You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Just turn them off sometimes, according to new research from Duke University.
Grid planners have entered a new reality. After years of stagnant growth, utilities are forecasting accelerating electricity demand from artificial intelligence and other energy-intense industries and using it to justify building out more natural gas power plants and keep old coal plants online. The new administration has declared that the United States is in an “energy emergency,” bemoaning that the country’s generating capacity is “far too inadequate to meet our Nation’s needs.” Or, as President Trump put it at the Republican National Convention, “AI needs tremendous — literally, twice the electricity that’s available now in our country, can you imagine?”
The same logic also works the other way — the projected needs of data centers and manufacturing landed some power producers among the best performing stocks of 2024. And when it looked like artificial intelligence might not be as energy intensive as those producers assumed thanks to the efficiency of DeepSeek’s open source models, shares in companies that own power plants and build gas turbines crashed.
Both industry and policymakers seem convinced that the addition of new, large sources of power demand must be met with more generation and expensive investments to upgrade the grid.
But what if it doesn’t?
That’s the question Tyler Norris, Tim Profeta, Dalia Patino-Echeverri, and Adam Cowie-Haskell of the Nicholas Institute of Energy, Environment and Stability at Duke University tried to answer in a paper released Tuesday.
Their core finding: that the United States could add 76 gigawatts of new load — about a tenth of the peak electricity demand across the whole country — without having to upgrade the electrical system or add new generation. There’s just one catch: Those new loads must be “curtailed” (i.e. not powered) for up to one-quarter-of-one-percent of their maximum time online. That’s it — that’s the whole catch.
“We were very surprised,” Norris told me, referring to the amount of power freed up by data centers if they could curtail their usage at high usage times.
“It goes against the grain of the current paradigm,” he said, “that we have no headroom, and that we have to make massive expansion of the system to accommodate new load and generation.”
The electricity grid is built to accommodate the peak demand of the system, which often occurs during the hottest days of summer or the coldest days of winter. That means much grid infrastructure is built out solely to accommodate power demand that occurs over just a few days of the year, and even then for only part of those days. Thus it follows that if those peaks can be shaved by demand being reduced, then the existing grid can accommodate much more new demand.
This is the logic of longstanding “demand response” programs, whether they involve retail consumers agreeing not to adjust their thermostats outside a certain range or factories shuttering for prescribed time periods in exchange for payments from the grid authority. In very flexible markets, such as Texas’ ERCOT, some data center customers (namely cryptominers) get a substantial portion of their overall revenue by agreeing to curtail their use of electricity during times of grid stress.
While Norris cautioned that readers of the report shouldn’t think this means we won’t need any new grid capacity, he argued that the analysis “can enable more focus of limited resources on the most valuable upgrades to the system.”
Instead of focusing on expensive upgrades needed to accommodate the new demand on the grid, the Duke researchers asked what new sources of demand could do for the grid as a whole. Ask not what the grid can do for you, ask what you can do for the grid.
“By strategically timing or curtailing demand, these flexible loads can minimize their impact on peak periods,” they write. “In doing so, they help existing customers by improving the overall utilization rate — thereby lowering the per-unit cost of electricity — and reduce the likelihood that expensive new peaking plants or network expansions may be needed.” urtailment of large loads, they argue, can make the grid more efficient by utilizing existing equipment more fully and avoiding expensive upgrades that all users might have to pay for.
They found that when new large loads are curtailed for up to 0.25% of their maximum uptime, the average time offline amounts to just over an hour-and-a-half at a go, with 85 hours of load curtailment per year on average.
“You’re able to add incremental load to accept flexibility in most stressed periods,” Norris said. “Most hours of the year we’re not that close to the maximum peaks.”
In the nation’s largest electricity trading market, PJM Interconnection, this quarter-percent of total uptime curtailment would enable the grid to bring online over 13 gigawatts of new data centers — about the capacity of 13 new, large nuclear reactors — while maintaining PJM’s planners’ desired amount of generation capacity. In other words, that’s up to 13 gigawatts of reactors PJM no longer has to build, as long as that new load can be curtailed for 0.25% of its maximum uptime.
But why would data center developers agree to go offline when demand for electricity rises?
It’s not just because it could help the developers maintain their imperiled sustainability goals. It also presents an opportunity to solve the hardest problem for building out new data centers. One of the key limiting factors to getting data centers online is so-called “time to power,” i.e. how long it takes for the grid to be upgraded, either with new transmission equipment or generation, so that a data center can get up and running. According to estimates from the consulting firm McKinsey, a data center project can be developed in as little as a year and a half — but only if there’s already power available. Otherwise the timeline can run several years.
“There’s a clear value add,” Norris said. There are “very few locations to interconnect multi-hundred megawatt or gigawatt load in near-term fashion. If they accept flexibility for provision interim period, that allows them to get online more quickly.”
This “time to power” problem has motivated a flowering of unconventional ideas to power data centers, whether it’s large-scale deployment of on-site solar power (with some gas turbines) in the Southwest, renewables adjacent to data centers, co-located natural gas, or buying whole existing nuclear power plants.
But there may be a far simpler answer.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
New York City may very well be the epicenter of this particular fight.
It’s official: the Moss Landing battery fire has galvanized a gigantic pipeline of opposition to energy storage systems across the country.
As I’ve chronicled extensively throughout this year, Moss Landing was a technological outlier that used outdated battery technology. But the January incident played into existing fears and anxieties across the U.S. about the dangers of large battery fires generally, latent from years of e-scooters and cellphones ablaze from faulty lithium-ion tech. Concerned residents fighting projects in their backyards have successfully seized upon the fact that there’s no known way to quickly extinguish big fires at energy storage sites, and are winning particularly in wildfire-prone areas.
How successful was Moss Landing at enlivening opponents of energy storage? Since the California disaster six months ago, more than 6 gigawatts of BESS has received opposition from activists explicitly tying their campaigns to the incident, Heatmap Pro® researcher Charlie Clynes told me in an interview earlier this month.
Matt Eisenson of Columbia University’s Sabin Center for Climate Law agreed that there’s been a spike in opposition, telling me that we are currently seeing “more instances of opposition to battery storage than we have in past years.” And while Eisenson said he couldn’t speak to the impacts of the fire specifically on that rise, he acknowledged that the disaster set “a harmful precedent” at the same time “battery storage is becoming much more present.”
“The type of fire that occurred there is unlikely to occur with modern technology, but the Moss Landing example [now] tends to come up across the country,” Eisenson said.
Some of the fresh opposition is in rural agricultural communities such as Grundy County, Illinois, which just banned energy storage systems indefinitely “until the science is settled.” But the most crucial place to watch seems to be New York City, for two reasons: One, it’s where a lot of energy storage is being developed all at once; and two, it has a hyper-saturated media market where criticism can receive more national media attention than it would in other parts of the country.
Someone who’s felt this pressure firsthand is Nick Lombardi, senior vice president of project development for battery storage company NineDot Energy. NineDot and other battery storage developers had spent years laying the groundwork in New York City to build out the energy storage necessary for the city to meet its net-zero climate goals. More recently they’ve faced crowds of protestors against a battery storage facility in Queens, and in Staten Island endured hecklers at public meetings.
“We’ve been developing projects in New York City for a few years now, and for a long time we didn’t run into opposition to our projects or really any sort of meaningful negative coverage in the press. All of that really changed about six months ago,” Lombardi said.
The battery storage developer insists that opposition to the technology is not popular and represents a fringe group. Lombardi told me that the company has more than 50 battery storage sites in development across New York City, and only faced “durable opposition” at “three or four sites.” The company also told me it has yet to receive the kind of email complaint flood that would demonstrate widespread opposition.
This is visible in the politicians who’ve picked up the anti-BESS mantle: GOP mayoral candidate Curtis Sliwa’s become a champion for the cause, but mayor Eric Adams’ “City of Yes” campaign itself would provide for the construction of these facilities. (While Democratic mayoral nominee Zohran Mamdani has not focused on BESS, it’s quite unlikely the climate hawkish democratic socialist would try to derail these projects.)
Lombardi told me he now views Moss Landing as a “catalyst” for opposition in the NYC metro area. “Suddenly there’s national headlines about what’s happening,” he told me. “There were incidents in the past that were in the news, but Moss Landing was headline news for a while, and that combined with the fact people knew it was happening in their city combined to create a new level of awareness.”
He added that six months after the blaze, it feels like developers in the city have a better handle on the situation. “We’ve spent a lot of time in reaction to that to make sure we’re organized and making sure we’re in contact with elected officials, community officials, [and] coordinated with utilities,” Lombardi said.
And more on the biggest conflicts around renewable energy projects in Kentucky, Ohio, and Maryland.
1. St. Croix County, Wisconsin - Solar opponents in this county see themselves as the front line in the fight over Trump’s “Big Beautiful” law and its repeal of Inflation Reduction Act tax credits.
2. Barren County, Kentucky - How much wood could a Wood Duck solar farm chuck if it didn’t get approved in the first place? We may be about to find out.
3. Iberia Parish, Louisiana - Another potential proxy battle over IRA tax credits is going down in Louisiana, where residents are calling to extend a solar moratorium that is about to expire so projects can’t start construction.
4. Baltimore County, Maryland – The fight over a transmission line in Maryland could have lasting impacts for renewable energy across the country.
5. Worcester County, Maryland – Elsewhere in Maryland, the MarWin offshore wind project appears to have landed in the crosshairs of Trump’s Environmental Protection Agency.
6. Clark County, Ohio - Consider me wishing Invenergy good luck getting a new solar farm permitted in Ohio.
7. Searcy County, Arkansas - An anti-wind state legislator has gone and posted a slide deck that RWE provided to county officials, ginning up fresh uproar against potential wind development.
Talking local development moratoria with Heatmap’s own Charlie Clynes.
This week’s conversation is special: I chatted with Charlie Clynes, Heatmap Pro®’s very own in-house researcher. Charlie just released a herculean project tracking all of the nation’s county-level moratoria and restrictive ordinances attacking renewable energy. The conclusion? Essentially a fifth of the country is now either closed off to solar and wind entirely or much harder to build. I decided to chat with him about the work so you could hear about why it’s an important report you should most definitely read.
The following chat was lightly edited for clarity. Let’s dive in.
Tell me about the project you embarked on here.
Heatmap’s research team set out last June to call every county in the United States that had zoning authority, and we asked them if they’ve passed ordinances to restrict renewable energy, or if they have renewable energy projects in their communities that have been opposed. There’s specific criteria we’ve used to determine if an ordinance is restrictive, but by and large, it’s pretty easy to tell once a county sends you an ordinance if it is going to restrict development or not.
The vast majority of counties responded, and this has been a process that’s allowed us to gather an extraordinary amount of data about whether counties have been restricting wind, solar and other renewables. The topline conclusion is that restrictions are much worse than previously accounted for. I mean, 605 counties now have some type of restriction on renewable energy — setbacks that make it really hard to build wind or solar, moratoriums that outright ban wind and solar. Then there’s 182 municipality laws where counties don’t have zoning jurisdiction.
We’re seeing this pretty much everywhere throughout the country. No place is safe except for states who put in laws preventing jurisdictions from passing restrictions — and even then, renewable energy companies are facing uphill battles in getting to a point in the process where the state will step in and overrule a county restriction. It’s bad.
Getting into the nitty-gritty, what has changed in the past few years? We’ve known these numbers were increasing, but what do you think accounts for the status we’re in now?
One is we’re seeing a high number of renewables coming into communities. But I think attitudes started changing too, especially in places that have been fairly saturated with renewable energy like Virginia, where solar’s been a presence for more than a decade now. There have been enough projects where people have bad experiences that color their opinion of the industry as a whole.
There’s also a few narratives that have taken shape. One is this idea solar is eating up prime farmland, or that it’ll erode the rural character of that area. Another big one is the environment, especially with wind on bird deaths, even though the number of birds killed by wind sounds big until you compare it to other sources.
There are so many developers and so many projects in so many places of the world that there are examples where either something goes wrong with a project or a developer doesn’t follow best practices. I think those have a lot more staying power in the public perception of renewable energy than the many successful projects that go without a hiccup and don’t bother people.
Are people saying no outright to renewable energy? Or is this saying yes with some form of reasonable restrictions?
It depends on where you look and how much solar there is in a community.
One thing I’ve seen in Virginia, for example, is counties setting caps on the total acreage solar can occupy, and those will be only 20 acres above the solar already built, so it’s effectively blocking solar. In places that are more sparsely populated, you tend to see restrictive setbacks that have the effect of outright banning wind — mile-long setbacks are often insurmountable for developers. Or there’ll be regulations to constrict the scale of a project quite a bit but don’t ban the technologies outright.
What in your research gives you hope?
States that have administrations determined to build out renewables have started to override these local restrictions: Michigan, Illinois, Washington, California, a few others. This is almost certainly going to have an impact.
I think the other thing is there are places in red states that have had very good experiences with renewable energy by and large. Texas, despite having the most wind generation in the nation, has not seen nearly as much opposition to wind, solar, and battery storage. It’s owing to the fact people in Texas generally are inclined to support energy projects in general and have seen wind and solar bring money into these small communities that otherwise wouldn’t get a lot of attention.