You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Here’s how workers feel about the elimination of mandatory water breaks amid unrelenting summer heat.
Jerry Margoitta is all too familiar with heat stroke.
“I’ll never forget it,” Margoitta told me. He was working as a water meter reader in Waco, Texas, back when meter readers still walked to each house, and he’d finished a few blocks worth of houses when he saw a coworker nearby. “He was coming towards me, and I went to turn around, and I just passed out.”
He came to in a hospital bed, with his mother and then-wife standing over him. “I was down for four days,” Margoitta said. “If it weren’t for my coworker I would have been dead in a ditch.”
That was over three decades ago, when he was 26 years old. He’s now 59, and in the time since Margoitta has worked a variety of jobs outdoors, primarily in construction. Heat has backgrounded practically his entire working life: The Texas summer is long and hot, the ground reflects the heat to intensify the effects of the sun, and heavy machinery boils the air around it.
In that kind of environment, it’s easy to miss the warning signs of heat-related illnesses. On particularly hot days, Margoitta avoids eating outside of his lunch break — a full stomach, he says, would make the heat even worse. Dehydration can also set in quickly, and the best way to deal with it is active prevention, or drinking more water than feels necessary; if someone waits until they feel thirsty, they may already be dehydrated.
So when Margoitta heard that Texas governor Greg Abbott had approved a law that would eliminate mandatory water breaks, he was flabbergasted.
“When I first read it, I was like, no, that can't be. I wouldn't know why they would make something so vital go away,” he told me. “I would hope that no employer would honor it. A lot of companies already take advantage of their employees, but now they’re going to make it even worse. They can get away with it now. They're going to close out the one thing that probably keeps people alive.”
Supporters of the bill, which will eliminate ordinances in Dallas and Austin that mandated 10-minute water breaks every four hours when it goes into effect in September, say guidelines set by the Occupational Safety and Health Administration (OSHA) are enough to ensure worker safety, and that the local laws are bad for business. But OSHA still hasn’t issued guidelines for workplace heat — though they’re expected later this year — and the Texas Observer reports that at least three people have died on the job since the bill passed. Opponents call the bill the “Death Star” law.
“All it does is simply demonstrate the lack of value on a human life,” Matt Gonzales, business manager for Local 1095, an affiliate of the Laborers International Union of North America (LiUNA) and the union that represents Margoitta. “An employee earning $18 an hour will produce $3 of production in 10 minutes. This is the dollar amount that the governor places on the lives of the workers who may die as a result of this disastrous legislation.”
Labor unions like LiUNA have breaks built into the contracts they negotiate with employers, so union members like Margoitta are protected regardless of the “Death Star” bill. But job sites tend to have a mixture of union and non-union labor, and the non-unionized laborers don’t get those benefits. Many of the non-unionized workers, Margoitta told me, are low-income or unhoused, which makes them easier to exploit and also means they have little respite from the heat.
“You step outside right now, and the heat will take your breath away,” Margoitta said. “There’s no place to hide.”
As I wrote last week, unions are increasingly factoring climate change into their plans, both for the job potential and to safeguard their workers from climate impacts. In Texas, a coalition of unions, including LiUNA, have come together under the banner of the Texas Climate Jobs Project to ensure good clean-energy jobs for their members. Now, they’re trying to figure out how workers — union and non-union alike — can be protected in the wake of the “Death Star” bill. In San Antonio, for example, they’re trying to build rest breaks into contracts for city projects and create a scoring mechanism that would tell workers which employers willfully provide rest breaks.
“We’re just trying to be creative and find ways that through policy and procedure we can get some of these things addressed,” Gonzales said. “Until there is a change in our elected officials and who's representing the citizens of Texas, we're not going to be able to effect drastic change. But in the meantime, it's up to organized labor and our community partners to band together and find ways that we can work around the anti worker legislation and bills.”
Until then, Margoitta is going to have to continue finding ways to live with the heat. He just wrapped up one job and is about to start another, helping to build a highway extension near Austin. At first, the supervisor asked if he could work on pouring concrete — a job that would require being out under the sun all day long.
“I was like, you get a bunch of 19-year-olds to do that, because I’m not about to,” Margoitta told me.
Instead, he’ll be operating a drilling machine. He wishes he had more experience operating equipment of that sort, but it comes with one big perk: An air conditioned cab.
Read more about working in the heat:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And more on the week’s conflicts around renewable energy.
1. Carbon County, Wyoming – I have learned that the Bureau of Land Management is close to approving the environmental review for a transmission line that would connect to BluEarth Renewables’ Lucky Star wind project.
2. Nantucket County, Massachusetts – Anti-offshore wind advocates are pushing the Trump administration to rescind air permits issued to Avangrid for New England Wind 1 and 2, the same approval that was ripped away from Atlantic Shores offshore wind farm last Friday.
3. Campbell County, Virginia – The HEP Solar utility-scale project in rural Virginia is being accused of creating a damaging amount of runoff, turning a nearby lake into a “mud pit.” (To see the story making the rounds on anti-renewables social media, watch this TV news segment.)
4. Marrow County, Ohio – A solar farm in Ohio got approvals for once! Congratulations to ESA Solar on this rare 23-acre conquest.
5. Madison County, Indiana – The Indiana Supreme Court has rejected an effort by Invenergy to void a restrictive county ordinance.
6. Davidson County, North Carolina – A fraught conflict is playing out over a Cypress Creek Renewables solar project in the town of Denton, which passed a solar moratorium that contradicts approval for the project issued by county officials in 2022.
7. Knox County, Nebraska – A federal judge has dismissed key aspects of a legal challenge North Fork Wind, a subsidiary of National Grid Renewables, filed against the county for enacting a restrictive wind ordinance that hinders development of their project.
8. Livingston Parish, Louisiana – This parish is extending a moratorium on new solar farm approvals for at least another year, claiming such action is necessary to comply with a request from the state.
9. Jefferson County, Texas – The city council in the heavily industrial city of Port Arthur, Texas, has approved a lease for constructing wind turbines in a lake.
10. Linn County, Oregon – What is supposed to be this county’s first large-scale solar farm is starting to face pushback over impacts to a wetlands area.Today’s sit-down is with Nikhil Kumar, a program director at GridLab and an expert in battery storage safety and regulation. Kumar’s folks reached out to me after learning I was writing about Moss Landing and wanted to give his honest and open perspective on how the disaster is impacting the future of storage development in the U.S. Let’s dive in!
The following is an abridged and edited version of our conversation.
So okay – walk me through your perspective on what happened with Moss Landing.
When this incident occurred, I’d already been to Moss Landing plenty of times. It caught me by surprise in the sense that it had reoccurred – the site had issues in the past.
A bit of context about my background – I joined GridLab relatively recently, but before that I spent 20 years in this industry, often working on the integrity and quality assurance of energy assets, anything from a natural gas power plant to nuclear to battery to a solar plant. I’m very familiar with safety regulation and standards for the energy industry, writ large.
Help me understand how things have improved since Moss Landing. Why is this facility considered by some to be an exception to the rule?
It’s definitely an outlier. Batteries are very modular by nature, you don’t need a lot of overall facility to put battery storage on the ground. From a construction standpoint, a wind or solar farm or even a gas plant is more complex to put together. But battery storage, that simplicity is a good thing.
That’s not the case with Moss Landing. If you look at the overall design of these sites, having battery packs in a building with a big hall is rare.
Pretty much every battery that’s been installed in the last two or three years, industry has already known about this [risk]. When the first [battery] fire occurred, they basically containerized everything – you want to containerize everything so you don’t have these thermal runaway events, where the entire battery batch catches fire. If you look at the record, in the last two or three years, I do not believe a single such design was implemented by anybody. People have learned from that experience already.
Are we seeing industry have to reckon with this anyway? I can’t help but wonder if you’ve witnessed these community fears. It does seem like when a fire happens, it creates problems for developers in other parts of the country. Are developers reckoning with a conflation from this event itself?
I think so. Developers that we’ve talked to are very well aware of reputational risk. They do not want people to have general concern with this technology because, if you look at how much battery is waiting to be connected to the grid, that’s pretty much it. There’s 12 times more capacity of batteries waiting to be connected to the grid than gas. That’s 12X.
We should wait for the city and I would really expect [Vistra] to release the root cause investigation of this fire. Experts have raised a number of these potential root causes. But we don’t know – was it the fire suppression system that failed? Was it something with the batteries?
We don’t know. I would hope that the details come out in a transparent way, so industry can make those changes, in terms of designs.
Is there anything in terms of national regulation governing this sector’s performance standards and safety standards, and do you think something like that should exist?
It should exist and it is happening. The NFPA [National Fire Prevention Association] is putting stuff out there. There might be some leaders in the way California’s introduced some new regulation to make sure there’s better documentation, safety preparedness.
There should be better regulation. There should be better rules. I don’t think developers are even against that.
OK, so NFPA. But what about the Trump administration? Should they get involved here?
I don’t think so. The OSHA standards apply to people who work on site — the regulatory frameworks are already there. I don’t think they need some special safety standard that’s new that applies to all these sites. The ingredients are already there.
It’s like coal power plants. There’s regulation on greenhouse gas emissions, but not all aspects of coal plants. I’m not sure if the Trump administration needs to get involved.
It sounds like you're saying the existing regulations are suitable in your view and what’s needed is for states and industry to step up?
I would think so. Just to give you an example, from an interconnection standpoint, there’s IEEE standards. From the battery level, there are UL standards. From the battery management system that also manages a lot of the ins and outs of how the battery operates —- a lot of those already have standards. To get insurance on a large battery site, they have to meet a lot of these guidelines already — nobody would insure a site otherwise. There’s a lot of financial risk. You don’t want batteries exploding because you didn’t meet any of these hundreds of guidelines that already exist and in many cases standards that exist.
So, I don’t know if something at the federal level changes anything.
My last question is, if you were giving advice to a developer, what would you say to them about making communities best aware of these tech advancements?
Before that, I am really hoping Vistra and all the agencies involved [with Moss Landing] have a transparent and accountable process of revealing what actually happened at this site. I think that’s really important.
A climate tech company powered by natural gas has always been an odd concept. Now as it moves into developing data centers, it insists it’s remaining true to its roots.
Crusoe Energy has always been a confusing company, whose convoluted green energy credentials raise some eyebrows. It started as a natural gas-powered Bitcoin miner, then became a climate tech unicorn thanks to the fact that its crypto operations utilized waste gas that would have otherwise been flared into the atmosphere. It’s received significant backing from major clean tech investors such as G2 Venture Partners and Lowercarbon Capital. And it touts sustainability as one of its main selling points, describing itself as “on a mission to align the future of computing with the future of the climate,” in part by “harnessing large-scale clean energy.”
But these days, the late-stage startup valued at $2.8 billion makes the majority of its revenue as a modular data center manufacturer and cloud services provider, and is exploring myriad energy solutions — from natural gas to stranded solar and wind assets — beyond its original focus. Earlier this week, it announced that it would acquire more than 4 gigawatts of new natural gas capacity to power its data center buildout. It’s also heavily involved in the Trump-endorsed $500 billion AI push known as the Stargate Project. The company’s Elon Musk-loving CEO Chase Lochmiller told The Information that his team is “pouring concrete at three in the morning” to build out its Stargate Project data centers at “ludicrous speed.”
Some will understandably take a glance at this rising data center behemoth and wonder if climate tech is really an accurate description of what Crusoe actually does these days. As the steady drumbeat of announcements and press surrounding Crusoe’s partnerships and power deals has built up, I certainly wondered whether the company had pivoted to simply churning out data centers as quickly as possible. But investors — and the company itself — told me that’s far from true.
Clay Dumas, a partner at Lowercarbon Capital, which invested in the company’s $128 million Series B and $350 million Series C rounds, told me that Crusoe remains as mission-focused as ever. “When it comes to power, Crusoe is the most aggressive innovator in the AI infrastructure space,” Dumas said via text message. “There is no better team to integrate new energy sources for compute workloads so we don’t turn the whole world into one giant fracking operation.”
Ben Kortlang, a partner at G2 Venture Partners, which led the company’s Series C round, agreed, telling me that Crusoe is best positioned to build out data centers in a way that doesn’t “plant the seeds for 50 or 100 years of environmental damage.”
Yet it’s hard to pin down exactly what the energy mix will end up looking like for the high-profile data centers in Crusoe’s pipeline, including the complex it’s currently building for OpenAI, which is part of the Stargate project in Abilene, Texas. The company announced on Tuesday that it had started construction on the second phase of the facility, which expands the total scope from around 200 megawatts of power across two facilities to include a total of eight buildings over 4 million square feet, using 1.2 gigawatts of power. Crusoe’s spokesperson, Andrew Schmitt, declined to comment on whether this additional capacity would serve Stargate.
What Schmitt did confirm via email is that while the project has a 1.2 gigawatt grid interconnection — enough to meet the entirety of its power needs — Crusoe will also rely on natural gas as “backup energy,” as well as behind-the-meter energy solutions such as solar and battery storage to “create a highly optimized and efficient power plan for the full site.”
The company also won’t speculate on how much energy will come from each particular source. To some degree, the exact grid energy mix and what additional energy resources will get built is unknowable, though Schmitt told me that Crusoe chose Abilene for the area’s abundant wind resources. There’s often too much of it for the grid to handle, meaning the excess energy is curtailed or sold at a negative price. But if a large load — say, a Crusoe data center — were added to the grid, less renewable energy would go to waste, thereby increasing the profitability of renewables projects and incentivizing more buildout overall.
This strategy, Schmitt told me, “reflects [Crusoe’s] guiding principle of bringing load to stranded and under-utilized energy” rather than bringing energy sources to the data center load itself, as the industry has traditionally done. G2, the venture capital firm, is all in on this premise. “By putting a big load center right there in a fantastic renewable resource environment, the thing that will naturally get built is renewables,” Kortlang told me. “Crusoe doesn’t need to mandate that, or control that, or be the one building the renewables. They’re creating the demand.”
But this approach is only net-positive for the climate if it increases the share of renewables in the mix overall, i.e. if new, large loads are leading to more solar and wind buildout than new natural gas buildout. And while a renewables-heavy buildout seems to be what Crusoe and its investors are assuming will happen, Crusoe can’t actually control what gets put on the grid or the economic or political factors that drive those decisions.
It appears to be inevitable that gas will play some role, even if it’s providing power directly to the data center itself and not to the grid overall. According to Business Insider, public filings with the Texas Commission on Environmental Quality show that so far, Crusoe plans to operate on-site natural gas turbines at the Abilene facility totaling 360 megawatts of power. That represents 30% of the data center’s total 1.2 gigawatts of announced capacity.
Although powering data centers with new solar or wind is usually the cheapest option — especially in places like Abilene — building natural gas can be quicker and more reliable, assuming you’re able to acquire the severely backlogged turbines. That’s something Kortlang readily acknowledged to me. “We will see a lot of buildout of natural gas over the last half of this decade, because it’s the easiest thing to controllably build that gets you large amounts of baseload power quickly,” he said.
Kortlang didn’t seem fazed by Crusoe’s announcement this Monday that it’s pursuing a joint venture with the investment firm Engine No. 1, giving the company access to a whopping 4.5 gigawatts of natural gas power. To put that in perspective, there’s only about 25 gigawatts of existing data center capacity in the U.S. today. Schmitt told me this latest announcement is unrelated to the Stargate Project.
Engine No. 1 has secured seven GE Vernova natural gas turbines through a partnership with Chevron announced in January. As Chevron puts it, this joint development will create “scalable, reliable power solutions for United States-based data centers running on U.S. natural gas.” But critically, as Crusoe emphasized, “plans for these data centers include the use of post-combustion carbon capture systems,” which are designed to capture the CO2 from power plants after the fossil fuels are burned, but before they’re released to the atmosphere.
Presumably, these plans will also incorporate either some way to utilize the CO2 in industry or to permanently sequester it underground, though the company hasn’t mentioned anything to this effect. This technology hasn’t been a part of the company’s strategy in the past, though Kortlang told me that Crusoe has been evaluating the viability of carbon capture and storage for as long as G2 has been involved.
Gas-fired power plants paired with carbon capture have never really caught on, simply because they’re pretty much bound to cost more than not building carbon capture. When I asked Kortlang if this meant Crusoe was banking on its data center customers being willing to pay more for greener power, he told me that was “to be determined.” Who exactly was going to design and build the carbon capture technology — Crusoe, Chevron, or another to-be-named project partner — was also “to be determined.” But there’s not actually all that much time to figure it out. In Chevron’s announcement, the company said it was planning to deliver power by the end of 2027.
So, is Crusoe still a climate tech company? The answer seems to be yes — or at least it’s definitely still trying to be.
No other developer has been as diligent about utilizing stranded assets to power data centers. And with its expansion into carbon capture, it certainly seems Crusoe is leaning into an all-of-the-above approach to data center decarbonization. As Dumas told me, “before too long” we’ll also see Crusoe powering its operations with “geothermal, bioenergy, and after that fusion technologies that keep them out ahead of the pack.”
But Crusoe’s business model — and its clean tech bonafides in general — have always relied upon ultimately unprovable counterfactuals. First it was: If this waste gas weren’t powering Bitcoin mining, it would be vented into the atmosphere. That seemed fairly certain, since flaring is common practice in many areas. Now the company is pitching a somewhat fuzzier hypothetical: If this Crusoe data center, powered by some combination of natural gas and stranded renewables, were instead built by another company, it would inevitably be dirtier. Whether or not Crusoe is a boon for the climate ultimately depends upon the degree to which that unquantifiable claim ends up being true.