You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Five findings from an extremely thorough study by the National Renewable Energy Lab.

Some Americans install heat pumps because they care about climate change. But most people aren’t going to make the switch until it makes sense economically. Pinpointing where and for whom heat pumps are a good investment is surprisingly tricky because U.S. housing is so diverse, with a wide range of building sizes and ages, situated in different local climates with different utility rates.
But for the first time, researchers at the National Renewable Energy Lab have sorted through much of this complexity to get deeper to the truth about the costs, benefits, and challenges of deploying heat pumps in the U.S.
Ultimately, they found that heat pumps are a cost-effective choice in roughly 65 million U.S. homes, or about 60% of the country — and that’s before taking into account available subsidies. But there are substantial economic barriers to widespread adoption.
It’s hard to overstate how detailed the study is. The authors started with a model of 550,000 statistically representative households — basically housing archetypes that typify different combinations of building size, age, occupancy level, local climate, heating usage patterns, and existing heating systems. Each one represents about 242 real-world households. Then the authors looked at how switching to a heat pump would affect greenhouse gas emissions and energy bills across all of these different homes in a wide range of scenarios. They considered heat pumps with lower and higher efficiency ratings, and whether or not the building owner pursued insulation upgrades. They looked at different scenarios for how quickly the grid would decarbonize, how sensitive the results were to energy prices, and how subsidies from the Inflation Reduction Act affect the economics.
The paper has many interesting findings beyond the top-line result. Here are five things that stood out.
Eric Wilson, a senior research engineer at NREL and the study’s lead author, told me one of his motivations was to try to settle the question of whether heat pumps reduce emissions.
“I see a lot of people saying, well, the grid is still dirty in this state, and maybe it makes sense to wait five years to put in a heat pump because it could increase emissions,” he said.
But he found that in each of the 48 contiguous U.S. states, switching to a heat pump reduces emissions today, even if that heat pump is one of the cheaper, less-efficient models. Heat pumps are just so much more efficient than other options that they still reduce emissions despite today’s relatively dirty grid.
On average, each home could cut between 2.5 to 4.4 tons of carbon over the approximately 16 years the equipment lasts, meaning widespread adoption could result in a 5% to 9% drop in national economy-wide emissions. The effect is much more pronounced in some states, like those in the Northeast, where a lot of homes currently use fossil fuels for heating. A household in Maine that installs a high efficiency model, combined with completing insulation upgrades, would reduce emissions by an average of 11 tons per year — or about the equivalent of taking two cars off the road for a year.
The study breaks down the costs of switching to a heat pump in a few different ways.
First, there’s the up-front costs of upgrading to a heat pump, which are relatively high. A lower-rated, less efficient heat pump system may be a cheaper option than a new furnace or boiler for about 43% of households. But a higher-performing heat pump is almost always more expensive, costing an extra $8,000 to $13,000 before government subsidies (more on them later). That alone might keep heat pumps out of reach for many households.
Next, there's the potential for bill savings — which is significant. Using state average electricity and gas rates in the winter of 2021 to 2022, the study found that 86% of households can save money on their utility bills by switching to a medium-efficiency heat pump, and a whopping 95% of households will see their bills go down if they install the highest efficiency system.
So in theory, if homeowners do have the extra cash to put down, there’s a chance they could make up for high up-front costs in bill savings over time. But how good a chance?
Putting this all together, the authors looked at what percentage of households that upgraded to heat pumps would see a positive cash flow, calculated as the “net present value,” from the initial investment. Here, the results were less rosy. In many cases, high up-front costs cancel out potential savings. For example, despite the near-certain bill savings from buying one of the most efficient heat pump models, only 21% of households would see an overall economic benefit from the switch.
Still, more than half of all homes would see a positive cash flow by switching to a cheaper, minimum-efficiency heat pump.

These findings underscore the importance of bringing down the cost of more efficient heat pump models, which are out of reach for many Americans but can provide significant energy bill savings. The authors suggest that policymakers can help by deploying incentives more strategically and pursuing research on “lower-cost, higher performance, and easier to install equipment.” There also may be opportunities for bulk purchasing and aggregating installations across an apartment building or neighborhood.
When it comes to bill savings, the study found that those who have systems that run on propane, fuel oil, or electric resistance heaters will pretty much always lower their bills by switching to a heat pump, no matter how efficient it is. But those who use natural gas are far more likely to lower their bills if they can afford to switch to one of the pricier, better-performing heat pumps — which cuts into the value proposition.
The following maps show the percentage of homes in each state that would see a positive cash flow from switching to a heat pump, looking at those switching from natural gas, electric resistance, or fuel oil and propane, illustrating how the value proposition is most challenging for those using natural gas.

The authors also note that fixed charges on natural gas bills can play a significant role in the economics of switching to a heat pump. Most natural gas utilities charge customers a fixed amount each month, regardless of how much gas they use. If a homeowner switches to heat pumps but continues using gas for cooking, they’ll still have to pay the full fee, which can be as high as $34 a month, whereas homes that fully electrify can avoid these fees.
The results I described in the previous two sections include homes both with and without existing air conditioning systems of some kind. (With the exception of the maps, which only consider homes that have air conditioning already.)
But since heat pumps provide both heating and cooling, the economics are actually quite different for those households who already have air conditioners versus those who don't. If a household already has A/C, heat pumps appear more favorable, because a family would be able to replace two systems — an air conditioner and a furnace — with just one. If there is no pre-existing air conditioner, the heat pump will not only have higher up-front costs, but it’s more likely to increase energy bills, since the family might start using the heat pump for cooling in addition to heating.
Here are the same maps included in the previous section, but looking just at homes that do not have air conditioning.

There are basically zero cases where a house with natural gas heating, and no A/C, will save by switching to a heat pump. However, that result doesn’t take into account the benefits of getting air conditioning for the first time.
“They didn't include the new value that someone has, especially in a warming world and a world with more heat waves, of now having an air conditioner in your home,” Kevin Kircher, an assistant professor of mechanical engineering at Purdue University, told me. “So if you add that in, I think the economics look better.”
None of the results in the previous sections take into account the various subsidies that states and the federal government offer for heat pumps. For example, the Inflation Reduction Act included a $2,000 tax credit for heat pumps and an additional $11,500 in rebates for low- and moderate-income households. Both will increase the percentage of households for whom the investment will pencil out.
The study also doesn’t take into account the potential for homes to use smart controls that optimize their systems, or the opportunity for households to participate in demand response programs which will pay them to turn down their thermostats by a few degrees when the grid is taxed. Kircher, the Purdue professor, recently published a study of a real-world house in a cold climate where smart controls reduced heating energy costs by 23-34%.
Finally, one big takeaway from the study was that the results are very sensitive to the price ratio between natural gas rates and electricity rates, and there are reasons to believe that may become more favorable. For example, as more renewable energy is deployed, electricity could become more affordable. Meanwhile, if the U.S. increases exports of liquified natural gas, the cost of domestic natural gas could go up. The study cites a 2022 survey of oil and gas executives which found that 69% expect ‘‘the age of inexpensive U.S. natural gas to end by year-end 2025.”
“Big modeling like this entails a lot of assumptions about the future that are really hard to pin down with any real precision,” said Kircher. “But I think there's cause for optimism there.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Adorable as they are, Japanese kei cars don’t really fit into American driving culture.
It’s easy to feel jaded about America’s car culture when you travel abroad. Visit other countries and you’re likely to see a variety of cool, quirky, and affordable vehicles that aren’t sold in the United States, where bloated and expensive trucks and SUVs dominate.
Even President Trump is not immune from this feeling. He recently visited Japan and, like a study abroad student having a globalist epiphany, seems to have become obsessed with the country’s “kei” cars, the itty-bitty city autos that fill up the congested streets of Tokyo and other urban centers. Upon returning to America, Trump blasted out a social media message that led with, “I have just approved TINY CARS to be built in America,” and continued, “START BUILDING THEM NOW!!!”
He’s right: Kei cars are neat. These pint-sized coupes, hatchbacks, and even micro-vans and trucks are so cute and weird that U.S. car collectors have taken to snatching them up (under the rules that allow 25-year-old cars to be imported to America regardless of whether they meet our standards). And he’s absolutely right that Americans need smaller and more affordable automotive options. Yet it’s far from clear that what works in Japan will work here — or that the auto execs who stood behind Trump last week as he announced a major downgrading of upcoming fuel economy standards are keen to change course and start selling super-cheap economy cars.
Americans want our cars to do everything. This country’s fleet of Honda CR-Vs and Chevy Silverados have plenty of space for school carpools and grocery runs around town, and they’re powerful and safe enough for road-tripping hundreds of miles down the highway. It’s a theme that’s come up repeatedly in our coverage of electric vehicles. EVs are better for cities and suburbs than internal combustion vehicles, full stop. But they may never match the lightning-fast road trip pit stop people have come to expect from their gasoline-powered vehicles, which means they don’t fit cleanly into many Americans’ built-in idea of what a car should be.
This has long been a problem for selling Americans on microcars. We’ve had them before: As recently as a dozen years ago, extra-small autos like the Smart ForTwo and Scion iQ were available here. Those tiny cars made tons of sense in the United States’ truly dense urban areas; I’ve seen them strategically parked in the spaces between homes in San Francisco that are too short for any other car. They made less sense in the more wide-open spaces and sprawling suburbs that make up this country. The majority of Americans who don’t struggle with street parking and saw that they could get much bigger cars for not that much more money weren’t that interested in owning a car that’s only good for local driving.
The same dynamic exists with the idea of bringing kei cars for America. They’re not made to go faster than 40 or 45 miles per hour, and their diminutive size leaves little room for the kind of safety features needed to make them highway-legal here. (Can you imagine driving that tiny car down a freeway filled with 18-wheelers?) Even reaching street legal status is a struggle. While reporting earlier this year on the rise of kei car enthusiasts, The New York Times noted that while some states have moved to legalize mini-cars, it is effectively illegal to register them in New York. (They interviewed someone whose service was to register the cars in Montana for customers who lived elsewhere.)
If the automakers did follow Trump’s directive and stage a tiny car revival, it would be a welcome change for budget-focused Americans. Just a handful of new cars can be had for less than $25,000 in the U.S. today, and drivers are finally beginning to turn against the exorbitant prices of new vehicles and the endless car loans required to finance them. Individuals and communities have turned increasingly to affordable local transportation options like golf carts and e-bikes for simply getting around. Tiny cars could occupy a space between those vehicles and the full-size car market. Kei trucks, which take the pickup back to its utilitarian roots, would be a wonderful option for small businesses that just need bare-bones hauling capacity.
Besides convincing size-obsessed Americans that small is cool, there is a second problem with bringing kei cars to the U.S., which is figuring out how to make little vehicles fit into the American car world. Following Trump’s declaration that America should get Tokyo-style tiny cars ASAP, Transportation Secretary Sean Duffy said “we have cleared the deck” of regulations that would prevent Toyota or anyone else from selling tiny cars here. Yet shortly thereafter, the Department of Transportation clarified that, “As with all vehicles, manufacturers must certify that they meet U.S. Federal Motor Vehicle Safety Standards, including for crashworthiness and passenger protection.”
In other words, Ford and GM can’t just start cranking out microcars that don’t include all the airbags and other protections necessary to meet American crash test and rollover standards (not without a wholesale change to our laws, anyway). As a result, U.S. tiny cars couldn’t be as tiny as Japanese ones. Nor would they be as cheap, which is a crucial issue. Americans might spend $10,000 on a city-only car, but probably wouldn’t spend $20,000 — not when they could just get a plain old Toyota Corolla or a used SUV for that much.
It won’t be easy to convince the car companies to go down this road, either. They moved so aggressively toward crossovers and trucks over the past few decades because Americans would pay a premium for those vehicles, making them far more profitable than economy cars. The margins on each kei car would be much smaller, and since the stateside market for them might be relatively small, this isn’t an alluring business proposition for the automakers. It would be one thing if they could just bring the small cars they’re selling elsewhere and market them in the United States without spending huge sums to redesign them for America. But under current laws, they can’t.
Not to mention the whiplash effect: The Trump administration’s attacks on EVs left the carmakers struggling to rearrange their plans. Ford and Chevy probably aren’t keen to start the years-long process of designing tiny cars to please a president who’ll soon be distracted by something else.
Trump’s Tokyo fantasy is based in a certain reality: Our cars are too big and too expensive. But while kei cars would be fantastic for driving around Boston, D.C., or San Francisco, the rides that America really needs are the reasonably sized vehicles we used to have — the hatchbacks, small trucks, and other vehicles that used to be common on our roads before the Ford F-150 and Toyota RAV4 ate the American car market. A kei truck might be too minimalist for mainstream U.S. drivers, but how about a hybrid revival of the El Camino, or a truck like the upcoming Slate EV whose dimensions reflect what a compact truck used to be? Now that I could see.
Current conditions: In the Pacific Northwest, parts of the Olympics and Cascades are set for two feet of rain over the next two weeks • Australian firefighters are battling blazes in Victoria, New South Wales, and Tasmania • Temperatures plunged below freezing in New York City.
The U.S. military is taking on a new role in the Trump administration’s investment strategy, with the Pentagon setting off a wave of quasi-nationalization deals that have seen the Department of Defense taking equity stakes in critical mineral projects. Now the military’s in-house lender, the Office of Strategic Capital, is making nuclear power a “strategic technology.” That’s according to the latest draft, published Sunday, of the National Defense Authorization Act making its way through Congress. The bill also gives the lender new authorities to charge and collect fees, hire specialized help, and insulate its loan agreements from legal challenges. The newly beefed up office could give the Trump administration a new tool for adding to its growing list of investments, as I previously wrote here.

The “Make America Healthy Again” wing of President Donald Trump’s political coalition is urging the White House to fire Environmental Protection Agency Administrator Lee Zeldin over his decisions to deregulate harmful chemicals. In a petition circulated online, several prominent activists aligned with the administration’s health secretary, Robert F. Kennedy, Jr., accused Zeldin of having “prioritized the interests of chemical corporations over the well-being of American families and children.” As of early Friday afternoon, The New York Times reported, more than 2,800 people had signed the petition. By Sunday afternoon, the figure was nearly 6,000. The organizers behind the petition include Vani Hari, a MAHA influencer known as the Food Babe to her 2.3 million Instagram followers, and Alex Clark, a Turning Point USA activist who hosts what the Times called “a health and wellness podcast popular among conservatives.”
The intraparty conflict comes as one of Zeldin’s more controversial rollbacks of a Biden-era pollution rule, a regulation that curbs public exposure to soot, is facing significant legal challenges. A lawyer told E&E News the EPA’s case is a “Hail Mary pass.”
The Democratic Republic of the Congo, by far the world’s largest source of cobalt, has slapped new export restrictions on the bluish metal needed for batteries and other modern electronics. As much as 80% of the global supply of cobalt comes from the DRC, where mines are notorious for poor working conditions, including slavery and child labor. Under new rules for cobalt exporters spelled out in a government document Reuters obtained, miners would need to pre-pay a 10% royalty within 48 hours of receiving an invoice and secure a compliance certificate. The rules come a month after Kinshasa ended a months-long export ban by implementing a quota system aimed at boosting state revenues and tightening oversight over the nation’s fast-growing mining industry. The establishment of the rules could signal increased exports again, but also suggests that business conditions are changing in the country in ways that could further complicate mining.
With Chinese companies controlling the vast majority of the DRC’s cobalt mines, the U.S. is looking to onshore more of the supply chain for the critical mineral. Among the federal investments is one I profiled for Heatmap: an Ohio startup promising to refine cobalt and other metals with a novel processing method. That company, Xerion, received funding from the Defense Logistics Agency, yet another funding office housed under the U.S. military.
Sign up to receive Heatmap AM in your inbox every morning:
Last month, I told you about China’s outreach to the rest of the world, including Western European countries, to work together on nuclear fusion. The U.S. cut off cooperation with China on traditional atomic energy back in 2017. But France is taking a different approach. During a state visit to Beijing last week, French President Emmanuel Macron “failed to win concessions” from Chinese leader Xi Jinping, France24 noted. But Paris and Beijing agreed to a new “pragmatic cooperation” deal on nuclear power. France’s state-owned utility giant EDF already built a pair of its leading reactors in China.
The U.S. has steadily pushed the French out of deals within the democratic world. Washington famously muscled in on a submarine deal, persuading Australia to drop its deal with France and go instead with American nuclear vessels. Around the same time, Poland — by far the biggest country in Europe to attempt to build its first nuclear power plant — gave the American nuclear company Westinghouse the contract in a loss for France’s EDF. Working with China, which is building more reactors at a faster rate than any other country, could give France a leg up over the U.S. in the race to design and deploy new reactors.
It’s not just the U.S. backpedaling on climate pledges and extending operations of coal plants set to shut down. In smog-choked Indonesia, which ranks seventh in the world for emissions, a coal-fired plant that Bloomberg described as a “flagship” for the country’s phaseout of coal has, rather than shut down early, applied to stay open longer.
Nor is the problem reserved to countries with right-wing governance. The new energy plan Canadian Prime Minister Mark Carney, a liberal, is pursuing in a bid to leverage the country’s fossil fuel riches over an increasingly pushy Trump means there’s “no way” Ottawa can meet its climate goals. As I wrote last week, the Carney government is considering a new pipeline from Alberta to the West Coast to increase oil and gas sales to Asia.
There’s a new sheriff in town in the state at the center of the data center boom. Virginia’s lieutenant governor-elect Ghazala Hasmi said Thursday that the incoming administration would work to shift policy toward having data centers “pay their fair share” by supplying their own energy and paying to put more clean power on the grid, Utility Dive reported. “We have the tools today. We’ve got the skilled and talented workforce. We have a policy roadmap as well, and what we need now is the political will,” Hashmi said. “There is new energy in this legislature, and with it a real opportunity to build new energy right here in the Commonwealth.”
Get up to speed on the SPEED Act.
After many months of will-they-won’t-they, it seems that the dream (or nightmare, to some) of getting a permitting reform bill through Congress is squarely back on the table.
“Permitting reform” has become a catch-all term for various ways of taking a machete to the thicket of bureaucracy bogging down infrastructure projects. Comprehensive permitting reform has been tried before but never quite succeeded. Now, a bipartisan group of lawmakers in the House are taking another stab at it with the SPEED Act, which passed the House Natural Resources Committee the week before Thanksgiving. The bill attempts to untangle just one portion of the permitting process — the National Environmental Policy Act, or NEPA.
There are a lot of other ways regulation and bureaucracy get in the way of innovation and clean energy development that are not related to NEPA. Some aren’t even related to permitting. The biggest barrier to building transmission lines to carry new carbon-free energy, for example, is the lack of a standard process to determine who should pay for them when they cross through multiple utility or state jurisdictions. Lawmakers on both sides of the aisle are working on additional bills to address other kinds of bottlenecks, and the SPEED Act could end up being just one piece of the pie by the time it’s brought to the floor.
But while the bill is narrow in scope, it would be sweeping in effect — and it’s highly unclear at this point whether it could garner the bipartisan support necessary to get 60 votes in the Senate. Just two of the 20 Democrats on the Natural Resources Committee voted in favor of the bill.
Still, the context for the debate has evolved significantly from a year ago, as artificial intelligence has come to dominate America’s economic prospects, raising at least some proponents’ hopes that Congress can reach a deal this time.
“We’ve got this bipartisan interest in America winning the AI race, and an understanding that to win the AI race, we’ve got to expand our power resources and our transmission network,” Jeff Dennis, the executive director of the Electricity Customer Alliance and a former official at the Department of Energy’s Grid Deployment Office, told me. “That creates, I think, a new and a different kind of energy around this conversation than we’ve had in years past.”
One thing that hasn’t changed is that the permitting reform conversation is almost impenetrably difficult to follow. Here’s a guide to the SPEED Act to help you navigate the debate as it moves through Congress.
NEPA says that before federal agencies make decisions, whether promulgating rules or approving permits, they must assess the environmental impacts of those decisions and disclose them to the public. Crucially, it does not mandate any particular action based on the outcome of these assessments — that is, agencies still have full discretion over whether to approve a permit, regardless of how risky the project is shown to be.
The perceived problem is that NEPA slows down infrastructure projects of all kinds — clean energy, dirty energy, housing, transit — beyond what should reasonably be expected, and thereby raises costs. The environmental assessments themselves take a long time, and yet third parties still often sue the federal government for not doing a thorough enough job, which can delay project development for many more years.
There’s a fair amount of disagreement over whether and how NEPA is slowing down clean energy, specifically. Some environmental and clean energy researchers have analyzed NEPA timelines for wind, solar, and transmission projects and concluded that while environmental reviews and litigation do run up the clock, that has been more the exception than the rule. Other groups have looked at the same data and seen a dire need for reform.
Part of the disconnect is about what the data doesn’t show. “What you don’t see is how little activity there is in transmission development because of the fear of not getting permits,” Michael Skelly, the CEO of Grid United, told me. “It’s so difficult to go through NEPA, it’s so costly on the front end and it’s so risky on the back end, that most people don’t even try.”
Underlying the dispute is also the fact that available data on NEPA processes and outcomes are scattered and incomplete. The Natural Resources Committee advanced two smaller complementary bills to the SPEED Act that would shine more light on NEPA’s flaws. One, called the ePermit Act, would create a centralized portal for NEPA-related documentation and data. The other directs the federal government to put out an annual report on how NEPA affects project timelines, costs, and outcomes.
During Biden’s presidency, Congress and the administration took a number of steps to reform NEPA — some more enduring than others. The biggest swing was the Fiscal Responsibility Act of 2023, which raised the debt ceiling. In an effort to prevent redundant analyses when a project requires approvals or input from multiple agencies, it established new rules by which one lead agency would oversee the NEPA process for a given project, set the environmental review schedule, and coordinate with other relevant agencies. It also codified new deadlines for environmental review — one year to complete environmental assessments, and two years for meatier "environmental impact statements” — and set page limits for these documents.
The 2021 bipartisan infrastructure law also established a new permitting council to streamline reviews for the largest projects.
The Inflation Reduction Act allocated more than $750 million for NEPA implementation across the federal government so that agencies would have more resources to conduct reviews. Biden’s Council of Environmental Quality also issued new regulations outlining how agencies should comply with NEPA, but those were vacated by a court decision that held that CEQ does not have authority to issue NEPA regulations.
Trump’s One Big Beautiful Bill Act, which he signed in early July, created a new process under NEPA by which developers could pay a fee to the government to guarantee a faster environmental review process.
None of these laws directly affected NEPA litigation, which many proponents of reform say is the biggest cause of delay and uncertainty in the process.
The most positive comments I heard about the SPEED Act from clean energy proponents were that it was a promising, though flawed, opening salvo for permitting reform.
Dennis told me it was “incredibly important” that the bill had bipartisan support and that it clarified the boundaries for what agencies should consider in environmental reviews. Marc Levitt, the director of regulatory reform at the Breakthrough Institute and a former Environmental Protection Agency staffer, said it addresses many of the right problems — especially the issue of litigation — although the provisions as written are “a bit too extreme.” (More on that in a minute.)
Skelly liked the 150-day statute of limitations on challenging agency decisions in court. In general, speeding up the NEPA process is crucial, he said, not just because time is money. When it takes five years to get a project permitted, “by the time you come out the other side, the world has changed and you might want to change your project,” but going through it all over again is too arduous to be worth it.
Industry associations for both oil and gas and clean energy have applauded the bill, with the American Clean Power Association joining the American Petroleum Institute and other groups in signing a letter urging lawmakers to pass it. The American Council on Renewable Energy also applauded the bill’s passage, but advised that funding and staffing permitting agencies was also crucial.
Many environmental groups fundamentally oppose the bill — both the provisions in it, and the overall premise that NEPA requires reform. “If you look at what’s causing delay at large,” Stephen Schima, senior legislative council for Earthjustice Action, told me, “it’s things like changes in project design, local and state regulations, failures of applicants to provide necessary information, lack of funding, lack of staff and resources at the agencies. It’s not the law itself.”
Schima and Levitt both told me that the language in the bill that’s supposed to prevent Trump from revoking previously approved permits is toothless — all of the exceptions listed “mirror almost precisely the conditions under which Trump and his administration are currently taking away permits,” Levitt said. The Solar Energy Industry Association criticized the bill for not addressing the “core problem” of the Trump administration’s “ongoing permitting moratorium” on clean energy projects.
Perhaps the biggest problem people have with the bill, which came up in my interviews and during a separate roundtable hosted by the Bipartisan Policy Center, is the way it prevents courts from stopping projects. An agency could do a slapdash environmental review, miss significant risks to the public, and there would be no remedy other than that the agency has to update its review — the project could move forward as-is.
Those are far from the only red flags. During a Heatmap event on Thursday, Ted Kelly, the director and lead counsel for U.S. energy at the Environmental Defense Fund, told me one of his biggest concerns was the part about ignoring new scientific research. “That just really is insisting the government shut its eyes to new information,” he said. Schima pointed to the injustice of limiting lawsuits to individuals who submitted public comments, when under the Trump administration, agencies have stopped taking public comments on environmental reviews. The language around considering effects that are “separate in time or place from the project or action” is also dangerous, Levitt said. It limits an agency’s discretion over what effects are relevant to consider, including cumulative effects like pollution and noise from neighboring projects.
The SPEED Act is expected to come to a vote on the House floor in the next few weeks. Then the Senate will likely put forward its own version.
As my colleague Jael Holzman wrote last month, Trump himself remains the biggest wildcard in permitting reform. Democrats have said they won’t agree to a deal that doesn’t bar the president from pulling previously-approved permits or otherwise level the playing field for renewable energy. Whether Trump would ever sign a bill with that kind of language is not a question we have much insight into yet.