You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new report from the Clean Air Task Force casts shade on “levelized cost of energy.”

Forgive me, for I have cited the levelized cost of energy.
That’s what I was thinking as I spoke with Kasparas Spokas, one of the co-authors of a new paper from the Clean Air Task Force that examines this popular and widely cited cost metric — and found it wanting.
Levelized cost of energy, or LCOE, is a simple calculation: You take a generator, like a solar panel (with a discount for future costs), and add up its operating and capital expenditures, and then divide by the expected energy output over the life of the project (also discounted).
LCOE has helped underline the economic and popular case for renewables, especially solar. And it’s cited everywhere. The investment bank Lazard produces an influential annual report comparing the LCOE of different generation sources; the latest iteration puts utility-scale solar as low as $29 per megawatt-hour, while nuclear can be as high as $222. Environmental groups cite LCOE in submissions to utilities regulators. Wall Street analysts use it to project costs. And journalists, including me, will cite it to compare the cost of, say, solar panels to natural gas.
We probably shouldn’t, according to Spokas — or at least we should be more clear about what LCOE actually means.
“We continue to see levelized cost of electricity being used in ways that we think are not ideal or not adequate to what its capabilities are,” Spokas told me.
The report argues that LCOE “is not an appropriate tool to use in the context of long-term planning and policymaking for deep decarbonization” because it doesn’t take into account factors that real-world grids and grid planners also have to consider, such as when the generator is available, whether the generator has inertia, and what supporting infrastructure (including transmission and distribution lines) a generator needs to supply power to customers.
We see these limitations and constraints on real-life grids all the time, for instance in the infamous solar “duck curve.” During the middle of the day, when the sun is highest, non-solar generation can become essentially unnecessary on a solar-heavy grid. But these grids can run into problems as the sun goes down but electricity demand persists. In this type of grid, additional solar may be low cost, but also low value — it gives you electricity when you need it the least.
“If you’re building a lot of solar in the Southwest, at some point you’ll get to the point where you have enough solar during the day that if you build an incremental amount of solar, it’s not going to be valuable,” Spokas said. To make additional panels useful, you’d have to add battery storage, increasing the electricity’s real-world cost.
Looking for new spots for renewables also amps up conflict over land use and provides more opportunities for political opposition, a cost that LCOE can’t capture. And a renewables-heavy grid can require investments in energy transmission capacity that other kinds of generation do not — you can put a gas-fired power plant wherever you can buy land and get permission, whereas utility-scale solar or wind has to be where it’s sunny or windy.
“The trend is, the more renewable penetration you have, the more costly meeting a firm demand with renewables and storage becomes,” Spokas said.
Those real-world pressures are now far more salient to grid planners than they were earlier this century, when LCOE became a popular metric to compare different types of generators.
“The rise of LCOE’s popularity to evaluate technology competitiveness also coincided with a period of stagnant load growth in the United States and Europe,” the report says. When there was sufficient generation capacity that could be ramped up and down as needed, “the need to consider various system needs and costs, such as additional transmission or firm capacity needs was relatively low.”
This is not the world we’re in today.
Demand for electricity is rising again, and the question for grid planners and policymakers now is less how to replace fossil generators going offline, and more how to meet new electricity demand in a way that can also meet society’s varied goals for cost and sustainability.
This doesn’t always have to mean maxing out new generation — it can also mean making large sources of electricity load more flexible — but it does mean making more difficult, more considered choices that take in the grid as a whole into account.
When I asked Spokas whether grid operators and grid planners needed to read this report, he chuckled and said no, they already know what’s in it. Electricity markets, as imperfect as they often are, recognize that not every megawatt is the same.
Electricity suppliers often get paid more for providing power when it’s most needed. In regions with what’s known as capacity markets, generators get paid in advance to guarantee they’ll be available when the grid needs them, a structure that ensures big payouts to coal, gas, and nuclear generators. In markets that don’t have that kind of advance planning, like Texas’ ERCOT, dispatchable generators (often batteries) can get paid for providing so-called “ancillary services,” meeting short term power needs to keep the grid in balance — a service that batteries are often ideally placed to provide.
When grid planners look at the entirety of a system, they often — to the chagrin of many renewables advocates — tend to be less enthusiastic about renewables for decarbonizing the energy system than many environmental groups, advocates, and lawmakers.
The CATF report points to Ontario, Canada where the independent system operator concluded that building a new 300-megawatt small modular nuclear reactor — practically the definition of high LCOE generation, not least because such a thing has never been deployed before in North America — would actually be less risky for electricity costs than building more battery-supported wind and solar, according to the Globe and Mail. Ontario regulators recently granted a construction license to the SMR project, which is part of a larger scheme to install four small reactors, for a total 1.2 gigawatts of capacity. To provide the equivalent supply of renewable energy would require adding between 5.6 and 8.9 gigawatts of wind and solar capacity, plus new transmission infrastructure, the system operator said, which could drive up prices higher than those for advanced nuclear.
None of this is to say that we should abandon LCOE entirely. The best use case, the report argues, is for comparing costs for the same technology over time, not comparing different technologies in the present or future. And here the familiar case for solar — that its cost has fallen dramatically over time — is borne out.
Broadly speaking, CATF calls for “decarbonization policy, industry strategy, and public debate” to take a more “holistic approach” to estimating cost for new sources of electricity generation. Policymakers “should rely on jurisdiction-specific system-level analysis where possible. Such analysis would consider all the system costs required to ensure a reliable and resilient power system and would capture infrastructure cost tradeoffs over long and uncertain-time horizons,” the report says.
As Spokas told me, none of this is new. So why the focus now?
CATF is catching a wave. Many policymakers, grid planners, and electricity buyers have already learned to appreciate all kinds of megawatts, not just the marginally cheapest one. Large technology companies are signing expensive power purchase agreements to keep nuclear power plants open or even revive them, diving into the development of new nuclear power and buying next-generation geothermal in the hope of spurring further commercialization.
Google and Microsoft have embraced a form of emissions accounting that practically begs for clean firm resources, as they try to match every hour of electricity they use with a non-emitting resource.
And it’s possible that clean firm resources could get better treatment than they currently get in the reconciliation bill working its way through Congress. Secretary of Energy Chris Wright recently called for tax credits for “baseload” power sources like geothermal and nuclear to persist through 2031, according to Foundation for American Innovation infrastructure director Thomas Hochman.
“It’s not our intention to try to somehow remove incentives for renewables specifically, but to the extent that we can preserve what we can, we’re happy if it would be used in that way,” Spokas said.
When I asked Spokas who most needed to read this report, he replied frankly, “I think climate advocates would be in that bucket. I think policymakers that have a less technical background would also be in that bucket, and media that have a less technical background would also be in there.”
I’ll keep that in mind.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The president of the Clean Economy Project calls for a new approach to advocacy — or as she calls it, a “third front.”
Roughly 50,000 people are in Brazil this week for COP30, the annual United Nations climate summit. If history is any guide, they will return home feeling disappointed. After 30 years of negotiations, we have yet to see these summits deliver the kind of global economic transformation we need. Instead, they’ve devolved into rituals of hand-wringing and half measures.
The United States has shown considerable inertia and episodic hostility through each decade of climate talks. The core problem isn’t politics. It’s perspective. America has been treating climate as a moral challenge when the real stakes are economic prosperity.
I’ve spent my career advancing the moral case from inside the environmental movement. Over the decades we succeeded at rallying the faithful, but we failed to deliver change at the scale and speed required. We passed regulations only to watch them be repealed. We pledged to cut emissions and missed the mark, again and again.
People think of climate change as a crisis to contain when it’s really a competition to win. We need to build what’s next, not stop what’s bad. And what’s at stake isn’t just emissions; it’s whether America leads or lags in the next era of global economic growth.
That calls for a new approach to climate action — a third front.
In the early 1900s, the first front focused on conservation — protecting forests, nature, and wildlife. The second front, in the 1960s and 70s, tackled pollution — cleaning up our air and water, regulating toxins, and safeguarding public health. Both were about “stopping” harm. They worked because they aimed at industries where slowing down made sense.
But energy doesn’t fit that mold. International pledges and national regulations to “stop” carbon emissions are destined to fail without affordable and accessible fossil-fuel replacements. Why? Because low-cost energy makes people’s lives better. Longer life expectancies, better health care, lower infant mortality, and higher literacy follow in its wake. Energy is foundational for prosperity, powering nearly every part of our modern lives.
No high-income country has low energy consumption. Prosperity depends on abundant energy. Global energy demand will keep rising, as poor countries install more refrigerators and air conditioning, and rich countries build more data centers and advanced manufacturing. Today, fossil fuels provide 80% of primary energy because they are cheap and easy to move around. That’s why the tools of “stopping harm” that we used to protect rivers and forests will not win the race. Innovation, not limits, leads to progress.
The third front is not about blocking fossil fuels; it’s about beating them. Stopping fossil fuels doesn’t fix the electric grid or reinvent steelmaking. By contrast, lowering the cost of clean technologies will spur economic growth, create jobs in rural counties, and lower electricity bills for working families.
Yet clean energy projects in the U.S. are routinely delayed by red tape, outdated rules, and policy whiplash. A transmission line often takes more than a decade to plan, permit, and construct. Meanwhile, China has added more than 8,000 miles of ultra‑high‑voltage transmission in just four years, compared with fewer than 400 miles here at home. American entrepreneurs are ready to build but our systems and rules haven’t caught up.
And the urgency to fix the problem is mounting. Electricity prices and energy demand are surging, while terawatts of clean energy projects pile up in the interconnection queue. We are struggling to build a 21st century economy on 20th century infrastructure.
The third front of climate action starts with building faster and smarter. That responsibility lies with policymakers at every level. In the U.S., Congress and federal agencies must treat energy infrastructure as economic competitiveness, not just environmental policy. State and local regulators must expedite permitting. Regional grid operators must speed up interconnection and integration of new technologies.
But government’s role is to clear the path, not dictate the outcome. The private sector — entrepreneurs pioneering technologies from long-duration storage to advanced geothermal to next-generation nuclear — is ready to build. What they need is for policymakers to remove the obstacles. We can use public policy not to command markets, but rather to unlock them, reward innovation, and create certainty that encourages investment.
The same logic applies globally. The multilateral climate system has focused on negotiating emission limits, but we need a renewed effort toward lowering the cost of clean energy so it can outcompete fossil fuels in every market, from the richest economies to the poorest. Whether through the UN, the G-20, or the Clean Energy Ministerial, the international community must play a role in that shift — not through collating new pledges, but by taking action on cost reduction, technology deployment, and removing barriers to scale. Through economic cooperation and competition, both, domestic policies around the world need to align toward making clean energy win on economics, backed by private capital and innovation.
It’s time to measure progress not only by tons of carbon avoided, but also by how much new energy capacity we add, how quickly clean projects come online, and how much private capital moves into clean industries.
There is a cure for the fatigue induced from 30 years of climate summits and setbacks. It’s a new playbook built on economic growth and shared prosperity. The goal is not only to reduce emissions. We must build a system where clean energy is so affordable, abundant, and reliable that it becomes the obvious choice. Not because people are told to use it, but because it is better.
On Trump's global gas up, a Garden State wind flub, and Colorado coal
Current conditions: From Cleveland to Syracuse, cities on the Great Lakes are bracing for heavy snowfall • Rainfall in Northern California could top 6 inches today • Thousands evacuated in the last few hours in Taiwan as Typhoon Fung-wong makes landfall.
The bill that would fund the government through the end of the year and end the nation’s longest federal shutdown eliminates support for the Department of Agriculture’s climate hubs. The proposed compromise to reopen the government would slash funding for USDA’s 10 climate hubs, which E&E News described as producing “regional research and data on extreme weather, natural disasters and droughts to help farmers make informed decisions.”
There were, however, some green shoots. A $730 million line item in the military’s budget could go to microgrids, renewables, or nuclear reactors. The bill also contains millions of dollars for the cleanup of so-called forever chemicals, which had stalled under the Trump administration. Still, the damage from the shutdown was severe. As Heatmap reported throughout the record-breaking funding lapse, the administration slashed funding for a backup energy storage system at a children’s hospital, major infrastructure projects in New York City, and droves of grants for clean energy.

Call it American exceptionalism. The effects of President Donald Trump’s One Big Beautiful Bill Act and America’s world-leading artificial intelligence development “have meaningfully altered” the International Energy Agency’s forecasts of global fossil fuel usage and emissions, Heatmap’s Matthew Zeitlin wrote this morning. The trajectory of global temperature rise may be, as I have written in this newsletter, so far largely unaffected by the new American administration’s policies. But multiple scenarios outlined in the Paris-based IEA’s 2025 World Energy Outlook predict “gas demand continues growing into the 2030s, due mainly to changes in U.S. policies and lower gas prices.”
That stands in contrast to China, a comparison that was inevitable this week as the world gathers for the United Nations climate summit in Belém, Brazil — the first that Washington is all but ignoring as the Trump administration moves to withdraw the U.S. from the Paris Agreement. As I wrote here yesterday, China's emissions remained flat in the last quarter, extending a streak that began in March 2024.
Sign up to receive Heatmap AM in your inbox every morning:
Heatmap’s Jael Holzman had a big scoop last night: Yet another offshore wind project on the East Coast is kaput. The lawyers representing the Leading Light Wind offshore project filed a letter on November 7 to the New Jersey Board of Public Utilities informing the regulator it “no longer sees any way to complete construction and wants to pull the plug,” Jael wrote. “The Board is well aware that the offshore wind industry has experienced economic and regulatory conditions that have made the development of new offshore wind projects extremely difficult,” counsel Colleen Foley wrote in the letter, a copy of which Jael got her hands on. The project was meant to be built 35 miles off New Jersey’s coast, and was expected to provide about 2.4 gigawatts of electricity to the power-starved state.
It’s the latest casualty of Trump’s “total war on wind,” and comes as other projects in Maryland and New England are fighting to retain permits amid the administration’s multi-agency onslaught.
Xcel Energy proposed extending the life of its Comanche 2 coal-fired power plant for 12 months past its shutdown date in December. The utility giant, backed by state officials and consumer advocates, told the Colorado Public Utilities Commission on Monday that maintaining power production from the 50-year-old unit was important as the power plant scrambled to maintain enough power generation following the breakdown of the coal plant's third unit. The 335-megawatt Comanche 2 generator in Pueblo is expected to get approval to keep running. “We need it for resource adequacy and reliability, underlining that need for reliability and resource adequacy are central issues,” Robert Kenney, CEO of Xcel Energy’s Colorado subsidiary, told The Colorado Sun. The move comes as Trump’s Department of Energy is ordering coal plants in states such as Michigan to keep operating months past closure deadlines at the cost of millions of dollars per month to ratepayers, as I have previously written.
Pennsylvania, meanwhile, may be preparing to withdraw from the Regional Greenhouse Gas Initiative, the cap-and-trade market in which much of the Northeast’s biggest states partake. A state budget deal described by Spotlight PA reporter Stephen Caruso on X would remove the commonwealth from the market.
Germany and Spain vowed to give $100 million to the World Bank’s Climate Investment Funds, a $13 billion multilateral financing pool to help poor countries deal with the effects of climate change. The funding, announced Monday at an event at the U.N.’s Cop30 summit in Brazil, is “an opportunity too large to ignore,” Tariye Gbadegesin, chief executive officer of Climate Investment Funds, said in a statement. While mitigation work has long held priority in international lending, adaptation work to give some relief to the countries that contributed the least to climate change but pay the highest tolls from extreme weather has often received scant support. In his controversial memo calling for a sober, new direction for global funding, billionaire philanthropist Bill Gates called on countries to take adaptation more seriously. For more on what he said, read the rundown Heatmap’s Robinson Meyer wrote.
Right in time for the region’s most iconic season, when even celebrants in farflung parts of this country think of the old Puritan lands during Halloween and Thanksgiving, I bring to you what might be the most New England story ever. A blade broke off a wind turbine near Plymouth, Massachusetts, last week and landed in — get ready for it — a cranberry bog. The roughly 90-foot blade left behind debris, but “no one was hurt, and the turbine automatically shut itself down as designed,” the local fire chief said.
Rob and Jesse unpack one of the key questions of the global fight against climate change with the Centre for Research on Energy and Clean Air’s Lauri Myllyvirta.
Robinson Meyer and Jesse Jenkins are off this week. Please enjoy this selection from the Shift Key archive.
China’s greenhouse gas emissions were essentially flat in 2024 — or they recorded a tiny increase, according to a November report from the Centre for Research on Energy and Clean Air, or CREA. A third of experts surveyed by the report believe that its coal emissions have peaked. Has the world’s No. 1 emitter of carbon pollution now turned a corner on climate change?
Lauri Myllyvirta is the co-founder and lead analyst at CREA, an independent research organization focused on air pollution and headquartered in Finland. Myllyvirta has worked on climate policy, pollution, and energy issues in Asia for the past decade, and he lived in Beijing from 2015 to 2019.
On this week’s episode of Shift Key, Rob and Jesse talk with Lauri about whether China’s emissions have peaked, why the country is still building so much coal power (along with gobs of solar and wind), and the energy-intensive shift that its economy has taken in the past five years. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: When we think about Chinese demand emissions going forward, it sounds like — somewhat to my surprise, perhaps — this is increasingly a power sector story, which is … is that wrong? Is it an industrial story? Is it a …
Lauri Myllyvirta: I want to emphasize the steel sector besides power. So if you simply look at what the China Steel Association is projecting, which is a gradual, gentle decline in total output and the increase in the availability of scrap. If you use that to replace coal-based with electricity-based steelmaking, you can achieve an about 40% reduction in steelmaking emissions over the next decade.
Of course, some of that is going to shift to electricity, so you need the clean electricity as well to realize it. But that’s at least as large an opportunity as there is on the power sector, so that’s what I’m telling everyone — that if you want to understand what China can accomplish over the next decade, it’s these two sectors, first and foremost.
Jesse Jenkins: Yeah. I mean, there’s some positive overall trends, right? If you look at the arc that we’re seeing in each sector, with renewables growth starting to outpace demand growth in electricity and eat into coal in absolute terms, not just market share, with the transition in the steel industry — which is sort of a story that we’ve seen in multiple countries as they move through different phases, right? As you’re building out your primary infrastructure, the first time you don’t have enough scrap, but as the infrastructure and rate of car recycling and things like that goes up, you now have a much larger supply. And that’s the case in the U.S., where the vast majority of our steel now comes from scrap.
And then, you know, the slowdown in the construction boom — China’s built an enormous amount of infrastructure and housing, and there’s only so much more that they need. And so the pace of that construction is likely to fall, as well. And then finally, the big shift to EVs in the transportation sector. So you’ve got your four largest-emitting sources on a very positive trajectory when it comes to greenhouse gas emissions.
Mentioned:
CREA’s reports on China’s emissions trajectory
Chinese EV companies beat their own targets in 2024
How China Created an EV Juggernaut
Jeremy Wallace: China Can’t Decide if It Wants to Be the World’s First ‘Electrostate’
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
Uplight is a clean energy technology company that helps energy providers unlock grid capacity by activating energy customers and their connected devices to generate, shift, and save energy. The Uplight Demand Stack — which integrates energy efficiency, electrification, rates, and flexibility programs — improves grid resilience, reduces costs, and accelerates decarbonization for energy providers and their customers. Learn more at uplight.com/heatmap.
Music for Shift Key is by Adam Kromelow.