Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

This Fusion Company Is Already Making Money

Shine Technologies is getting close to breakeven — on operations, at least — by selling neutrons and isotopes.

A piggy bank and an atom.
Heatmap Illustration/Getty Images

Amidst the frenzied investment in fusion and the race to get a commercial reactor on the grid by the 2030s, one under-the-radar fusion company has been making money for years. That’s Shine Technologies, which has been operating in some form or another since 2005, making neutrons for materials testing and nuclear isotopes for medical imaging, all while working toward an eventual energy-generating reactor of its own.

“I think we can moonshot ourselves to net energy,” Greg Piefer, founder and CEO of Shine, told me, referring to the point at which the energy produced from a fusion reaction exceeds the energy required to sustain it. “But I don’t think we can moonshot ourselves to break even costwise.”

Rather than trying to build a full-scale reactor that can produce net energy via a self-sustaining fusion reaction right off the bat, Shine uses a particle accelerator to drive a series of small-scale fusion reactions. When high-energy ions connect with fuels, such as tritium or deuterium, they undergo a fusion reaction that produces high-energy neutrons and specialized isotopes more often generated for use in industry via fission.

Piefer, who has a PhD in nuclear engineering from the University of Wisconsin-Madison, started up his company by making neutrons for materials testing in the aerospace and defense industries. Unlike other forms of radiation, such as X-rays, neutrons can penetrate dense materials such as metals, hydrogen-containing fuels, or ceramics, making it possible to spot hidden flaws. An otherwise invisible crack in a turbine blade, for example, could still block or scatter neutrons, while contamination from water or oil would absorb neutrons — making these faults clear in a radiographic image.

Scientists also use neutrons to test nuclear fission fuel by identifying contamination and verifying uranium enrichment levels. According to Piefer, Shine produces the neutrons used to test half of all fission fuel today. “Fusion actually already enables the production of 50% of the fission fuel in this country,” he told me.

My mind was blown. I didn’t understand how fusion — a famously expensive endeavor — could be an economically viable option for these applications.

Piefer understood. “I’ll sit here in one breath and I’ll tell you fusion is way too expensive to compete making electricity, and in another breath that it’s much cheaper than fission for making isotopes and doing testing,” he said. As Piefer went on to explain, if the goal isn’t net energy, you can strip the fusion reactor of a good deal of complexity — no superconducting magnets, complicated structures to produce tritium fuel, or control systems to keep the burning fusion plasma contained.

With a simplified system, Piefer told me, it’s much easier to produce a fusion reaction than a fission reaction. The latter, he explained, “operates on the razor’s edge of something called criticality” — a self-sustaining reaction that must be precisely balanced. If a fission reaction accelerates too quickly, power surges dangerously and you get a disaster like Chernobyl. If it slows, there’s simply no reaction at all. Plus, even after a fission reactor shuts down, it keeps producing heat, and thus must be actively cooled. But when it comes to fusion, there’s no danger of an out of control power surge, because, unlike fission, it’s not a chain reaction — if the input conditions change, fusion stops immediately. Furthermore, fusion produces no heat after the reaction stops.

Some of Shine’s customers include manufacturers of turbine blades and explosives such as the U.S. Army and GE Hitachi, as well as the biopharmaceutical companies Blue Earth Therapeutics and Telix Pharmaceuticals. Piefer told me that the company is now “on the verge of essentially breakeven” — no fusion pun intended — when it comes to its operating expenses. These days, it’s reinvesting much of its revenue to build out what Piefer says will be the largest isotope production facility in the world in Wisconsin. Isotopes are created when high energy neutrons strike stable elements, causing the nuclei to absorb the neutron and become radioactive. The isotope’s radioactive properties make them useful for targeting particular tissues, cells, or organs in medical imaging or focused therapies..

Shine’s in-progress facility will primarily produce molybdenum‑99, the most commonly used isotope for medical imaging. The company already operates one smaller isotope facility producing lutetium-177, which features in cutting-edge cancer therapies.

Compared to materials testing, producing medical isotopes has required Shine to increase the temperature and thus the efficiency of its fusion target. Subsequent applications will require greater efficiency still. The idea is that as Shine applies its tech to increasingly challenging and energy-intensive tasks, it will also move step by step toward a commercially viable, net-energy-generating fusion reactor. Piefer just doesn’t know what exactly those incremental improvements will look like.

The company hasn’t committed to any specific reactor design for its fusion energy device yet, and Piefer told me that at this stage, he doesn’t think it’s necessary to pick winners. “We don’t have to, and don’t want to,” he said. “We’ve got this flexible manufacturing platform that’s doing all the things you need to do to get really good at making fusion systems, regardless of technology.”

Fusion energy aside, the company doesn’t even know how it’s going to reach the heat and efficiency requirements needed to achieve its next target — recycling spent fission fuel. But Piefer told me that if Shine can get there, scientists do already understand the chemistry. First, Shine would separate out the long-lived, highly radioactive waste products from the spent fuel using much the same approach it uses for isolating medical isotopes, no fusion reaction needed. Then, Piefer told me, “fusion can turn those long-lived wastes into short-lived waste” by using high-energy fusion neutrons to alter the radioactive nuclei in ways that make them decay faster.

If the company pulls that off — a big if indeed — it would then move on to building an energy-generating reactor. Overall, Piefer guesses this final stage will wind up taking the fusion industry “more time and money than most people predict.” Perhaps, he said, investors will prove willing to bankroll buzzy fusion startups far longer than their ambitious timelines currently imply. But perhaps not. And in the meantime, he thinks many companies will end up turning to the very markets that Shine has been exploring for decades now.

“So we’re well positioned to work with them, well positioned to help create mutual success, or well positioned to use our position to move ourselves forward,” Piefer told me, hinting that the company would be interested in making acquisitions.

Indeed, some fusion companies are already following Shine’s lead, eyeing isotopes as an early — or primary — revenue generating opportunity. Microreactor company Avalanche Energy eventually wants to replace diesel generators, but in the meantime plans to produce radioisotopes for medical and energy applications. U.K.-based fusion company Astral Systems is also making desktop-sized reactors, but with the central aim of selling medical isotopes.

If too many companies break their promises or extend their timelines interminably, as Piefer thinks is likely, more and more will come around to the pragmatism of Shine’s approach, he said. “Near term applications are increasingly talked about,” Piefer told me. “They’re not the highlight of the show yet, but I’d say the voice is getting louder.”

So while he still doesn’t have any idea what the final form for Shine’s hypothetical fusion power plant will take, in his mind the company is leading the race. “I believe we’re actually on the fastest path to fusion commercialization for energy of anybody out there,” Piefer told me. “Because commercial is important to us, and it always has been.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Is Burying a Nuclear Reactor Worth It?

Deep Fission says that building small reactors underground is both safer and cheaper. Others have their doubts.

Burying an atom.
Heatmap Illustration/Getty Images

In 1981, two years after the accident at Three Mile Island sent fears over the potential risks of atomic energy skyrocketing, Westinghouse looked into what it would take to build a reactor 2,100 feet underground, insulating its radioactive material in an envelope of dirt. The United States’ leading reactor developer wasn’t responsible for the plant that partially melted down in Pennsylvania, but the company was grappling with new regulations that came as a result of the incident. The concept went nowhere.

More than a decade later, the esteemed nuclear physicist Edward Teller resurfaced the idea in a 1995 paper that once again attracted little actual interest from the industry — that is, until 2006, when Lowell Wood, a physicist at the Lawrence Livermore National Laboratory, proposed building an underground reactor to Bill Gates, who considered but ultimately abandoned the design at his nuclear startup, TerraPower.

Keep reading...Show less
Green
AM Briefing

AM Briefing: Cheap Crude

On energy efficiency rules, Chinese nuclear, and Japan’s first offshore wind

An oil field.
Heatmap Illustration/Getty Images

Current conditions: Warm air headed northward up the East Coast is set to collide with cold air headed southward over the Great Lakes and Northeast, bringing snowfall followed by higher temperatures later in the week • A cold front is stirring up a dense fog in northwest India • Unusually frigid Arctic air in Europe is causing temperatures across northwest Africa to plunge to double-digit degrees below seasonal norms, with Algiers at just over 50 degrees Fahrenheit this week.


THE TOP FIVE

1. Crude prices fell in 2025 amid oversupply, complicating Venezuela’s future

A chart showing average monthly spot prices for Brent crude oil throughout 2025.EIA

Keep reading...Show less
Blue
Podcast

Why Trump’s Oil Imperialism Might Be a Tough Sell for Actual Oil Companies

Rob talks about the removal of Venezuela’s Nicolás Maduro with Commodity Context’s Rory Johnston.

Pete Hegseth, John Ratcliffe, and Donald Trump.
Heatmap Illustration/Getty Images

Over the weekend, the U.S. military entered Venezuela and captured its president, Nicolás Maduro, and his wife. Maduro will now face drug and gun charges in New York, and some members of the Trump administration have described the operation as a law enforcement mission.

President Donald Trump has taken a different tack. He has justified the operation by asserting that America is going to “take over” Venezuela’s oil reserves, even suggesting that oil companies might foot the bill for the broader occupation and rebuilding effort. Trump officials have told oil companies that the U.S. might not help them recover lost assets unless they fund the American effort now, according to Politico.

Keep reading...Show less