Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Electra Raises $186 Million to Decarbonize Steel

The company has developed a low-temperature refining process that’s similar to the one used for copper, nickel, and other metals.

Green steel.
Heatmap Illustration/Getty Images

Energy use in the iron and steel industry accounts for about 7% of global greenhouse gas emissions — that’s more than it takes to power commercial buildings, more than twice the emissions of the entire cement industry, and nearly four times as much as the aviation sector. Steel-related emissions are so high primarily because melting and refining iron ore, the base metal of steel, requires extremely high temperatures, which has typically come from burning coke — derived from coal — in blast furnaces.

Electra, a Colorado-based startup, is building momentum around a low-temperature electrochemical approach to iron refining that stands to drastically reduce emissions, and on Thursday announced a $186 million Series B funding round. The company’s battery-like devices would electrify the steelmaking process while their relatively small size could move the industry towards a more modularized, “Lego block” approach, negating the need to build a huge facility all at once.

If it works, there’s a lot of money to be made. “The steel industry is so big,” Electra’s CEO, Sandeep Nijhawan, told me. “We're talking about a $1 trillion a year market, and something like $600 billion of iron-making that has to happen every year.” The company’s latest funding round was led by the Singaporean investment firm Temasek Holdings and the sustainable investment firm Capricorn Investment Group.

Electra can refine iron at just 60 degrees Celsius — cooler than your average cup of coffee and orders of magnitude cooler than the 1,600 degrees Celsius that traditional steelmaking requires. This low-temperature approach is particularly conducive to working with renewables, as the process can be easily started and stopped in tandem with the availability of wind and solar resources. That’s not the case for high-temperature systems such as the one used by green steel startup Boston Metal, which works with molten ore that must be kept extremely hot at all times, lest it harden.

First, Electra’s process involves dissolving iron ore in an acidic solution at near room temperature, which separates the iron from impurities in the ore such as alumina and silica. Then an electric current is passed through the solution, which causes a chemical reaction that deposits the pure iron onto stainless steel sheets, a much lower-temperature process than refining iron in a blast furnace. Electra’s steelmaking partners then convert the sheets of iron into steel via an electric arc furnace, which has the potential to be nearly emissions-free if powered by renewables.

The process isn’t actually so different from the way other metals such as copper, zinc, nickel, or cobalt are produced, Nijhawan told me, and it allows Electra to use contaminated or low-grade iron ores that would otherwise be ill-suited to low-carbon steel production.

The reason it’s taken so long to figure out how to refine iron ore the way we’ve been refining other metals for centuries is because iron can be particularly difficult to work with. For one, it takes a whole lot longer to dissolve in acid than other common metals; one of Electra’s breakthroughs was finding a proprietary way to pre-treat its ores so that they would dissolve more quickly. Secondly, once the iron eventually dissolves, it’s no longer stable, and tends to fall out of the solution before all the impurities are removed. Figuring out how to stabilize the ore by changing its oxidation state was another one of Electra’s breakthroughs. “Putting that system-level package together is where our innovation is,” Nijhawan told me.

This latest funding round will help finance the construction of Electra’s demonstration plant in Colorado, where it already operates two pilot plants powered with 100% clean energy, procured via a renewables program from the local utility, Xcel Energy. The company’s demo plant, which should be operational by early next year, will also run on renewable power from Xcel, while its first commercial plant, planned for the end of the decade, will either be located in an area with high renewables penetration or be powered with help from renewable energy partners, Nijhawan explained.

“Eventually when this scales, you will purpose-build the renewables infrastructure to feed the plant,” Nijhawan told me. Some of the biggest strategic investors in the space have bought into this model of steel decarbonization, including three large iron ore companies — Rio Tinto, BHP, and Roy Hill — as well as two large steel producers — Nucor and the Japanese company Yamato Kogyo. Prominent climate tech investors such as Breakthrough Energy Ventures and Lowercarbon Capital also invested.

Once the process scales, Electra expects its iron to reach cost parity with traditional processes. Scaling-up, of course, is the tricky part, especially as tariffs and the generalized atmosphere of uncertainty is making infrastructure investors clam up when it comes to betting on large, first-of-a-kind projects. Nijhawan told me that so far, Electra’s scale-up strategy that he laid out last year remains unchanged.

“We are trying to replace how iron has been made for centuries with electro-iron, hopefully for decades to come”, he told me, explaining that in this moment of uncertainty, it helps to take the long-term view. “We now have this broad set of investors. Some of them have a 100 year history, they have deep manufacturing experience, and have been through administrations and policy changes. You just have to build a strategy that's built to last.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

The Other Startup Promising 100 Hours of Cheap Energy Storage

Noon Energy just completed a successful demonstration of its reversible solid-oxide fuel cell.

A Noon battery.
Heatmap Illustration/Noon Energy, Getty Images

Whatever you think of as the most important topic in energy right now — whether it’s electricity affordability, grid resilience, or deep decarbonization — long-duration energy storage will be essential to achieving it. While standard lithium-ion batteries are great for smoothing out the ups and downs of wind and solar generation over shorter periods, we’ll systems that can store energy for days or even weeks to bridge prolonged shifts and fluctuations in weather patterns.

That’s why Form Energy made such a big splash. In 2021, the startup announced its plans to commercialize a 100-plus-hour iron-air battery that charges and discharges by converting iron into rust and back again The company’s CEO, Mateo Jaramillo, told The Wall Street Journal at the time that this was the “kind of battery you need to fully retire thermal assets like coal and natural gas power plants.” Form went on to raise a $240 million Series D that same year, and is now deploying its very first commercial batteries in Minnesota.

Keep reading...Show less
Yellow
AM Briefing

The Rare Earth Shopping Spree

On aluminum smelting, Korean nuclear, and a geoengineering database

Mining.
Heatmap Illustration/Getty Images

Current conditions: Winter Storm Fern may have caused up to $115 billion in economic losses and triggered the longest stretch of subzero temperatures in New York City’s history • Temperatures across the American South plunged up to 30 degrees Fahrenheit below historical averages • South Africa’s Northern Cape is roasting in temperatures as high as 104 degrees.


Keep reading...Show less
Green
Energy

The Grid Survived the Storm. Now Comes the Cold.

With historic lows projected for the next two weeks — and more snow potentially on the way — the big strain may be yet to come.

Storm effects.
Heatmap Illustration/Getty Images

Winter Storm Fern made the final stand of its 2,300-mile arc across the United States on Monday as it finished dumping 17 inches of “light, fluffy” snow over parts of Maine. In its wake, the storm has left hundreds of thousands without power, killed more than a dozen people, and driven temperatures to historic lows.

The grid largely held up over the weekend, but the bigger challenge may still be to come. That’s because prolonged low temperatures are forecasted across much of the country this week and next, piling strain onto heating and electricity systems already operating at or close to their limits.

Keep reading...Show less
Blue