Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

How China’s Industrial Policy Really Works

Rob and Jesse get into the nitty gritty on China’s energy policy with Joanna Lewis and John Paul Helveston.

Xi Jinping.
Heatmap Illustration/Getty Images

China’s industrial policy for clean energy has turned the country into a powerhouse of solar, wind, battery, and electric vehicle manufacturing.

But long before the country’s factories moved global markets — and invited Trump’s self-destructive tariffs — the country implemented energy and technology policy to level up its domestic industry. How did those policies work? Which tools worked best? And if the United States needs to rebuild in the wake of Trump’s tariffs, what should this country learn?

On this week’s episode of Shift Key, Rob and Jesse talk with two scholars who have been studying Chinese industrial policy since the Great Recession. Joanna Lewis is the Provost’s Distinguished Associate Professor of Energy and Environment and Director of the Science, Technology and International Affairs Program at Georgetown University's School of Foreign Service. She’s also the author of Green Innovation in China. John Paul Helveston is an assistant professor in engineering management and systems engineering at George Washington University. He studies consumer preferences and market demand for new technologies, as well as China’s longstanding gasoline car and EV industrial policy. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Robinson Meyer: One kind of classical hard problem about industrial policy is selecting the technology that is going to eventually be a winner. And there’s a few ways to get around this problem. One is to just make lots of bets.

One thing that’s been a little unclear to me about the set of technology bets that China has made is that it has seemed to pick a set of technologies that are now extremely competitive globally, and it did seem to pick up on those technologies before Western governments or firms really got to them. Is that entirely because China just made a bunch of technology bets and it happened that these are the ones that worked out? Is it because China could look ahead to the environmental needs of the world and the clean development needs of the world and say, well, there’s probably going to be a need for solar? There’s probably going to be a need for wind? There’s probably going to be a need for EVs? Or is it a third thing, which is that China’s domestic needs, its domestic energy security needs, just happen to align really well with the direction of development that the world is kind of interested in moving in anyway.

John Paul Helveston: All of the above. I don’t know — like, that’s the answer here. I’ll add one thing that’s a little bit nuanced: There’s been tremendous waste. I’ll just put that out there. There’s been all kinds of investments that did not pan out at all, like semiconductors for a long, long time. Just things that didn’t work.

I think where China has had a lot of success is in areas where … It’s like the inverse of what the United States innovation ecosystem does well. China’s ecosystem is really driven around production, and a lot of that is part of the way the government’s set up, that local provinces have a ton of power over how money gets spent, and often repurpose funds for export-oriented production. So that’s been a piece of the engine of China’s economic miracle, is mass producing everything.

But there’s a lot of knowledge that goes along with that. When you look at things like solar, that technology goes back many, many decades for, you know, satellites. But making it a mass produced product for energy applications requires production innovations. You need to get costs down. You need to figure out how to make the machine that makes the machine. And that is something that the Chinese ecosystem does very well.

So that’s one throughline across all of these things, is that the technology got to a certain level of maturity where production improvements and cost decreases were the bigger things that made them globally competitive. I don’t think anyone would be considering an EV if we were still looking at $1,000 a kilowatt hour — and we were there just 15 years ago. And so that’s the big thing. It’s just production. I don’t know if they’ve been exceptionally good at just picking winners, but they’re good at picking things that can be mass produced.

Music for Shift Key is by Adam Kromelow.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Ideas

The Last Time America Tried to Legislate Its Way to Energy Affordability

Lawmakers today should study the Energy Security Act of 1980.

Jimmy Carter.
Heatmap Illustration/Getty Images, Library of Congress

The past few years have seen wild, rapid swings in energy policy in the United States, from President Biden’s enthusiastic embrace of clean energy to President Trump’s equally enthusiastic re-embrace of fossil fuels.

Where energy industrial policy goes next is less certain than any other moment in recent memory. Regardless of the direction, however, we will need creative and effective policy tools to secure our energy future — especially for those of us who wish to see a cleaner, greener energy system. To meet the moment, we can draw inspiration from a largely forgotten piece of energy industrial policy history: the Energy Security Act of 1980.

Keep reading...Show less
Blue
AM Briefing

The Grinch of Offshore Wind

On Google’s energy glow up, transmission progress, and South American oil

Donald Trump.
Heatmap Illustration/Getty Images

Current conditions: Nearly two dozen states from the Rockies through the Midwest and Appalachians are forecast to experience temperatures up to 30 degrees above historical averages on Christmas Day • Parts of northern New York and New England could get up to a foot of snow in the coming days • Bethlehem, the West Bank city south of Jerusalem in which Christians believe Jesus was born, is preparing for a sunny, cloudless Christmas Day, with temperatures around 60 degrees Fahrenheit.

This is our last Heatmap AM of 2025, but we’ll see you all again in 2026!

THE TOP FIVE

1. Trump halts construction on all offshore wind projects

Just two weeks after a federal court overturned President Donald Trump’s Day One executive order banning new offshore wind permits, the administration announced a halt to all construction on seaward turbines. Secretary of the Interior Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!” As Heatmap’s Jael Holzman explained in her writeup, there are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. “The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told Fox Business host Maria Bartiromo.

Keep reading...Show less
Green
Energy

Google Is Cornering the Market on Energy Wonks

The hyperscaler is going big on human intelligence to help power its artificial intelligence.

The Google logo holding electricity.
Heatmap Illustration/Getty Images

Google is on an AI hiring spree — and not just for people who can design chips and build large language models. The tech giant wants people who can design energy systems, too.

Google has invested heavily of late in personnel for its electricity and infrastructure-related teams. Among its key hires is Tyler Norris, a former Duke University researcher and one of the most prominent proponents of electricity demand flexibility for data centers, who started in November as “head of market innovation” on the advanced energy team. The company also hired Doug Lewin, an energy consultant and one of the most respected voices in Texas energy policy, to lead “energy strategy and market design work in Texas,” according to a note he wrote on LinkedIn. Nathan Iyer, who worked on energy policy issues at RMI, has been a contractor for Google Clean Energy for about a year. (The company also announced Monday that it’s shelling out $4.5 billion to acquire clean energy developer Intersect.)

Keep reading...Show less
Yellow