You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The challenges of long-duration energy storage have inspired some creative solutions.

Imagine a battery. Maybe you envision popping one into a fading flashlight or a dead remote controller. Perhaps you consider the little icon on the top of your phone or laptop screen, precariously dipping into the red while you search for a charger. Or you might picture the powerful battery pack inside your electric vehicle, helping to make gas stations obsolete.
These minor to major electrochemical marvels are fine, but the opportunity space for energy storage is so, so much larger — and weirder. Water moving between two reservoirs is a classic un-classic battery, but compressed air stored in a cavern, raising and lowering heavy blocks, even freezing water or heating up rocks can also all be batteries. And these methods of energy storage have the potential to be enormously helpful where standard lithium-ion batteries fall short — namely for long-duration energy storage and large-scale heating and cooling applications.
Lithium-ion batteries still dominate the market, Kevin Shang, a senior research analyst at energy consultancy Wood Mackenzie, told me. But “over the next 10 years, we do see more and more long-duration energy storage coming into play.” Typical lithium-ion batteries can provide only about four hours of continual power, occasionally reaching up to eight — though that’s an economic constraint rather than a technical one. Generally speaking, it’s too pricey for lithium-ion to meet longer-duration needs in today’s market. So as states and countries get real about their clean energy targets and install more wind and solar generation, they need some way to ensure their grids’ reliability when the weather’s not cooperating or demand is peaking.
“There’s a need for something that can substitute for natural gas,” Logan Goldie-Scot, director of market research at the sustainable infrastructure investment firm Generate Capital told me. Almost no one believes lithium-ion batteries will be a viable alternative. “And so then it is an open question of whether that role will be filled by long-duration energy storage, by green hydrogen, or by clean firm power” like nuclear or geothermal, he said.
There are some novel battery chemistries and configurations out there, from Form Energy’s iron-air batteries to flow batteries that store their electrolytes in separate tanks to zinc-based batteries. But there are also numerous more creative, non-chemical, not-what-you-might-consider-a-battery batteries vying for a role in the long-duration storage market.
Founded back in 2010, Toronto-based Hydrostor has been pursuing “advanced compressed air energy storage” for a while now. Essentially, the system uses off-peak, surplus, or renewable grid energy to compress air and pump it into a water-filled cavern, displacing that water to the surface. Then when energy is needed, it releases the water back into the cavern, pushing the air upward to mix with stored heat, which turns a turbine and produces electricity.
“Everybody has talked about long-duration storage for probably the past five years or so. The markets have not been there to pay for it at all. And that’s starting to change,” Jon Norman, Hydrostor’s president, told me.
Part of Hydrostor’s pitch is that its tech is a “proven pathway,” as it involves simply integrating and repurposing preexisting systems and technologies to produce energy. It’s also cheaper than lithium-ion storage, with no performance degradation over a project’s lifetime. Major investors are buying it — the company raised $250 million from Goldman Sachs in 2022, to be paid out in tranches tied to project milestones. At the time, it was one of the largest investments ever made in long-duration energy storage.
The company has operated a small 1.75 megawatt facility in Canada since 2019, but now with Goldman’s help it’s scaling significantly, developing a 500 megawatt grid-scale project in California in partnership with a community choice aggregator, as well as a 200 megawatt microgrid project in a remote town in New South Wales, Australia.
“Our bread and butter application is serving the needs of grids and utilities that are managing capacity and keeping the lights on all the time,” Norman told me. The company’s projects under development are designed to deliver eight hours of energy. “That’s what the market’s calling for right now,” Norman said, though theoretically Hydrostor could handle multi-day storage.
Standard lithium-ion batteries have shown that they can be economical in the eight-hour range too, though. Back in 2020, a coalition of community choice aggregators in California requested bids for long-duration storage projects with at least eight hours of capacity. While Hydrostor and numerous other startups threw their hats in the ring, the coalition ultimately selected a standard lithium-ion battery project for development.
While this could be viewed as a hit to more nascent technologies, Hydrostor said the process ultimately led to the company’s 25-year, 200 megawatt offtake contract with Central Coast Community Energy, which will purchase power from the company’s 500 megawatt project in California’s Central Valley, set to come online in 2030. But that long lead time could be one of the main reasons why Hydrostor didn’t win the coalition’s bid in the first place.
“When you consider the very pertinent needs for energy storage systems today in California and yesterday, a technology that is not due to come online for another six years – I don’t think you’re even yet at the cost comparison conversation,” Goldie-Scot told me, in reference to Hydrostor’s timeline. “It’s just, how soon can some of these companies deliver a project?” Generate recently acquired esVolta, a prominent developer of lithium-ion battery storage projects.
But ultimately, Norman says he doesn’t really view Hydrostor as in competition with lithium-ion. “We would even add [traditional] batteries to our system if we wanted to provide really fast response times,” he told me. He says the use cases are just different, and that he has faith that compressed air storage will eventually prove to be the superior option for grid-scale, long-duration applications.
Another company taking inspiration from pumped storage hydropower is Energy Vault. Founded in 2017, the Swiss company is pursuing a “gravity-based” system that can store up to 24 hours of energy. While the design of its system has shifted over the years, the basic concept has remained the same: Using excess grid energy to lift heavy blocks (initially via cranes, now via specialized elevators), and then lowering those blocks to spin a turbine when there’s energy demand.
The company raised $110 million from Softbank Vision Fund in 2019, but failed to find an immediate market for its tech. “When we founded the company, we started thinking long-duration was going to be required much more quickly, and hence the focus on gravity,” Rob Piconi, Energy Vault’s CEO, told me.
But instead of waiting around for the long-duration market to boom, the company went public via SPAC in early 2022 and reinvented itself. Now it makes much of its revenue selling the sort of traditional lithium-ion energy storage systems that it once sought to replace, and has made moves into the green hydrogen space, too.
“The near term difficulty for many of these long-duration storage companies is that we’re still relatively early on in the scaling of lithium-ion,” Goldie-Scot, told me, noting that prices for Chinese-made batteries have plunged in the past year. Generate usually only invests in tech that’s well-proven and ready to scale up. So while lithium-ion alternatives will look more and more attractive as the world moves toward full decarbonization, in the interim, “there’s a gap between that longer term need and where the market is today.”
Piconi agrees. “If you look at storage deployments 95% to 98% of them are all this shorter duration type of storage right now, because that’s where the market is,” he said, though he added that he’s seeing demand pick up, especially in places like California that are investing heavily in storage.
All that’s to say the company hasn’t given up on its foundational concept — its first commercial-scale gravity energy storage system was recently connected to the grid in China, and the company has broken ground on a second facility in the country as well. These facilities provide four hours of energy storage duration, which lithium-ion batteries can also easily achieve — but the selling point, Piconi says, is that unlike lithium-ion, gravity storage systems don’t catch fire, rely on critical minerals, or degrade over time. And once the market demands it, Energy Vault can provide power for much longer.
Still, the upfront costs of Energy Vault’s system can be daunting for risk-averse utilities. So in an effort to lower prices, the company recently unveiled a series of new gravity storage prototypes that leverage either existing slopes or multi-purpose skyscrapers. They were designed in partnership with the architecture and engineering firm Skidmore, Owings & Merrill, the company behind the world’s tallest building.
The market may not have been ready five years ago, Piconi told me. But “in 12 to 24 months, we’re going to start to see gravity pop up,” he projected.
But wait, there’s more. Perhaps one of the best use cases for lithium-ion alternatives is in onsite, direct heating and cooling applications. That’s what the Israeli company Nostromo Energy is focused on, aiming to provide cleaner, cheaper air conditioning for large buildings like offices, school campuses, hotels, and data centers.
The company uses off-peak or surplus renewable energy to freeze water, storing it for later use in modular cells. Then, as temperatures rise and air conditioning turns on, that frozen water will cool down the building without the need for energy-intensive chillers, which commercial buildings normally rely upon. The system can be configured to discharge energy for two-and-a-half all the way up to 10 hours.
“Because air conditioning is roughly half of the electricity consumption of a building, we can provide that half from stored energy. And that’s overall a huge relief on the grid,” Nostromo’s CEO Yoram Ashery told me.
While a lot of (my) attention has been focused on how thermal batteries can help decarbonize heat-intensive industrial processes, and much has been written about the benefits of electric heat pumps over gas-powered heating, cooling is sometimes overlooked. That’s at least partially because air conditioning is already electrified.
But as more of our vehicles, appliances, and systems go electric, strain on the grid is poised to increase, especially during times of peak energy demand in the late afternoon and evening as people return home from the office before the sun goes down. Nostromo’s system can help shift that load by charging either midday (when solar is abundant) or at night (when wind is peaking), and discharging as demand for AC ramps throughout the afternoon.
Goldie-Scot said thermal storage technologies like this “offer something that some of the other technologies that are purely power-focused cannot. But they are still competing against relatively cheap natural gas.”
The upfront cost of the system, $2 to $3 million, is also nothing to sneeze at. But Ashery says it will fully pay for itself after just five years, as building owners stand to see significant savings on their electricity bills by shifting their demand to off-peak hours.
While one could theoretically power a building’s AC system using large lithium-ion-batteries, “it’s a problem to put big lithium batteries inside buildings,” Ashery told me. That’s due to the fire risk, which could impact insurance premiums for businesses, as well as space issues — these batteries would need to be container-sized to run an HVAC system. “That’s why only 1% of energy storage currently goes into commercial/industrial buildings,” Ashery wrote in a follow up email.
Shang told me that he sees so-called “behind the meter” applications like this as promising early markets for long-duration storage tech, especially given that utilities are “pretty cautious to adopt these technologies on a large scale.” But ultimately, he believes that policy is what’s really going to jumpstart this market.
“For long-duration storage, it may look years ahead, but actually the future is now,” he said. Because some of these new systems take longer to design and build, Shang told me, “you have to invest now. For the policies, you have to be ready now to support the development of these [long-duration energy storage] technologies.”
The Biden administration is certainly trying. All energy storage tech — thermal, compressed air, gravity, and lithium-ion — stands to benefit from generous IRA tax credits, which will cover 30% of a project’s cost, assuming it meets certain labor standards. Additional savings can accrue if a project meets domestic content requirements or is sited in a qualifying “energy community,” such as a low-income area that derives significant revenue from fossil fuel production.
The Department of Energy’s ultimate goal is to reduce the cost of grid-scale long-duration energy storage by 90% this decade (with “long” defined as 10-plus hours). And last year, the DOE announced $325 million in funding for 15 long-duration demonstration projects.
So while the market might not be quite ripe yet for funky, alternative approaches to long-duration storage, support like this is going to be necessary to ensure that these technologies are proven, cost-effective and available as the grid decarbonizes and the need crystallizes.
“There is not currently a system-wide way of valuing long-duration energy storage while competing against gas, but there are customers and utilities that have shown a willingness, especially with federal and state support, to invest in these technologies,” Goldie-Scot said. “That I think is giving us the first real inkling of the role that the long-duration can play in this market.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.