Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

Type One Energy Raised $82.5 Million to Do Fusion For Real

It’s aiming to put fusion energy on the grid by the mid-2030s.

A stellerator.
Heatmap Illustration/Type One Energy

The fusion world is flush in cash and hype, as the dream of near-limitless clean energy inches closer to reality. A recent report from the Fusion Industry Association found that in the last two years, companies in the industry have brought in over $2.3 billion, nearly a third of all fusion funding since 1992.

Today, one of those companies, Type One Energy, announced a giant, $82.5 million seed funding round, which CEO Chris Mowry told me is “one of the largest, if not the largest ever, seed financings in the history of energy.” This funding represents the total from the company’s first close in March of last year, which brought in $29 million, plus the recent close of its extension round, which brought in an additional $53.5 million. The extension was co-led by Breakthrough Energy Ventures, New Zealand-based venture capital firm GD1, and Centaurus Capital.

Mowry said the follow-on funding is necessary for the company to achieve its target of commercializing fusion by the mid-2030s. “To do this, we need to ramp this company up pretty quickly and have some pretty ambitious milestones in terms of development of the actual pilot power plant. And that takes a lot of capital,” he told me.

Type One uses a reactor design known as a stellarator. The concept is similar to the more familiar doughnut-shaped tokamak reactors, used by the deep-pocketed MIT-spinoff Commonwealth Fusion Systems and the intergovernmental fusion megaproject ITER. Both stellarators and tokamaks use high-powered magnets to confine superheated plasma, in which the fusion reaction takes place. But unlike the symmetrical magnetic field created by a tokamak, a stellarator creates a twisted magnetic field that is more adept at keeping the plasma stabilized, though historically at the expense of keeping it maximally hot.

Recent progress in the stellarator universe has Mowry excited, as the world’s largest stellarator, developed at the Max Planck Institute for Plasma Physics in Germany, has demonstrated high heating power as well as the ability to maintain a fusion plasma for a prolonged period of time. Thus, he told me this tech has “no fundamental science or engineering barriers to commercialization,” and that if the German stellarator were simply scaled up, it could likely provide sustained fusion energy for a power plant, albeit at a price point that would be totally unfeasible. Commercialization is therefore now simply an “engineering optimization challenge.”

The Type One team is composed of some of the world’s foremost experts on stellarator fusion, coming from the University of Wisconsin-Madison, which Mowry said “built the world’s first modern stellarator;” Oak Ridge National Laboratory; and the Institute for Plasma Physics. The company plans to use the additional funding to jumpstart its FusionDirect program, which involves building a prototype reactor in partnership with Oak Ridge National Laboratory and the Tennessee Valley Authority, the nation’s largest public utility. The timeline is aggressive — Type One is aiming to complete the prototype by the end of 2028. And while this machine will not generate fusion energy, its purpose is to validate the design concept for the company’s pilot plant, which will ideally begin putting fusion electrons on the grid by the mid-2030s.

Mowry’s goal is to enter into a public-private partnership by the end of the decade that will help get the company’s first-of-its-kind stellarator pilot off the ground. The government has an integral role to play in helping fusion energy reach scale, he argued, but said that as of now, it’s not doing nearly enough. Federal funding for fusion, he told me, is “on the order of a billion dollars a year.” While that might seem like a hefty sum, Mowry said only a minuscule portion is allotted to commercialization initiatives as opposed to basic research and development, a breakdown “aligned with where fusion was in the 20th century,” he told me, not where it is today.

If Type One’s pilot plant works as hoped, “then you’re talking about deploying the first wave of full-scale, truly commercial fusion power plants in the second half of the 2030s.” Which, when it comes to preventing catastrophic climate change, is “maybe just in time.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Economy

Tariffs Are Making Gas Cheaper — But Not Cheap Enough

Any household savings will barely make a dent in the added costs from Trump’s many tariffs.

A gas station.
Heatmap Illustration/Getty Images

Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.

But there’s one very important consumer good that seems due to decline in price.

Keep reading...Show less
Green
Electric Vehicles

There Has Never Been a Better Time for EV Battery Swapping

With cars about to get more expensive, it might be time to start tinkering.

A battery with wheels.
Heatmap Illustration/Getty Images

More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.

That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.

Keep reading...Show less
Green
Energy

AM Briefing: Record Renewables Growth

On the shifting energy mix, tariff impacts, and carbon capture

Low-Carbon Sources Provided 41% of the World’s Power Last Year
Heatmap Illustration/Getty Images

Current conditions: Europe just experienced its warmest March since record-keeping began 47 years ago • It’s 105 degrees Fahrenheit in India’s capital Delhi where heat warnings are in effect • The risk of severe flooding remains high across much of the Mississippi and Ohio Valleys.

THE TOP FIVE

1. Estimated losses from recent severe U.S. storms top $80 billion

The severe weather outbreak that has brought tornadoes, extreme rainfall, hail, and flash flooding to states across the central U.S. over the past week has already caused between $80 billion and $90 billion in damages and economic losses, according to a preliminary estimate from AccuWeather. The true toll is likely to be costlier because some areas have yet to report their damages, and the flooding is ongoing. “A rare atmospheric river continually resupplying a firehose of deep tropical moisture into the central U.S., combined with a series of storms traversing the same area in rapid succession, created a ‘perfect storm’ for catastrophic flooding and devastating tornadoes,” said AccuWeather’s chief meteorologist Jonathan Porter. The estimate takes into account damages to buildings and infrastructure, as well as secondary effects like supply chain and shipping disruptions, extended power outages, and travel delays. So far 23 people are known to have died in the storms. “This is the third preliminary estimate for total damage and economic loss that AccuWeather experts have issued so far this year,” the outlet noted in a release, “outpacing the frequency of major, costly weather disasters since AccuWeather began issuing estimates in 2017.”

Keep reading...Show less
Yellow