more common than they are.
If we want to really change the transportation landscape in a way that’s good for the climate, is less demanding on the difficult rare-earth resources required to make EV batteries (for the resources that go into the battery of one full-range and power EV, you can likely make at least three short-range-use EVs), and yet still preserves so much of the personal transportation freedom that we’ve all grown to expect, then its time to really think about scaling down the sorts of vehicles that we use for all the little drives we do.
And, remember, it’s not a punishment. It’ll be fun. I know, because, again, I’m doing it, in the most minimal, ridiculous way possible.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The cloak-and-dagger approach is turning the business into a bogeyman.
It’s time to call it like it is: Many data center developers seem to be moving too fast to build trust in the communities where they’re siting projects.
One of the chief complaints raised by data center opponents across the country is that companies aren’t transparent about their plans, which often becomes the original sin that makes winning debates over energy or water use near-impossible. In too many cases, towns and cities neighboring a proposed data center won’t know who will wind up using the project, either because a tech giant is behind it and keeping plans secret or a real estate firm refuses to disclose to them which company it’ll be sold to.
Making matters worse, developers large and small are requiring city and county officials to be tight-lipped through non-disclosure agreements. It’s safe to say these secrecy contracts betray a basic sense of public transparency Americans expect from their elected representatives and they become a core problem that lets activists critical of the data center boom fill in gaps for the public. I mean, why trust facts and figures about energy and water if the corporations won’t be up front about their plans?
“When a developer comes in and there’s going to be a project that has a huge impact on a community and the environment – a place they call home – and you’re not getting any kind of answers, you can tell they’re not being transparent with you,” Ginny Marcille-Kerslake, an organizer for Food and Water Watch in Pennsylvania, told me in an interview this week. “There’s an automatic lack of trust there. And then that extends to their own government.”
Let’s break down an example Marcille-Kerslake pointed me to, where the utility Talen Energy is seeking to rezone hundreds of acres of agricultural land in Montour County, Pennsylvania, for industrial facilities. Montour County is already a high risk area for any kind of energy or data center development, ranking in the 86th percentile nationally for withdrawn renewable energy projects (more than 10 solar facilities have been canceled here for various reasons). So it didn’t help when individuals living in the area began questioning if this was for Amazon Web Services, similar to other nearby Talen-powered data center projects in the area?
Officials wouldn’t – or couldn’t – say if the project was for Amazon, in part because one of the county commissioners signed a non-disclosure agreement binding them to silence. Subsequently, a Facebook video from an activist fighting the rezoning went viral, using emails he claimed were obtained through public records requests to declare Amazon “is likely behind the scenes” of the zoning request.
Amazon did not respond to my requests for comment. But this is a very familiar pattern to us now. Heatmap Pro data shows that a lack of transparency consistently ranks in the top five concerns people raise when they oppose data center projects, regardless of whether they are approved or canceled. Heatmap researcher Charlie Clynes explained to me that the issue routinely crops up in the myriad projects he’s tracked, down to the first data center ever logged into the platform – a $100 million proposal by a startup in Hood County, Oregon, that was pulled after a community uproar.
“At a high level, I have seen a lack of transparency become more of an issue.t makes people angry in a very unique way that other issues don’t. Not only will they think a project is going to be bad for a community, but you’re not even telling them, the key stakeholder, what is going on,” Clynes said. “It’s not a matter of, are data centers good or bad necessarily, but whether people feel like they’re being heard and considered. And transparency issues make that much more difficult..”
My interview with Marcille-Kerslake exemplified this situation. Her organization is opposed to the current rapid pace of data center build-out and is supporting opposition in various localities. When we spoke, her arguments felt archetypal and representative of how easily those who fight projects can turn secrecy into a cudgel. After addressing the trust issues with me, she immediately pivoted to saying that those exist because “at the root of it, this lack of transparency to the community” comes from “the fact that what they have planned, people don’t want.”
“The answer isn’t for these developers to come in and be fully transparent in what they want to do, which is what you’d see with other kinds of developments in your community. That doesn’t help them because what they’re building is not wanted.”
I’m not entirely convinced by her point, that the only reason data center developers are staying quiet is because of a likelihood of community opposition. In fairness, the tech sector has long operated with a “move fast, break things” approach, and Silicon Valley companies long worked in privacy in order to closely guard trade secrets in a competitive marketplace. I also know from my previous reporting that before AI, data center developers were simply focused on building projects with easy access to cheap energy.
However, in fairness to opponents, I’m also not convinced the industry is adequately addressing its trust deficit with the public. Last week, I asked Data Center Coalition vice president of state policy Dan Diorio if there was a set of “best practices” that his large data center trade organization is pointing to for community relations and transparency. His answer? People are certainly trying their best as they move quickly to build out infrastructure for AI, but no, there is no standard for such a thing.
“Each developer is different. Each company is different. There’s different sizes, different structures,” he said. “There’s common themes of open and public meetings, sharing information about water use in particular, helping put it in the proper context as well.”
He added: “I wouldn’t categorize that as industry best practice, [but] I think you’re seeing common themes emerge in developments around the country.”
Plus more of the week’s biggest renewable energy fights.
Cole County, Missouri – The Show Me State may be on the precipice of enacting the first state-wide solar moratorium.
Clark County, Ohio – This county has now voted to oppose Invenergy’s Sloopy Solar facility, passing a resolution of disapproval that usually has at least some influence over state regulator decision-making.
Millard County, Utah – Here we have a case of folks upset about solar projects specifically tied to large data centers.
Orange County, California – Compass Energy’s large battery project in San Juan Capistrano has finally died after a yearslong bout with local opposition.
Hillsdale County, Michigan – Here’s a new one: Two county commissioners here are stepping back from any decision on a solar project because they have signed agreements with the developer.
A conversation with Save Our Susquehanna’s Sandy Field.
This week’s conversation is with Sandy Field, leader of the rural Pennsylvania conservation organization Save Our Susquehanna. Field is a climate activist and anti-fossil fuel advocate who has been honored by former vice president Al Gore. Until recently, her primary focus was opposing fracking and plastics manufacturing in her community, which abuts the Susquehanna River. Her focus has shifted lately, however, to the boom in data center development.
I reached out to Field because I’ve been quite interested in better understanding how data centers may be seen by climate-conscious conservation advocates. Our conversation led me to a crucial conclusion: Areas with historic energy development are rife with opposition to new tech infrastructure. It will require legwork for data centers – or renewable energy projects, for that matter – to ever win support in places still reeling from legacies of petroleum pollution.
The following conversation has been lightly edited for clarity.
Given your background, tell me about how you wound up focusing on data centers?
We won a fight against a gas plant in fall of 2023. We started saying, Instead of focusing on what we don’t want, we’re going to start focusing on what we do want. We were focusing on supporting recreational projects in our area, because this is an area where people come to hike and camp and fish. It’s a great place to ride your bike.
Then, all of the sudden, people were saying, What about these data centers?
At first, it seemed benign. It’s like a warehouse, who cares? But we started to learn about the water use concerns, the energy use concerns. We learned about the Amazon one that’s connected to Three Mile Island, which is responsible for turning it back on. We learned about one in Homer, Pennsylvania, where they’re taking a former coal plant and converting it into the largest gas plant in the country in order to power a data center. The people in that area are going to get the pollution from the enormous power plant but none of the power. It started to be clear to us that, again, behind these projects is a push to build out more fracking and gas in Pennsylvania.
From a climate change point of view, this is exactly the wrong perspective. We’re running in the wrong direction. Between water usage, and this energy usage, people are becoming alarmed that the burden will be on us and data centers will be just another boondoggle.
The last thing I’ll say is that there is nothing right now in American politics that is reaching across the aisle. Our communities are coming together. Everybody – Democrats, Republicans – to fight these things.
This is also the only thing I’ve ever worked on that people hate more than plastics.
It sounds like how you learned about these projects was, it began as an anodyne issue but you began to hear about impacts on water and energy use. When I talk to people in the development space, some will call anybody who opposes development NIMBYs. But I’m feeling like this is an oversimplification of the problem here. If you had to identify a principle reason so many people are opposing data centers, what would be the big overarching motive?
I think it seems rushed. People are concerned because it's like a gold rush.
A gas-fired power plant takes five years to build. They’re talking about data centers right now. Where is that power coming from? The whole thing feels like a bubble, and we’re concerned that people are going to invest into communities, and communities will be accepting them only to be left with stranded assets.
When I hear you bring up the principle reason being speed, I hear you. Power plants take years. Mines take years. So do renewable energy projects. Help me get a better understanding though, how much of this is purely the speed –
They’re taking people by surprise.
Take into account where we are. We live by the Susquehanna River, the longest non-navigable river in the world. It doesn’t have a lot of industry on it because it’s too shallow, but we drink from the river and we’ve just gotten it clean. The river was so low this past year that historic structures were beginning to be visible that I’ve never seen, the entire time I have lived here. That was because of a drought.
Now, add to that a couple of data centers pulling millions of gallons of water a day and only putting a portion back in, with who knows what in there. People here are saying that back in the day this river was filled with coal dust, and then we had fracking, so its… enough is enough. Let’s put something into rural communities that will actually benefit us.
The small townships [deciding] don’t know enough about data centers to plan for them. So we’re trying to make sure they’re prepared for managing them. We go to these townships being approached and encourage them to have a protective ordinance that allows them to define parameters for these things. Setbacks, water use rules, things like that.
To your point about NIMBYs – there are a few around here who really are. But there are others who really do just have concerns about how this is a bad idea and we’re rushing in a direction we don’t want to go for our state. They felt this way about fracking, about advanced plastics recycling too, for example. It wasn’t that people didn’t want the projects in their backyards – it’s that they didn’t want them anywhere. Labeling us as NIMBYs or whiners or gripers is unfair.
On that note, I can’t help but notice that these efforts to get protective ordinances on data centers are happening as opponents of renewable energy are doing the same thing. Are you at all concerned that this increased scrutiny towards land use will lead to greater restrictions on renewables alongside data centers?
You’re right that a lot of this is about land use and there are similar arguments about renewable energy. Some of these arguments are being fed by the fossil fuel industry and its allies, and a lot of it is baseless. They’re feeding in concerns about glare and noise and whatever else that don’t even really exist about solar panels.
But it is, yes, often the same people talking about protecting their land. It does have similar elements, especially because of the agricultural land use being proposed in many cases.
We need to meet the concerns about renewable energy head-on. If you talk to people and show them a picture of solar panels with sheep grazing underneath and the land can be conserved for many years, this starts to be a different argument than building a data center for Amazon or someone else that people don’t even like, using the water and all that.