Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

Three Mile Island Is Coming Back Online to Power Microsoft Data Centers

On major nuclear news, the Doomsday Glacier, and Canada’s emissions

Three Mile Island Is Coming Back Online to Power Microsoft Data Centers
Heatmap Illustration/Getty Images

Current conditions: Cleanup efforts have begun in Italy’s washed out Emilia-Romagna region • Endangered freshwater dolphins are washing ashore at Brazil’s Lake Tefe as water levels recede due to drought • The Colorado Rockies could see some snow this weekend.

THE TOP FIVE

1. Three Mile Island nuclear plant to come back online to power Microsoft data centers

We’ll start with some breaking news today: Pennsylvania’s Three Mile Island nuclear plant, the site of an infamous 1979 partial reactor meltdown, will be revived by 2028 as part of a plan to provide power for Microsoft’s data centers. Constellation Energy, the plant’s owner and the largest nuclear operator in the country, announced the news today. Microsoft agreed to buy all of the plant’s power for 20 years – enough energy to power 800,000 homes.

If approved, this decision “would mark a bold advance in the tech industry’s quest to find enough electric power to support its boom in artificial intelligence,” The Washington Post reported. “The symbolism is enormous,” Joseph Dominguez, chief executive of Constellation, toldThe New York Times. “This was the site of the industry’s greatest failure, and now it can be a place of rebirth.”

“Now, THIS is additional clean supply,” said Heatmap Shift Key co-host Jesse Jenkins. “Bravo. It is remarkable to see a handful of nuclear reactors shuttered in the last decade due to poor revenues contemplating restart now. Palisades, now TMI. Who is next? Maybe it was unwise to let these plants close in the fist place eh?”

2. World Bank climate financing reaches record high

The World Bank Group yesterday announced it delivered a record $42.6 billion in climate finance in fiscal year 2024 (which ran from July to June), a 10% increase year-over-year. Climate financing made up 44% of the group’s total lending, which is awfully close to its goal, set at COP28, of 45% for fiscal year 2025. However this remains “well short of the trillions of dollars in additional resources needed annually to finance the clean energy transition in emerging markets and developing countries,” notedReuters.

3. Equatic starts producing its breakthrough anode

Carbon removal startup Equatic announced it has started manufacturing its “oxygen-selective anode,” which has the potential to pave the way for a two-for-one climate solution: commercial hydrogen production and carbon removal. Equatic wants to use seawater electrolysis – sending an electrical current through seawater – to sequester carbon dioxide from the air in the ocean while also producing hydrogen. But as Heatmap’s Emily Pontecorvo reported, electrolysis tends to turn the salt in the water into the toxic and corrosive gas chlorine, which makes commercializing such a process challenging. So Equatic set out to find the right combination of catalysts to make an anode – a sheet of conductive, positively-charged metal – that, when used in electrolysis, would screen out the salt and not allow it to react. Using ARPA-E funding, they landed on a design that produced less than one part per million of chlorine (lower than the amount in drinking water) and performed reliably for more than 20,000 hours of testing.

The company’s San Francisco facility will be able to produce 4,000 of these anodes per year to start, and is expected to operate at full capacity by the end of 2024. It will produce the anodes for Equatic’s first demonstration-scale project, a new plant in Singapore designed to remove 10 metric tons of CO2 and produce 300 kilograms of hydrogen per day — 100 times larger than the pilot version. Equatic also has plans to build an even bigger plant in Quebec that can remove 300 tons per day. That’s about three times the capacity of Climeworks’ Mammoth plant, the world’s largest direct air capture plant operating today.

4. Outlook for Doomsday Glacier looking ‘grim’

Scientists who spent six years examining the Thwaites Glacier in Antarctica warned this week that the outlook for the glacier is “grim.” Thwaites, often referred to as the “Doomsday Glacier,” is massive, spanning an area equal to the state of Florida. It has been retreating for nearly a century, but this melting has accelerated significantly over the last 30 years and the new research suggests it is set to worsen. Within 200 years, the glacier could collapse, raising sea levels worldwide. CNN succinctly summarized why this matters:

“Thwaites holds enough water to increase sea levels by more than 2 feet. But because it also acts like a cork, holding back the vast Antarctic ice sheet, its collapse could ultimately lead to around 10 feet of sea level rise, devastating coastal communities from Miami and London to Bangladesh and the Pacific Islands.”

Dr. Ted Scambos, U.S. science coordinator of the International Thwaites Glacier Collaboration and glaciologist at the University of Colorado, said “immediate and sustained climate intervention will have a positive effect, but a delayed one.”

ITGC

5. WRI considers city life at 3 degrees Celsius of warming

A sweeping new report from the World Resources Institute paints a bleak picture of what 996 of the world’s biggest cities will feel like in a world that is 1.5 degrees Celsius warmer than pre-industrial records, and compares that to a scenario in which temperatures warm by 3 degrees Celsius. Here are some stats:

  • 6.4 – heat waves, on average, cities will experience each year with 3 degrees C of warming, compared to 4.9 heat waves annually at 1.5 degrees C of warming.
  • 24.5 – average length, in days, of the year’s longest heat wave at 3 degrees C of warming, compared to 16.3 days for 1.5 degrees C of warming.
  • 16 – percentage of big cities that would experience a heat wave that lasts for a month or longer annually at 3 degrees C of warming.
  • Two-thirds – the share of the global population that will live in cities by 2050.

The report also looks at what warmer temperatures mean for mosquito-borne diseases. Some, like dengue, Zika, and West Nile, will become more common. But malaria could actually decline “as temperatures in many places become warmer than what is optimal for malaria-transmitting mosquitos.”

THE KICKER

Canada’s carbon emissions dropped last year for the first time since the pandemic, falling 0.8% between 2022 and 2023.

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
A destroyed house and a blueprint.
Heatmap Illustration/Getty Images

Recovering from the Los Angeles wildfires will be expensive. Really expensive. Insurance analysts and banks have already produced a wide range of estimates of both what insurance companies will pay out and overall economic loss. AccuWeatherhas put out an eye-catching preliminary figure of $52 billion to $57 billion for economic losses, with the service’s chief meteorologist saying that the fires have the potential to “become the worst wildfire in modern California history based on the number of structures burned and economic loss.” On Thursday, J.P. Morgan doubled its previous estimate for insured losses to $20 billion, with an economic loss figure of $50 billion — about the gross domestic product of the country of Jordan.

The startlingly high loss figures from a fire that has only lasted a few days and is (relatively) limited in scope show just how distinctly devastating an urban fire can be. Enormous wildfires thatcover millions of acres like the 2023 Canadian wildfires can spew ash and particulate matter all over the globe and burn for months, darkening skies and clogging airways in other countries. And smaller — and far deadlier fires — than those still do not produce the same financial roll.

Keep reading...Show less
Green
Climate

Why the L.A. Fires Are Exceptionally Hard to Fight

Suburban streets, exploding pipes, and those Santa Ana winds, for starters.

Firefighters on Sunset Boulevard.
Heatmap Illustration/Getty Images

A fire needs three things to burn: heat, fuel, and oxygen. The first is important: At some point this week, for a reason we have yet to discover and may never will, a piece of flammable material in Los Angeles County got hot enough to ignite. The last is essential: The resulting fires, which have now burned nearly 29,000 acres, are fanned by exceptionally powerful and dry Santa Ana winds.

But in the critical days ahead, it is that central ingredient that will preoccupy fire managers, emergency responders, and the public, who are watching their homes — wood-framed containers full of memories, primary documents, material wealth, sentimental heirlooms — transformed into raw fuel. “Grass is one fuel model; timber is another fuel model; brushes are another — there are dozens of fuel models,” Bobbie Scopa, a veteran firefighter and author of the memoir Both Sides of the Fire Line, told me. “But when a fire goes from the wildland into the urban interface, you’re now burning houses.”

Keep reading...Show less
Yellow
Climate

What Started the Fires in Los Angeles?

Plus 3 more outstanding questions about this ongoing emergency.

Los Angeles.
Heatmap Illustration/Getty Images

As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Thursday, a question lingered in the background: What caused the fires in the first place?

Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.

Keep reading...Show less
Green