You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The American oil industry wasn’t built for Canadian tariffs.
Since his re-election, President Trump has repeatedly threatened to impose big tariffs on imports from Canada and Mexico.
And in recent days, he’s made it clear: Yes, he really means all imports.
“We don’t need them to make our cars, we make a lot of them. We don’t need their lumber because we have our own forests,” he told Davos attendees last week. “We don’t need their oil and gas, we have more than anybody.”
The president is mistaken about the American fossil fuel industry — at least in its current structure. Even though the United States is the world’s No. 1 producer of oil and natural gas, the industry really doesdepend on oil imported from its neighbors, especially Canada. If Trump makes good on his threats to tariff oil imports from Canada and Mexico, then he will cost the American oil and gas industry tens of billions of dollars while causing gasoline prices to rise across much of the country.
That’s because not all petroleum is created equal. The type of crude that oozes out of wells in Alberta and Saskatchewan is not identical to what’s extracted by frackers in Texas and Oklahoma. But the types of petroleum now produced in Canada and in America pair especially well together — meaning that if the price of Canadian oil goes up, then American refineries, as well as American consumers, will pay the price.
That could hurt the president’s ability to fulfill one of his core promises. In his inaugural address, Trump promised to “rapidly bring down costs and prices” in part by fighting “escalating energy costs.” Levying tariffs on Canadian oil imports would likely raise energy prices.
But it could have more complicated environmental effects. Western Canadian petroleum has a higher carbon intensity than other crude oils, and American climate activists fought last decade to keep it from entering the United States. Trump, counterintuitively, could succeed more thoroughly than they did.
To understand why, you have to know a little bit of chemistry — and a bit of history, too.
Get our best story directly in your inbox:
We often talk about oil as an homogenous and fungible commodity, but that’s not really true. In reality, oil and natural gas usually come out of the ground as a slurry of hydrocarbons.
A hydrocarbon is a chain of hydrogen and carbon atoms bonded together. Sometimes those chains are relatively short — as in methane, the major component of natural gas — and sometimes they’re longer — as in octane, a liquid and a major component of gasoline. As the number of carbon atoms keeps growing, the substance starts to get waxier until the chains get absolutely enormous and become the kind of molecule you find in coal. Nitrogen, oxygen, and sulfur atoms are sometimes jammed into the hydrocarbon chains too.
In other words, all fossil fuels exist on a spectrum — and crude oil, a melange of hydrocarbons of different lengths and properties, occupies the messy middle. Those properties can vary based on how and why in the past a crude field formed. Petroleum engineers classify it along two axes:
American fracking wells tend to produce light, sweet crude. The oil from Alberta is heavy and sour.
Normally, heavy and sour oil trades at a discount compared to light and sweet oil. That’s because the highest volume products that come out of a refinery — gasoline or jet fuel, for instance — are made of short hydrocarbons, not long ones. Light, sweet crudes are closer to the finished product, and thus require less refining.
Yet heavy, sour crudes are crucial to the U.S. oil industry anyway. American refiners use heavy crudes to bring down their input costs for refined products such as gasoline, diesel, and jet fuel.
Why? That’s where the history comes in.
Nearly two decades ago, as oil prices reached painful highs as global demand outstripped supply, many refineries across the United States began to invest in technologies that would let them break down heavier, sour petroleum into something more commercially viable. They built coking refineries, expensive pieces of equipment that use extreme heat to break down long hydrocarbon chains into shorter ones. The cost of such a refinery can exceed $10 billion. Many were purpose-built for breaking down the sludgy, sour oil coming from Canada.
In the early 2010s, as the fracking revolution turned the United States into an oil-drilling superpower, those coking refineries remained important. They helped stretch the value out of the light, tight crude coming out of fracking wells, Rory Johnston, an oil markets analyst and the author of the Commodity Context newsletter, told me last week.
It does not make sense to use the coking refineries on oil from fracking wells, because that oil is already largely composed of short-chain hydrocarbons. But by breaking down Canadian oil in coking refineries, and blending it with American oil, the industry can make a wider blend of producers at a lower cost.
“Heavy crude’s cheaper, and they want to refine this into valuable end products,” Johnston said in a separate conversation recorded this week on Heatmap’s Shift Key podcast. “And so because of this, to just run light crude through that, you would instantly render economically worthless all of this very, very expensive equipment.”
Many of America’s refineries — especially those in the Midwest — are now tuned specifically to process light fracking oil and heavy Canadian sludge together, he said. What this means in practice is that the United States exports as a finished product much of the crude oil that it imports from Canada. Under the current situation, the U.S. earns more money selling refined products made from Canadian crude than it spends importing raw petroleum from Canada, Johnston added.
Tariffs will collapse the price relationships that allow for that mutually beneficial situation to persist. It will boost the cost of Canadian oil by at least $5 a barrel on each side of the border, raising pump prices by about 13 cents in the Midwest, Johnston told me.
That may not sound so bad for consumers. But it would be terrible for refiners. “The total effect of Trump’s actions so far is to nuke the economics of U.S. coking refineries. It’s truly magnificent,” he said. “You couldn’t create a better scenario to destroy the economics of U.S. coking refineries.”
If U.S. oil companies lose access to cheap Canadian oil, they will struggle to replace it. That’s because the next best place to get heavy, sour crude is Mexico — and Mexican imports, too, would likely face 25% tariffs under most scenarios where Canada is levied. The next places to get heavy, sour crude are Venezuela (where the Trump administration wants to tighten sanctions) and Colombia (where Trump nearly imposed tariffs last weekend).
One reason Canadian oil is so cheap in the United States is that companies have invested billions integrating the two countries’ oil infrastructure. A network of pipelines and storage tanks bring millions of barrels of oil from Canada down to the U.S. Gulf Coast every day. The countries — and especially their fossil fuel industries — are interdependent.
Meanwhile, only one pipeline system — the Trans Mountain pipeline — connects Alberta’s oil fields to the Pacific coast.
If you begin to play out how each country might react to a tariff, Johnston said, “you get into these completely absurd scenario discussions,” Johnston said. “The result is everyone would be poorer in that scenario.”
None other than the U.S. oil industry itself has opposed the tariffs.
“We import a lot of oil from both Mexico and Canada, and we refine it here in the most sophisticated refinery system in the world,” Mike Sommers, the CEO of the American Petroleum Institute, said at an event in Washington last week. “We’re going to continue to work with the Trump administration on this so that they understand how important it is that we continue these trade relationships.”
On Monday, The Wall Street Journal reported that some Trump aides are eager to hit Canada and Mexico with tariffs this weekend, even though the president has yet to reopen talks — or even describe his demands — for a reworked U.S.-Mexico-Canada free trade agreement. Canadian and Mexican officials have said that they are not sure what Trump actually wants in the talks.
One irony of this fracas is that the tariffs would have a more uncertain environmental effect. Western Canadian crude is unusually carbon-intensive to extract and refine. If its price rose — or if Canadian officials responded to tariffs in part by shutting down production — then Trump could accidentally, if marginally, decrease carbon emissions. American refineries might also respond to tariffs by importing heavy, sour crude oil from abroad, essentially just shifting production around the planet.
Still, it remains ridiculous that Trump, who has spent his first days in the White House attacking a “Green New Deal” agenda that never actually passed Congress, might succeed in raising the cost of oil consumption and production in the U.S. where a decade of climate activism has largely failed.
Perhaps that’s why many still doubt it would happen. On Wednesday morning, President Claudia Sheinbaum of Mexico said that she did not think Trump would ultimately impose sanctions on her country. And even within the oil industry, tariffs on Canadian oil seem unthinkable. A 25% tariff would whack the industry hardest, even though it has allied itself closely with Trump. Trump’s likely energy secretary, Chris Wright, is the CEO of Liberty Energy, an oilfield services company.
“A lot of the people I’m hearing on the Canadian side are saying, ‘Maybe we should try to speak with these people around Trump. Maybe Wright or [Trump’s energy czar Doug] Burgum understand what’s happening,’” Johnston said.
But Trump has already made demands that strike the North American oil industry as bizarre. At the same Davos meeting where he said the United States didn’t need Canadian oil, Trump demanded that OPEC and Saudi Arabia cut global oil prices so that global interest rates could fall. Such a move would cut profits in the American oil industry while hampering Trump’s goal of increasing U.S. oil production.
The irony that a Republican president would push off Canadian crude to increase America’s reliance on OPEC is hard to comprehend, Johnston said.
“I don’t know that anyone has a great sense of where Trump’s true philosophical anchor is,” he said, “other than that we are now getting a clear picture that he views any and all trade deficits as a sin unto themselves.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Energy Transfer’s legal win, battery storage, and the Cybertruck
Current conditions: Red flag warnings are in place for much of Florida • Spain is bracing for extreme rainfall from Storm Martinho, the fourth named storm in less than two weeks • Today marks the vernal equinox, or the first day of spring.
A jury has ordered Greenpeace to pay more than $660 million in damages to one of the country’s largest fossil fuel infrastructure companies after finding the environmental group liable for defamation, conspiracy, and physical damages at the Dakota Access Pipeline. Greenpeace participated in large protests, some violent and disruptive, at the pipeline in 2016, though it has maintained that its involvement was insignificant and came at the request of the local Standing Rock Sioux Tribe. The project eventually went ahead and is operational today, but Texas-based Energy Transfer sued the environmental organization, accusing it of inciting the uprising and encouraging violence. “We should all be concerned about the future of the First Amendment, and lawsuits like this aimed at destroying our rights to peaceful protest and free speech,” said Deepa Padmanabha, senior legal counsel for Greenpeace USA. The group said it plans to appeal.
The Department of Energy yesterday approved a permit for the Calcasieu Pass 2 liquified natural gas terminal in Louisiana, allowing the facility to export to countries without a free trade agreement. The project hasn’t yet been constructed and is still waiting for final approvals from the independent Federal Energy Regulatory Commission, but the DOE’s green light means it faces one less hurdle.
CP2 was awaiting DOE’s go-ahead when the Biden administration announced its now notorious pause on approvals for new LNG export facilities. The project’s opponents argue it’s a “carbon bomb.” Analysis from the National Resources Defense Council suggested the greenhouse gases from the project would be equivalent to putting more than 1.85 million additional gas-fueled automobiles on the road, while the Sierra Club found it would amount to about 190 million tons of carbon dioxide equivalent annually.
President Trump met with 15 to 20 major oil and gas executives from the American Petroleum Institute at the White House yesterday. This was the president’s first meeting with fossil fuel bosses since his second term began in January. Interior Secretary Doug Burgum and Energy Secretary Chris Wright were also in the room. Everyone is staying pretty quiet about what exactly was said, but according to Burgum and Wright, the conversation focused heavily on permitting reform and bolstering the grid. Reuters reported that “executives had been expected to express concerns over Trump’s tariffs and stress the industry view that higher oil prices are needed to help meet Trump’s promise to grow domestic production.” Burgum, however, stressed that oil prices didn’t come up in the chat. “Price is set by supply and demand,” he said. “There was nothing we could say in that room that could change that one iota, and so it wasn’t really a topic of discussion.” The price of U.S. crude has dropped 13% since Trump returned to office, according to CNBC, on a combination of recession fears triggered by Trump’s tariffs and rising oil output from OPEC countries.
The U.S. installed 1,250 megawatts of residential battery storage last year, the highest amount ever and nearly 60% more than in 2023, according to a new report from the American Clean Power Association and Wood Mackenzie. Overall, battery storage installations across all sectors hit a new record in 2024 at 12.3 gigawatts of new capacity. Storage is expected to continue to grow next year, but uncertainties around tariffs and tax incentives could slow things down.
China is delaying approval for construction of BYD’s Mexico plant because authorities worry the electric carmaker’s technology could leak into the United States, according to the Financial Times. “The commerce ministry’s biggest concern is Mexico’s proximity to the U.S.,” sources told the FT. As Heatmap’s Robinson Meyer writes, BYD continues to set the global standard for EV innovation, and “American and European carmakers are still struggling to catch up.” This week the company unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes.
Tesla has recalled 46,096 Cybertrucks over an exterior trim panel that can fall off and become a road hazard. This is the eighth recall for the truck since it went on sale at the end of 2023.
This fusion startup is ahead of schedule.
Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.
Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”
The company thinks it can achieve simplicity via its artificial intelligence software, which controls the reactor’s magnetic field keeping the unruly plasma at the heart of the fusion reaction confined and stabilized. Unlike typical stellarators, which rely on the ultra-precise manufacturing and installment of dozens of huge, twisted magnets, Thea’s design uses exactly 450 smaller, simpler planar magnets, arranged in the more familiar donut-shaped configuration. These magnets are still able to generate a helical magnetic field — thought to keep the plasma better stabilized than a tokamak — because each magnet is individually controlled via the company’s software, just like “the array of pixels in your computer screen,” Berzin told me.
“We’re able to utilize the control system that we built and very specifically modulate and control each magnet slightly differently,” Berzin explained, allowing Thea to “make those really complicated, really precise magnetic fields that you need for a stellarator, but with simple hardware.”
This should make manufacturing a whole lot easier and cheaper, Berzin told me. If one of Thea’s magnets is mounted somewhat imperfectly, or wear and tear of the power plant slightly shifts its location or degrades its performance over time, Thea’s AI system can automatically compensate. “It then can just tune that magnet slightly differently — it turns that magnet down, it turns the one next to it up, and the magnetic field stays perfect,” Berzin explained. As he told me, a system that relies on hardware precision is generally much more expensive than a system that depends on well-designed software. The idea is that Thea’s magnets can thus be mass manufactured in a way that’s conducive to “a business versus a science project.”
In 2023, Thea published a technical report proving out the physics behind its so-called “planar coil stellarator,” which allowed the company to raise its $20 million Series A last year, led by the climate tech firm Prelude Ventures. To validate the hardware behind its initial concept, Thea built a 3x3 array of magnets, representative of one section of its overall “donut” shaped reactor. This array was then integrated with Thea’s software and brought online towards the end of last year.
The results that Thea announced today were obtained during testing last month, and prove that the company can create and precisely control the complex magnetic field shapes necessary for fusion power. These results will allow the company to raise a Series B in the “next couple of years,” Berzin said. During this time, Thea will be working to scale up manufacturing such that it can progress from making one or two magnets per week to making multiple per day at its New Jersey-based facility.
The company’s engineers are also planning to stress test their AI software, such that it can adapt to a range of issues that could arise after decades of fusion power plant operation. “So we’re going to start breaking hardware in this device over the next month or two,” Berzin told me. “We’re purposely going to mismount a magnet by a centimeter, put it back in and not tell the control system what we did. And then we’re going to purposely short out some of the magnetic coils.” If the system can create a strong, stable magnetic field anyway, this will serve as further proof of concept for Thea’s software-oriented approach to a simplified reactor design.
The company is still years away from producing actual fusion power though. Like many others in the space, Thea hopes to bring fusion electrons to the grid sometime in the 2030s. Maybe this simple hardware, advanced software approach is what will finally do the trick.
The Chinese carmaker says it can charge EVs in 5 minutes. Can America ever catch up?
The Chinese automaker BYD might have cracked one of the toughest problems in electric cars.
On Tuesday, BYD unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes. That’s made possible because of a 1,000-volt architecture and what BYD describes as matching charging capability, which could theoretically add nearly one mile of range every second.
It’s still not entirely clear whether the technology actually works, although BYD has a good track record on that front. But it suggests that the highest-end EVs worldwide could soon add range as fast as gasoline-powered cars can now, eliminating one of the biggest obstacles to EV adoption.
The new charging platform won’t work everywhere. BYD says that it will also build 4,000 chargers across China that will be able to take advantage of these maximum speeds. If this pans out, then BYD will be able to charge its newest vehicles twice as fast as Tesla’s next generation of superchargers can.
“This is a good thing,” Jeremy Wallace, a Chinese studies professor at Johns Hopkins University, told me. “Yes, it’s a Chinese company. And there are geopolitical implications to that. But the better the technology gets, the easier it is to decarbonize.”
“As someone who has waited in line for chargers in Pennsylvania and New Jersey, I look forward to the day when charging doesn’t take that long,” he added.
The announcement also suggests that the Chinese EV sector remains as dynamic as ever and continues to set the global standard for EV innovation — and that American and European carmakers are still struggling to catch up. The Trump administration is doing little to help the industry catch up: It has proposed repealing the Inflation Reduction Act’s tax credits for EV buyers, which provide demand-side support for the fledgling industry, and the Environmental Protection Agency is working to roll back tailpipe-pollution rules that have furnished early profits to EV makers, including Tesla. Against that background, what — if anything — can U.S. companies do to catch up?
The situation isn’t totally hopeless, but it’s not great.
BYD’s mega-charging capability is made possible by two underlying innovations. First, BYD’s new platform — the wiring, battery, and motors that make up the electronic guts of the car — will be capable of channeling up to 1,000 volts. That is only a small step-change above the best platforms available elsewhere— the forthcoming Gravity SUV from the American carmaker Lucid is built on a 926-volt platform, while the Cybertruck’s platform is 800 volts — but BYD will be able to leverage its technological firepower with mass manufacturing capacity unrivaled by any other brand.
Second, BYD’s forthcoming chargers will be capable of using the platform’s full voltage. These chargers may need to be built close to power grid infrastructure because of the amount of electricity that they will demand.
But sitting underneath these innovations is a sprawling technological ecosystem that keeps all Chinese electronics companies ahead — and that guarantees Chinese advantages well into the future.
“China’s decisive advantage over the U.S. when it comes to innovation is that it has an entrenched workforce that is able to continuously iterate on technological advances,” Dan Wang, a researcher of China’s technology industry and a fellow at the Paul Tsai China Center at Yale Law School, told me.
The country is able to innovate so relentlessly because of its abundance of process knowledge, Wang said. This community of engineering practice may have been seeded by Apple’s iPhone-manufacturing effort in the aughts and Tesla’s carmaking prowess in the 2010s, but it has now taken on a life of its own.
“Shenzhen is the center of the world’s hardware manufacturing industry because it has workers rubbing shoulders with academics rubbing shoulders with investors rubbing shoulders with engineers,” Wang told me. “And you have a more hustle-type culture because it’s so much harder to maintain technological moats and technological differentiation, because people are so competitive in these sorts of spaces.”
In a way, Shenzhen is the modern-day version of the hardware and software ecosystem that used to exist in northern California — Silicon Valley. But while the California technology industry now largely focuses on software, China has taken over the hardware side.
That allows the country to debut new technological innovations much faster than any other country can, he added. “The comparison I hear is that if you have a new charging platform or a new battery chemistry, Volkswagen and BMW will say, We’ll hustle to put this into our systems, and we’ll put it in five years from now. Tesla might say, we’ll hustle and get it in a year from now.”
“China can say, we’ll put it in three months from now,” he said.“You have a much more focused concentration of talent in China, which collapses coordination time.”
That culture has allowed the same companies and engineers to rapidly advance in manufacturing skill and complexity. It has helped CATL, which originally made batteries for smartphones, to become one of the world’s top EV battery makers. And it has helped BYD — which is close to unseating Tesla as the world’s No. 1 seller of electric vehicles — move from making lackluster gasoline cars to some of the world’s best and cheapest EVs.
It will be a while until America can duplicate that manufacturing capability, partly because of the number of headwinds it faces, Wang said.