You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
With net metering out of favor, the options for homeowners have gotten more complicated.
The early adopters of DIY solar had to pay a premium to put panels on their rooftops, sure — but at least they had a simple way to recoup that investment. Every kilowatt of self-generated sun power was one they didn’t have to buy from the power company. And for houses with big solar setups, so big they could satisfy their own needs and then some, selling their excess electricity back onto the grid could even be lucrative.
This strategy, called net metering, turned lots of homeowners and businesses into little power plants. These days, though, utilities are pushing back. New rules and laws in states such as Indiana, North Carolina, and even sun-drenched Arizona and California have throttled back on how much they’ll pay individual solar generators. Some mandated a lower price be paid to homeowners, making it less worthwhile to get a large home solar setup in the first place.
That presents a dilemma for homeowners generating more solar power than they can use: Where does it all go? The answer, it turns out, is more complicated than simply selling excess kilowatts back to the power company.
Arguments against the old-school way of net metering, where people essentially earn back the full price of energy they sell, lean on economic fairness. People who don’t pay for electricity or even make money back via their solar panels don’t pay for the grid maintenance that’s built into the price of electricity, and therefore pass it on to everyone else (although the size of this effect is in dispute). There’s also a design question: Grid systems were built to direct electricity from the power company to homeowners. When energy starts to flow in both directions, things can get unstable.
Whether rooftop solar is even good for the climate, actually, remains a confounding question. The counter-argument, as expounded by Jesse Jenkins on a recent episode of Heatmap’s Shift Key podcast, is that rooftop solar replaces utility-scale solar capacity that could’ve been built at lower cost, thus slowing down the clean energy transition.
Nevertheless, homes are installing solar, and their excess energy has to go somewhere, lest those kilowatt-hours be wasted. But if not onto the grid, then where? That’s the question I asked Steven Low, a professor and clean energy expert at the California Institute of Technology. (Disclosure: My full time job is as a communications editor at Caltech.)
“If you have significant feedback from [photovoltaic solar panels] to the grid then you may trigger protections, and that will screw up the operation of the grid,” he said. If only a few homes have solar, “that is probably not a big issue. But if you have more and more such PVs generating power that will affect the grid, then this will be a problem.”
For now at least, the best solution can be summed up in a single word: batteries. Low and his colleagues are collaborating with the power department in Pasadena, California to test batteries that can store and release excess power automatically to stop voltage from becoming unstable. In Hawaii, which has a high percentage of households with solar, Hawaiian Electric has a program to pay customers who put in a home battery system alongside their solar setup. The logic is twofold: First, a stash of backup power makes homes more resilient in case of a blackout, and storing solar power in a big battery is climate-friendlier than firing up a diesel generator. Second, from the utilities’ point of view, more storage means less uncertainty on the grid.
A problem, of course, is that batteries aren’t cheap — and they’re in high demand. “The battery at this point, especially since EV is taking off, is still usually much more valuable for transportation than for electricity service,” Low told me. Home batteries don’t need to be as big because appliances don’t use as much energy as a car flying down the freeway. Tesla’s powerwall has a capacity of 13.5 kWh, for example, less than a quarter as much as the battery in a standard-range Tesla Model Y. Multiple batteries can be stacked in a group, but the cost adds up quickly. Low speculated that perhaps used EV batteries will find a second life as home backup batteries once their capacity falls so far that they’re no longer useful for road trips.
Helpfully, a grid-connected home battery can move energy in multiple ways. A solar home could stash extra clean energy during the day to use in the dark of night. People who live under a virtual power plant can engage in “energy arbitrage” — the buy low, sell high practice of storing energy when it’s cheap and selling it back onto the grid when it’s expensive. (Technically, you don’t even need the solar panels to do this, although the emissions reduction would be far smaller.)
The idea of electricity moving in every direction — not just from the electric company to you — leads to the promise of the microgrid, the energy-sharing gold standard where neighbors can share power. The school district in Santa Barbara, California, for example, is developing a solar-powered microgrid to reinforce the resilience of an area that’s particularly vulnerable to earthquakes and other grid disruptions. If the grid goes down, a neighborhood, company, or organization with a microgrid that can “island” itself is able to keep the lights, on as homes and businesses that can make or store extra energy sell it to their neighbors.
Before any of that can happen, though, “there needs to be some incentive structure for me to provide power to my neighbor, also using the grid that belongs to the utility,” Low said. That last part is the trickiest. It’s not just the technical and financial infrastructure needed to share electricity across the cul-de-sac. The utility must agree to let energy flows in this way over infrastructure that it owns. And somebody has to oversee such a complex energy web.
“Let's say you have a lot of households and businesses install PV,” Low said. “They have their storage, and they want arbitrage because they can be profitable selling waste.” But you also want to make sure people are maximizing their own storage for stability’s sake. “Who's going to do that coordination? A natural way is for utilities to do that, but then that will require the utility to either control or at least communicate with each household,” which would in turn require complex data-sharing infrastructure.
As Tim Hale of Scaled Microgrids told me, it’s not easy for people to decide whether all that trouble is worthwhile because there’s no simple way to put a price tag on making a company or a community more resilient against power disruptions.
“It's a very complex thought exercise for people to go through,” he said “Generally speaking, there are companies and entities and people that value resilience and there are people that don't. Right? And the people who value resilience are the people that build microgrids.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And it only gets worse from here.
Hot and humid weather stretching from Maine to Missouri is causing havoc for grid operators: blackouts, brownouts, emergency authorizations to exceed environmental restrictions, and high prices.
But in terms of what is on the grid and what is demanded of it, this may be the easiest summer for a long time.
That’s because demands on the grid are growing at the same time the resources powering it are changing. Between broad-based electrification, manufacturing additions, and especially data center construction, electricity load growth is forecast to grow several percent a year through at least the end of the decade. At the same time, aging plants reliant on oil, gas, and coal are being retired (although planned retirements are slowing down), while new resources, largely solar and batteries, are often stuck in long interconnection queues — and, when they do come online, offer unique challenges to grid operators when demand is high.
For the previous 20 years, load growth has been relatively steady, Abe Silverman, a research scholar at Johns Hopkins, explained to me. “What’s different is that load is trending up,” he said. “When you’re buying and making arrangements for the summer, you have to aim a bit higher.”
Nowhere is the combined and uneven development of the grid’s supply and demand more evident than in PJM Interconnection, the country’s largest electricity market, spanning from Washington, D.C. to Chicago. The grid now has to serve new load in Virginia’s “data center alley,” while aggressive public policy promoting renewables in states such as Maryland and New Jersey has made planning more complicated thanks to the different energy generation and economic profiles of wind, solar, and batteries compared to gas and coal.
PJM hit peak load on Monday of just over 161,000 megawatts, within kissing distance of its all-time record of 165,500 megawatts and far north of last year’s high demand of 152,700, with load hitting at least 158,000 megawatts on Tuesday. Forecast high load this year was around 154,000 megawatts. Earlier this spring, PJM warned that for the first time, “available generation capacity may fall short of required reserves in an extreme planning scenario that would result in an all-time PJM peak load of more than 166,000 megawatts.”
While that extreme demand has not been seen on the grid during this present heat wave, we’re still early in the year. Typically, PJM’s demand peaks in July or even August; according to the consulting firm ICF, the last June peak was in 2014, while demand last year peaked in July. On Monday, real time prices got just over $3,000 a megawatt, and reached just over $1,800 on Tuesday.
“This is a big test. A lot of capacity has retired since 2006 and the resource mix has changed some,” Connor Waldoch, head of strategy at GridStatus, told me. While exact data on the resource mix over the past 20 years isn’t available, Waldoch said that many of the fossil fuel plants on the grid — including those that help set the price of electricity — are quite old.
PJM’s operators have issued a “maximum generation alert” that will extend to Wednesday, warning generators and transmission owners to defer or cancel maintenance so that “units stay online and continue to produce energy that is needed.”
PJM also issued a load management alert, a warning that PJM may call upon some 8,000 megawatts of electricity users who have been paid in advance to reduce demand when the grid calls for it. Already, some large users of electricity in Virginia have reduced their power demand as part of the program. There are historically around one or two uses of demand response per year in each of the electricity market’s 21 zones.
“Demand response is a real hero,” Silverman said.
Elsewhere in the hot zone, thousands of customers of the New York Independent Systems Operator lost or saw reduced power on Monday, along with over 100,000 customers affected by voltage reductions. On Tuesday, NYISO issued an “energy watch” meaning that “operating reserves are expected to be lower than normal,” and asking customers to reduce their power consumption.
Further north, oil and coal made up 10% of the fuel mix in ISO New England by Monday night, according to GridStatus data. The region has greatly expanded behind-the-meter solar generation since 2010, which as of 2 p.m. Monday was generating over 21% of the region’s power. But the grid as a whole hasn’t been able to keep up, thanks to a nationally anomalous shortage of gas capacity and still-insufficient battery storage. As the sun faded, so too did New England’s renewable generation.
“You don’t see coal very often in the New England fuel mix,” Waldoch told me. In fact, there is only one remaining coal plant in New England, which can typically power around 440,000 homes — though that’s based on normal electricity usage. On days like the past few, it may power far fewer.
Moving into Tuesday, Secretary of Energy Chris Wright invoked emergency authorities to allow Duke Energy in the Carolinas to run certain of its units “at their maximum generation output levels due to ongoing extreme weather conditions and to preserve the reliability of bulk electric power system.”
The strained grid and high prices come as grid operators question how effectively their current and planned generation capacity can meet future demand. These questions have become especially pressing in PJM, which last year shelled out billions of dollars in payments to largely fossil fuel generators in what’s known as a capacity auction. That’s already translating to higher costs for consumers — in some cases as high as 20%. But even that could be nothing compared to what’s coming.
“If you take the current conditions that PJM is dealing with right now and you add tens of gigawatts of data to center demand, they would be in trouble,” Pieter Mul, an energy and infrastructure advisor at PA Consulting, told me.
Right now, Mul said, PJM can muddle through. “It is all hands on deck. Our prices are quite high. They’ve invoked some various emergency conditions.” But that’s before all those data centers are even online. “It’s a 2026, ’27, and beyond question,” Mul said.
Today, however, “it’s mostly just very hot weather.”
The state’s senior senator, Thom Tillis, has been vocal about the need to maintain clean energy tax credits.
The majority of voters in North Carolina want Congress to leave the Inflation Reduction Act well enough alone, a new poll from Data for Progress finds.
The survey, which asked North Carolina voters specifically about the clean energy and climate provisions in the bill, presented respondents with a choice between two statements: “The IRA should be repealed by Congress” and “The IRA should be kept in place by Congress.” (“Don’t know” was also an option.)
The responses from voters broke down predictably along party lines, with 71% of Democrats preferring to keep the IRA in place compared to just 31% of Republicans, with half of independent voters in favor of keeping the climate law. Overall, half of North Carolina voters surveyed wanted the IRA to stick around, compared to 37% who’d rather see it go — a significant spread for a state that, prior to the passage of the climate law, was home to little in the way of clean energy development.
But North Carolina now has a lot to lose with the potential repeal of the Inflation Reduction Act, as my colleague Emily Pontecorvo has pointed out. The IRA brought more than 17,000 jobs to the state, per Climate Power, along with $20 billion in investment spread out over 34 clean energy projects. Electric vehicle and charging manufacturers in particular have flocked to the state, with Toyota investing $13.9 billion in its Liberty EV battery manufacturing facility, which opened this past April.
North Carolina Senator Thom Tillis was one of the four co-authors of a letter sent to Majority Leader John Thune in April advocating for the preservation of the law. Together, they wrote that gutting the IRA’s tax credits “would create uncertainty, jeopardizing capital allocation, long-term project planning, and job creation in the energy sector and across our broader economy.” It seems that the majority of North Carolina voters are aligned with their senator — which is lucky for him, as he’s up for reelection in 2026.
The new Nissan Leaf is joining a whole crop of new electric cars in the $30,000 range.
Here is an odd sentence to write in the year 2025: One of the most interesting electric vehicles on the horizon is the Nissan Leaf.
The Japanese automaker last week revealed new images and specs of the redesign it had teased a few months ago. The new Leaf, which will arrive in 2026, is a small crossover that’s sleeker than, say, a Tesla Model Y, but more spacious than the previous hatchback versions of the car. Nissan promises it will have a max range above 300 miles, while industry experts expect the company to target a starting price not too far above $30,000.
The updated Leaf won’t be one of those EVs that smokes a gas-powered sports car in a drag race, not with the 214 horsepower from that debut version and certainly not with the 174 horsepower from the cheaper version that will arrive later on. Its 150-kilowatt max charging speed lags far behind the blazing fast 350-kilowatt charging capability Hyundai is building into its Ioniq electric vehicles. But because it lacks some of these refinements, the new Nissan may arrive as one of the most compelling of the “affordable” EVs that are, finally, coming to drivers.
Not bad for a car that had become an electric afterthought.
The original Nissan Leaf was a revelation merely for its existence. Never mind that it was a lumpy potato derived from the uninspired Nissan Versa — here was the first mass-market electric car, heralding the age of the EV and welcomed with plenty of “car of the year” laurels at the dawn of the 2010s. Its luster would not last, however, as the arrival of the Tesla Model S a couple of years later stole the world’s attention. The second-generation Leaf that arrived in 2017 was an aesthetic and technological leap forward from its predecessor, with a range that topped 200 miles in its most advanced form. It was, for the time, a pretty good EV. Almost immediately, it was overshadowed by the introduction of Tesla’s Model 3 and Model Y, which catapulted Elon Musk’s company into complete dominance of the global EV market.
It took nearly a decade for Nissan (which fell into corporate mismanagement and outright crisis in the meantime) to update the stale and outdated Leaf. As a result, you might think the new version of the OG EV will arrive just in time to be outshone again. Yet the peculiar nature of the evolving electric car market has created an opportunity for the Leaf to finally grow and thrive.
There was a time when the mythical affordable Tesla could have taken the brand into the entry-level car market, and perhaps below the magic starting price of $30,000. But that has turned out to be a distraction dangled in front of fanboys and investors. In reality, Musk effectively killed the idea as he instead rolled out the Cybertruck and pivoted the company toward the dream of total vehicle autonomy.
Thanks to Tesla’s refusal to act like a normal car company, the affordable EV market is still there for the taking. Some are already in the game: Hyundai’s little Kona Electric starts at $33,000, and I’ve lauded Chevrolet for building a base version of the Equinox EV that starts around $35,000. In the next year or so, an influx of EVs in the $30,000 to $35,000 range might really change the game for electric-curious buyers.
The new Leaf is suddenly a big part of that mix. No, it won’t compete on price with a comparable combustion Nissan like the Kicks crossover that starts in the low $20,000s (not without the $7,500 tax credit, which would have made the new crop of affordable EVs directly cost-competitive with entry-level gas cars). The Leaf is likely to start just above $30,000, with the price creeping higher for buyers who opt for better performance or more range (and as I’ve noted numerous times, you ought to buy all the range you can afford if an EV is going to be your main car).
Arriving next year to compete with the Leaf is the new Chevy Bolt, another revival of an early EV icon. Experts expect a similar price range there. The anticipated Kia EV3 should come to America eventually with a starting cost around $35,000. The Jeff Bezos-backed Slate electric truck shocked the world with its promise of a bare-bones EV in the $20,000s — but, by the time the average buyer adds enough amenities to make it liveable, most Slate trucks will probably top $30,000.
Elon Musk may have abdicated his role as the Leaf’s antagonist via his refusal to build an affordable car, but erstwhile ally Donald Trump is poised to assume the role. Since the Leaf is slated to be built in Japan, the EV would be subject to whatever tariffs might be in place by the time it goes on sale next year. A 25% tariff, plus the federal government’s flip to punishing EVs with penalties instead of rewarding them with incentives, would kill the car’s value proposition in the U.S. Perhaps, then, it will become the next great affordable EV — for everybody else.