You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The challenges of long-duration energy storage have inspired some creative solutions.

Imagine a battery. Maybe you envision popping one into a fading flashlight or a dead remote controller. Perhaps you consider the little icon on the top of your phone or laptop screen, precariously dipping into the red while you search for a charger. Or you might picture the powerful battery pack inside your electric vehicle, helping to make gas stations obsolete.
These minor to major electrochemical marvels are fine, but the opportunity space for energy storage is so, so much larger — and weirder. Water moving between two reservoirs is a classic un-classic battery, but compressed air stored in a cavern, raising and lowering heavy blocks, even freezing water or heating up rocks can also all be batteries. And these methods of energy storage have the potential to be enormously helpful where standard lithium-ion batteries fall short — namely for long-duration energy storage and large-scale heating and cooling applications.
Lithium-ion batteries still dominate the market, Kevin Shang, a senior research analyst at energy consultancy Wood Mackenzie, told me. But “over the next 10 years, we do see more and more long-duration energy storage coming into play.” Typical lithium-ion batteries can provide only about four hours of continual power, occasionally reaching up to eight — though that’s an economic constraint rather than a technical one. Generally speaking, it’s too pricey for lithium-ion to meet longer-duration needs in today’s market. So as states and countries get real about their clean energy targets and install more wind and solar generation, they need some way to ensure their grids’ reliability when the weather’s not cooperating or demand is peaking.
“There’s a need for something that can substitute for natural gas,” Logan Goldie-Scot, director of market research at the sustainable infrastructure investment firm Generate Capital told me. Almost no one believes lithium-ion batteries will be a viable alternative. “And so then it is an open question of whether that role will be filled by long-duration energy storage, by green hydrogen, or by clean firm power” like nuclear or geothermal, he said.
There are some novel battery chemistries and configurations out there, from Form Energy’s iron-air batteries to flow batteries that store their electrolytes in separate tanks to zinc-based batteries. But there are also numerous more creative, non-chemical, not-what-you-might-consider-a-battery batteries vying for a role in the long-duration storage market.
Founded back in 2010, Toronto-based Hydrostor has been pursuing “advanced compressed air energy storage” for a while now. Essentially, the system uses off-peak, surplus, or renewable grid energy to compress air and pump it into a water-filled cavern, displacing that water to the surface. Then when energy is needed, it releases the water back into the cavern, pushing the air upward to mix with stored heat, which turns a turbine and produces electricity.
“Everybody has talked about long-duration storage for probably the past five years or so. The markets have not been there to pay for it at all. And that’s starting to change,” Jon Norman, Hydrostor’s president, told me.
Part of Hydrostor’s pitch is that its tech is a “proven pathway,” as it involves simply integrating and repurposing preexisting systems and technologies to produce energy. It’s also cheaper than lithium-ion storage, with no performance degradation over a project’s lifetime. Major investors are buying it — the company raised $250 million from Goldman Sachs in 2022, to be paid out in tranches tied to project milestones. At the time, it was one of the largest investments ever made in long-duration energy storage.
The company has operated a small 1.75 megawatt facility in Canada since 2019, but now with Goldman’s help it’s scaling significantly, developing a 500 megawatt grid-scale project in California in partnership with a community choice aggregator, as well as a 200 megawatt microgrid project in a remote town in New South Wales, Australia.
“Our bread and butter application is serving the needs of grids and utilities that are managing capacity and keeping the lights on all the time,” Norman told me. The company’s projects under development are designed to deliver eight hours of energy. “That’s what the market’s calling for right now,” Norman said, though theoretically Hydrostor could handle multi-day storage.
Standard lithium-ion batteries have shown that they can be economical in the eight-hour range too, though. Back in 2020, a coalition of community choice aggregators in California requested bids for long-duration storage projects with at least eight hours of capacity. While Hydrostor and numerous other startups threw their hats in the ring, the coalition ultimately selected a standard lithium-ion battery project for development.
While this could be viewed as a hit to more nascent technologies, Hydrostor said the process ultimately led to the company’s 25-year, 200 megawatt offtake contract with Central Coast Community Energy, which will purchase power from the company’s 500 megawatt project in California’s Central Valley, set to come online in 2030. But that long lead time could be one of the main reasons why Hydrostor didn’t win the coalition’s bid in the first place.
“When you consider the very pertinent needs for energy storage systems today in California and yesterday, a technology that is not due to come online for another six years – I don’t think you’re even yet at the cost comparison conversation,” Goldie-Scot told me, in reference to Hydrostor’s timeline. “It’s just, how soon can some of these companies deliver a project?” Generate recently acquired esVolta, a prominent developer of lithium-ion battery storage projects.
But ultimately, Norman says he doesn’t really view Hydrostor as in competition with lithium-ion. “We would even add [traditional] batteries to our system if we wanted to provide really fast response times,” he told me. He says the use cases are just different, and that he has faith that compressed air storage will eventually prove to be the superior option for grid-scale, long-duration applications.
Another company taking inspiration from pumped storage hydropower is Energy Vault. Founded in 2017, the Swiss company is pursuing a “gravity-based” system that can store up to 24 hours of energy. While the design of its system has shifted over the years, the basic concept has remained the same: Using excess grid energy to lift heavy blocks (initially via cranes, now via specialized elevators), and then lowering those blocks to spin a turbine when there’s energy demand.
The company raised $110 million from Softbank Vision Fund in 2019, but failed to find an immediate market for its tech. “When we founded the company, we started thinking long-duration was going to be required much more quickly, and hence the focus on gravity,” Rob Piconi, Energy Vault’s CEO, told me.
But instead of waiting around for the long-duration market to boom, the company went public via SPAC in early 2022 and reinvented itself. Now it makes much of its revenue selling the sort of traditional lithium-ion energy storage systems that it once sought to replace, and has made moves into the green hydrogen space, too.
“The near term difficulty for many of these long-duration storage companies is that we’re still relatively early on in the scaling of lithium-ion,” Goldie-Scot, told me, noting that prices for Chinese-made batteries have plunged in the past year. Generate usually only invests in tech that’s well-proven and ready to scale up. So while lithium-ion alternatives will look more and more attractive as the world moves toward full decarbonization, in the interim, “there’s a gap between that longer term need and where the market is today.”
Piconi agrees. “If you look at storage deployments 95% to 98% of them are all this shorter duration type of storage right now, because that’s where the market is,” he said, though he added that he’s seeing demand pick up, especially in places like California that are investing heavily in storage.
All that’s to say the company hasn’t given up on its foundational concept — its first commercial-scale gravity energy storage system was recently connected to the grid in China, and the company has broken ground on a second facility in the country as well. These facilities provide four hours of energy storage duration, which lithium-ion batteries can also easily achieve — but the selling point, Piconi says, is that unlike lithium-ion, gravity storage systems don’t catch fire, rely on critical minerals, or degrade over time. And once the market demands it, Energy Vault can provide power for much longer.
Still, the upfront costs of Energy Vault’s system can be daunting for risk-averse utilities. So in an effort to lower prices, the company recently unveiled a series of new gravity storage prototypes that leverage either existing slopes or multi-purpose skyscrapers. They were designed in partnership with the architecture and engineering firm Skidmore, Owings & Merrill, the company behind the world’s tallest building.
The market may not have been ready five years ago, Piconi told me. But “in 12 to 24 months, we’re going to start to see gravity pop up,” he projected.
But wait, there’s more. Perhaps one of the best use cases for lithium-ion alternatives is in onsite, direct heating and cooling applications. That’s what the Israeli company Nostromo Energy is focused on, aiming to provide cleaner, cheaper air conditioning for large buildings like offices, school campuses, hotels, and data centers.
The company uses off-peak or surplus renewable energy to freeze water, storing it for later use in modular cells. Then, as temperatures rise and air conditioning turns on, that frozen water will cool down the building without the need for energy-intensive chillers, which commercial buildings normally rely upon. The system can be configured to discharge energy for two-and-a-half all the way up to 10 hours.
“Because air conditioning is roughly half of the electricity consumption of a building, we can provide that half from stored energy. And that’s overall a huge relief on the grid,” Nostromo’s CEO Yoram Ashery told me.
While a lot of (my) attention has been focused on how thermal batteries can help decarbonize heat-intensive industrial processes, and much has been written about the benefits of electric heat pumps over gas-powered heating, cooling is sometimes overlooked. That’s at least partially because air conditioning is already electrified.
But as more of our vehicles, appliances, and systems go electric, strain on the grid is poised to increase, especially during times of peak energy demand in the late afternoon and evening as people return home from the office before the sun goes down. Nostromo’s system can help shift that load by charging either midday (when solar is abundant) or at night (when wind is peaking), and discharging as demand for AC ramps throughout the afternoon.
Goldie-Scot said thermal storage technologies like this “offer something that some of the other technologies that are purely power-focused cannot. But they are still competing against relatively cheap natural gas.”
The upfront cost of the system, $2 to $3 million, is also nothing to sneeze at. But Ashery says it will fully pay for itself after just five years, as building owners stand to see significant savings on their electricity bills by shifting their demand to off-peak hours.
While one could theoretically power a building’s AC system using large lithium-ion-batteries, “it’s a problem to put big lithium batteries inside buildings,” Ashery told me. That’s due to the fire risk, which could impact insurance premiums for businesses, as well as space issues — these batteries would need to be container-sized to run an HVAC system. “That’s why only 1% of energy storage currently goes into commercial/industrial buildings,” Ashery wrote in a follow up email.
Shang told me that he sees so-called “behind the meter” applications like this as promising early markets for long-duration storage tech, especially given that utilities are “pretty cautious to adopt these technologies on a large scale.” But ultimately, he believes that policy is what’s really going to jumpstart this market.
“For long-duration storage, it may look years ahead, but actually the future is now,” he said. Because some of these new systems take longer to design and build, Shang told me, “you have to invest now. For the policies, you have to be ready now to support the development of these [long-duration energy storage] technologies.”
The Biden administration is certainly trying. All energy storage tech — thermal, compressed air, gravity, and lithium-ion — stands to benefit from generous IRA tax credits, which will cover 30% of a project’s cost, assuming it meets certain labor standards. Additional savings can accrue if a project meets domestic content requirements or is sited in a qualifying “energy community,” such as a low-income area that derives significant revenue from fossil fuel production.
The Department of Energy’s ultimate goal is to reduce the cost of grid-scale long-duration energy storage by 90% this decade (with “long” defined as 10-plus hours). And last year, the DOE announced $325 million in funding for 15 long-duration demonstration projects.
So while the market might not be quite ripe yet for funky, alternative approaches to long-duration storage, support like this is going to be necessary to ensure that these technologies are proven, cost-effective and available as the grid decarbonizes and the need crystallizes.
“There is not currently a system-wide way of valuing long-duration energy storage while competing against gas, but there are customers and utilities that have shown a willingness, especially with federal and state support, to invest in these technologies,” Goldie-Scot said. “That I think is giving us the first real inkling of the role that the long-duration can play in this market.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
One of the buzziest climate tech companies in our Insiders Survey is pushing past the “missing middle.”
One of the buzziest climate tech companies of the past year is proving that a mature, hitherto moribund technology — conventional geothermal — still has untapped potential. After a breakthrough year of major discoveries, Zanskar has raised a $115 million Series C round to propel what’s set to be an investment-heavy 2026, as the startup plans to break ground on multiple geothermal power plants in the Western U.S.
“With this funding, we have a six power plant execution plan ahead of us in the next three, four years,” Diego D’Sola, Zanskar’s head of finance, told me. This, he estimates, will generate over $100 million of revenue by the end of the decade, and “unlock a multi-gigawatt pipeline behind that.”
The size of the round puts a number to climate world’s enthusiasm for Zanskar. In Heatmap’s Insider’s Survey, experts identified Zanskar as one of the most promising climate tech startups in operation today.
Zanskar relies on its suite of artificial intelligence tools to locate previously overlooked conventional geothermal resources — that is, naturally occurring reservoirs of hot water and steam. Trained on a combination of exclusive subsurface datasets, modern satellite and remote sensing imagery, and fresh inputs from Zanksar’s own field team, the company’s AI models can pinpoint the most promising sites for exploration and even guide exactly what angle and direction to drill a well from.
Early last year, Zanskar announced that it had successfully revitalized an underperforming geothermal power plant in New Mexico by drilling a new pumped well nearby, which has since become the most productive well of this type in the U.S. That was followed by the identification of a large geothermal resource in northern Nevada, where exploratory wells had been drilled for decades but no development had ever occurred. Just last month, the company revealed a major discovery in western Nevada — a so-called “blind” geothermal system with no visible surface activity such as geysers or hot springs, and no history of exploratory drilling.
“This is a site nobody had ever had on the radar, no prior exploration,” Carl Hoiland, Zanskar’s CEO, told me of this latest discovery, dubbed “Big Blind.” He described it as a tipping point for the industry, which had investors saying, “Okay, this is starting to look more like a trend than just an anomaly.”
Spring Lane Capital led Zanskar’s latest round, which also included Obvious Ventures, Union Square Ventures, and Lowercarbon Capital, among others. Spring Lane aims to fill the oft-bemoaned “missing middle” of climate finance — the stage at which a startup has matured beyond early-stage venture backing but is still considered too risky for more traditional infrastructure investors.
Zanskar now finds itself squarely in that position, needing to finance not just the drills, turbines, and generators for its geothermal plants, but also the requisite permitting and grid interconnection costs. D’Sola told me that he expects the company to close its first project financing this quarter, explaining that its ambitious plans require “north of $600 million in total capital expenditures, the vast majority of which will come from non-dilutive sources or project level financing.”
Unsurprisingly, the company anticipates that data centers will be some of its first customers, with hyperscalers likely working through utilities to secure the clean energy attributes of Zanskar’s grid-connected power. And while the West Coast isn’t the primary locus of today’s data center buildout, Hoiland thinks Zanskar’s clean, firm, low-cost power will help draw the industry toward geothermally rich states such as Utah and Nevada, where it’s focused.
“We see a scenario where the western U.S. is going to have some of the cheapest carbon-free energy, maybe anywhere in the world, but certainly in the United States.” Hoiland told me.
Just how cheap are we talking? Using the levelized cost of energy — which averages the lifetime cost of building and operating a power plant per unit of electricity generated — Zanskar plans to deliver electricity under $45 per megawatt-hour by the end of this decade. For context, the Biden administration set that same cost target for next-generation geothermal systems such as those being pursued by startups like Fervo Energy and Eavor — but projected it wouldn’t be reached 2035.
At this price point, conventional geothermal would be cheaper than natural gas, too. The LCOE for a new combined-cycle natural gas plant in the U.S. typically ranges from $48 to $107 per megawatt-hour.
That opens up a world of possibilities, Hoiland said, with the startup’s’s most optimistic estimates showing that conventional geothermal could potentially supply all future increases in electricity demand. “But really what we’re trying to meet is that firm, carbon-free baseload requirement, which by some estimates needs to be 10% to 30% of the total mix,” Hoiland said. “We have high confidence the resource can meet all of that.”
On New Jersey’s rate freeze, ‘global water bankruptcy,’ and Japan’s nuclear restarts
Current conditions: A major winter storm stretching across a dozen states, from Texas to Delaware, and could hit by midweek • The edge of the Sahara Desert in North Africa is experiencing sandstorms kicked up by colder air heading southward • The Philippines is bracing for a tropical cyclone heading toward northern Luzon.
Mikie Sherrill wasted no time in fulfilling the key pledge that animated her campaign for governor of New Jersey. At her inauguration Tuesday, the Democrat signed a series of executive orders aimed at constraining electricity bills and expanding energy production in the state. One order authorized state utility regulators to freeze rate hikes. Another directed the New Jersey Board of Public Utilities “to open solicitations for new solar and storage power generation, to modernize gas and nuclear generation so we can lower utility costs over the long term.” Now, as Heatmap’s Matthew Zeitlin put it, “all that’s left is the follow-through,” which could prove “trickier than it sounds” due to “strict deadlines to claim tax credits for renewable energy development looming.”
Last month, the environmental news site Public Domain broke a big story: Karen Budd-Falen, the No. 3 official at the Department of the Interior, has extensive financial ties to the controversial Thacker Pass lithium mine in northern Nevada that the Trump administration is pushing to fast track. Now The New York Times is reporting that House Democrats are urging the Interior Department’s inspector general to open an investigation into the multimillion-dollar relationship Budd-Falen’s husband has with the mine’s developer. Frank Falen, her husband, sold water from a family ranch in northern Nevada to the subsidiary of Lithium Americas for $3.5 million in 2019, but the bulk of the money from the sale depended on permit approval for the project. Budd-Falen did not reveal the financial arrangement on any of her four financial disclosures submitted to the federal government when she worked for the Interior Department during President Donald Trump’s first term from 2018 to 2021.
House Republicans, meanwhile, are planning to vote this week to undo Biden-era restrictions on mining near more than a million acres of Minnesota wilderness. “Mining is huge in Minnesota. And all mining helps the school trust fund in Minnesota as well. So it benefits all schools in the state,” Representative Pete Stauber, a Minnesota Republican and the chair of the Natural Resources Subcommittee on Energy and Mineral Resources, said of the rule-killing bill he sponsored. While the vote is expected to draw blowback from environmentalists, E&E News noted that it could also agitate proceduralists who oppose the GOP’s continued “use of the rule-busting Congressional Review Act for actions that have not been traditionally seen as rules.” Still, the move is likely to fuel the dealmaking boom for critical minerals. As Heatmap’s Katie Brigham wrote in September, “everybody wants to invest” in startups promising to mine and refine the metals over which China has a near monopoly.
Sign up to receive Heatmap AM in your inbox every morning:
A new United Nations report declares that the world has entered an era of “global water bankruptcy,” putting billions of people at risk. In an interview with The Guardian, Kaveh Madani, the report’s lead author, said that while not every basin and country is directly at risk, trade and migration are set to face calamity from water shortages. Upward of 75% of people live in countries classified as water insecure or critically water insecure, and 2 billion people live on land that is sinking as groundwater aquifers collapse. “This report tells an uncomfortable truth: Many critical water systems are already bankrupt,” Madani said. “It’s extremely urgent [because] no one knows exactly when the whole system would collapse.”

The Democratic Republic of the Congo has given the U.S. government a vetted list of mining and processing projects open to American investment. The shortlist, which Mining.com said was delivered to U.S. officials last week, includes manganese, gold, and cassiterite licenses; a copper-cobalt project and a germanium-processing venture; four gold permits; a lithium license; and mines producing cobalt, gold, and tungsten. The potential deals are an outgrowth of the peace agreement Trump brokered between the DRC and Rwanda-backed rebels, and could offer Washington a foothold in a mineral-rich country whose resources China has long dominated. But establishing an American presence in an unstable African country is a risky investment. As I reported for Heatmap back in October, the Denver-based Energy Fuels’ $2 billion mining project in Madagascar was suddenly thrown into chaos when the island nation’s protests resulted in a coup, though the company has said recently it’s still moving forward.
The Tokyo Electric Power Company is delaying the restart of the Kashiwazaki Kariwa nuclear power station in western Japan after an alarm malfunction. The alarm system for the control rods that keep the fission reaction in check failed to sound during a test operation on Tuesday, Tepco said. The world’s largest nuclear plant had been scheduled to restart one of its seven reactors on Tuesday. Fuel loading for the reactor, known as Unit 6, was completed in June. It’s unclear when the restart will now take place.
The delay marks a setback for Prime Minister Sanae Takaichi, who has made restarting the reactors idled after the 2011 Fukushima disaster and expanding the nuclear industry a top priority, as I told you in October. But as I wrote last month in an exclusive about Japan’s would-be national small modular reactor champion, the country has a number of potential avenues to regain its nuclear prowess beyond just reviving its existing fleet.
As a fourth-generation New Yorker, I’m qualified to say something controversial: I love, and often even prefer, Montreal-style bagels. They’re smaller, more efficient, and don’t deliver the same carbohydrate bomb to my gut. Now the best-known Montreal-style bagel place in the five boroughs has found a way to use the energy needed to make their hand-rolled, wood-fired bagels more efficiently, too. Black Seed Bagels’ catering kitchen in northern Brooklyn is now part of a battery pilot program run by David Energy, a New York-based retail energy provider. The startup supplied suitcase-sized batteries for free last August, allowing Black Seed to disconnect from ConEdison’s grid during hours when electricity rates are particularly high. “We’re in the game of nickels and dimes,” Noah Bernamoff, Black Seed’s co-owner, told Canary Media. “So we’re always happy to save the money.” Wise words.
Rob talks through Rhodium Groups’s latest emissions report with climate and energy director Ben King.
America’s estimated greenhouse gas emissions rose by 2.4% last year — which is a big deal since they had been steady or falling in 2023 and 2024. More ominously, U.S. emissions grew faster than our gross domestic product last year, suggesting that the economy got less efficient from a climate pollution perspective.
Is this Trump’s fault? The AI boom’s? Or was it a weird fluke? In this week’s Shift Key episode, Rob talks to Ben King, a climate and energy director at the Rhodium Group, about why U.S. emissions grew and what it says about the underlying structure of the American economy. They talk about the power grid, the natural gas system, and whether industry is going to overtake other emissions drivers as once thought.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: At the same time there’s been rising total electrification of the vehicle fleet, there’s also been rising hybrid and plug-in hybrid sales. Do we have a sense of how that breakdown is happening, in terms of reduced carbon intensity of the transportation sector and the light duty fleet?
Ben King: It’s a good question. We haven’t disaggregated the … When I say electric vehicles, I’m talking broadly about both full battery electric, and then plug-in hybrids. And then, I think we say this in paper, but I think there was pretty robust growth for gasoline hybrids as which, you know, relative to just a pure gas car, is better from an emissions perspective.
Meyer: Well, it’s funny because if you care about decarbonization and getting to net zero as soon as possible, you could have to poo poo hybrids. But if you’re actually involved in the game to just keep as much emissions out of the sky as possible, and you’re looking to net those 2% declines every year, hybrids are pretty important because they are basically a drop-in replacement to gasoline car use that burns less gasoline.
King: The other interesting thing that gasoline hybrids does for the sector is it finds interesting unanticipated uses for all this battery manufacturing capacity that we’ve built in the U.S., or that we stand to build. Our forecast for pure EVs — so battery electrics, plug-in hybrids — looks a little worse in the out years because of the tax credits going away, because of the EPA tailpipe regulations going away at the same time that the anticipated demand pull from those policies, plus the advanced manufacturing tax credit — the 45X tax credit — has really been wildly successful in standing up a battery manufacturing industry here in the U.S.
If you want that capacity to be around, one thing that you could do with those batteries is put them into hybrids, right? You might have to retool the line a little bit to accommodate different sizes and stuff, build the expertise, build the workforce, etc., such that when the floodgates open again for electric vehicle adoption, for instance, we’ve got substantial battery manufacturing capacity here domestically.
Mentioned:
Rhodium Group: Preliminary US Greenhouse Gas Emissions Estimates for 2025
Rob on Rhodium’s 2023 emissions report
And here’s Rhodium’s 2024 emissions report
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.