You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The uncertainty created by Trump’s erratic policymaking could not have come at a worse time for the industry.
This is the second story in a Heatmap series on the “green freeze” under Trump.
Climate tech investment rode to record highs during the Biden administration, supercharged by a surge in ESG investing and net-zero commitments, the passage of the Infrastructure Investment and Jobs Act and Inflation Reduction Act, and at least initially, low interest rates. Though the market had already dropped somewhat from its recent peak, climate tech investors told me that the Trump administration is now shepherding in a detrimental overcorrection. The president’s fossil fuel-friendly rhetoric, dubiously legal IIJA and IRA funding freezes, and aggressive tariffs, have left climate tech startups in the worst possible place: a state of deep uncertainty.
“Uncertainty is the enemy of economic progress,” Andrew Beebe, managing director at Obvious Ventures, told me.
The lack of clarity is understandably causing investors to throw on the brakes. “We’ve talked internally about, let’s be a little bit more cautious, let’s be a little more judicious with our dollars right now,” Gabriel Kra, co-founder at the climate tech firm Prelude Ventures, told me. “We’re not out in the market, but I would think this would be a really tough time to try and go out and raise a new fund.”
This reluctance comes at a particularly bad time for climate tech startups, many of which are now reaching a point where they are ready to scale up and build first-of-a-kind infrastructure projects and factories. That takes serious capital, the kind that wasn’t as necessary during Trump’s first term, or even much of Biden’s, when many of these companies were in a more nascent research and development or proof-of-concept stage.
I also heard from investors that the pace of Trump’s actions and the extent of the economic upheaval across every sector feels unique this time around. “We’re entering a pretty different economic construct,” Beebe told me, citing the swirling unknowns around how Trump’s policies will impact economic indicators such as inflation and interest rates. “We haven’t seen this kind of economic warfare in decades,” he said.
Even before Trump took office, it was notoriously difficult for climate companies to raise funding in the so-called “missing middle,” when startups are too mature for early-stage venture capital but not mature enough for traditional infrastructure investors to take a bet on them. This is exactly the point at which government support — say, a loan guarantee from the Department of Energy’s Loan Programs Office or a grant from the DOE’s Office of Clean Energy Demonstrations — could be most useful in helping a company prove its commercial viability.
But now that Trump has frozen funding — even some that’s been contractually obligated — companies are left with fewer options than ever to reach scale.
One investor who wished to remain anonymous in order to speak more openly told me that “a lot of the missing middle companies are living in a dicier world.” A 2023 white paper on “capital imbalances in the energy transition” from S2G Investments, a firm that supports both early-stage and growth-stage companies, found that from 2017 to 2022, only 20% of climate capital flowed toward companies at this critical inflection point, while 43% went to early-stage companies and 37% towards established technologies. For companies at this precarious growth stage, a funding delay on the order of months could be the difference between life and death, the investor added. Many of these companies may also be reliant on debt financing, they explained. “Unless they’ve been extremely disciplined, they could run into a situation where they’re just not able to service that debt.”
The months or even years that it could take for Trump’s rash funding rescission to wind through the courts will end up killing some companies, Beebe told me. “And unfortunately, that’s what people on the other side of this debate would like, is just to litigate and escalate. And even if they ultimately lose, they’ve won, because startups just don’t have the balance sheets that big companies would,” he explained.
Kra’s Prelude Ventures has a number of prominent companies in its portfolio that have benefitted from DOE grants. This includes Electric Hydrogen, which received a $43.3 million DOE grant to scale electrolyzer manufacturing; Form Energy, which received $150 million to help build a long-duration battery storage manufacturing plant; Boston Metal, which was awarded $50 million for a green steel facility; and Heirloom, which is a part of the $600 million Project Cypress Direct Air Capture hub. DOE funding is often doled out in tranches, with some usually provided upfront and further payments tied to specific project milestones. So even if a grant has officially been awarded, that doesn’t mean all of the funding has been disbursed, giving the Trump administration an opening to break government contracts and claw it back.
Kra told me that a few of his firm’s companies were on the verge of securing government funding before Trump took office, or have a project in the works that is now on hold. “We and the board are working closely with those companies to figure out what to do,” he told me. “If the mandates or supports aren’t there for that company, you’ve got to figure out how to make that cash last a bunch longer so you can still meet some commercially meaningful milestones.”
In this environment, Kra said his firm will be taking a closer look at companies that claim they will be able to attract federal funds. “Let’s make sure we understand what they can do without that non-dilutive capital, without those grants, without that project level support,” he told me, noting that “several” companies in his portfolio will also be impacted by Trump’s ever-changing tariffs on imports from Canada, Mexico, and China. Prelude Ventures is working with its portfolio companies to figure how to “smooth out the hit,” Kra told me later via email, but inevitably the tariffs “will affect the prices consumers pay in the short and long run.”
While investors can’t avoid the impacts of all government policies and impulses, the growth-stage firm G2 Venture Partners has long tried to inoculate itself against the vicissitudes of government financing. “None of our companies actually have any exposure to DOE loans,” Brook Porter, a partner and co-founder at G2, told me in an email, nor have they received government grants. If you add up the revenue from all of the companies in G2’s portfolio, which is made up mainly of sustainability-focused startups, only about 3% “has any exposure to the IRA,” Porter told me. So even if the law’s generous clean energy tax credits are slashed or the programs it supports are left to languish, G2’s companies will likely soldier on.
Then there are the venture capitalists themselves. Many of the investors I spoke with emphasized that not all firms will have the ability or will to weather this storm. “I definitely believe many generalist funds who dabbled in climate will pull back,” Beebe told me. Porter agreed. “The generalists are much more interested in AI, then I think in climate,” he said. It’s not as if there’s been a rash of generalist investors announcing pullbacks, though Kra told me he knows of “a couple of firms” that are rethinking their climate investment strategies, potentially opting to fold these investments under an umbrella category such as “hard tech” instead of highlighting a sectoral focus on energy or climate, specifically.
Last month, the investment firm Coatue, which has about $70 billion in assets under management, raised around $250 million for a climate-focused fund, showing it’s not all doom and gloom for the generalists’ climate ambitions. But Porter told me this is exactly the type of large firm he wouldexpect to back out soon, citing Tiger Global Management and Softbank as others that started investing heavily during climate tech’s boom years from 2020 to 2022 that he could imagine winding down that line of business.
Strategic investors such as oil companies have also been quick to dial back their clean energy ambitions and refocus their sights on the fossil fuels championed by the Trump administration. “Corporate venture is very cyclical,” Beebe told me, explaining that large companies tend to make venture investments when they have excess budget or when a sector looks hot, but tighten the purse strings during periods of uncertainty.
But Cody Simms, a managing partner at the climate tech investment firm MCJ, told me that at the moment, he actually sees the corporate venture ecosystem as “quite strong and quite active.” The firm’s investments include the low-carbon cement company Sublime Systems, which last year got strategic backing from two of the world’s largest building materials companies, and the methane capture company Windfall Bio, which has received strategic funding from Amazon’s Climate Pledge Fund. Simms noted that this momentum could represent an overexuberance among corporations who just recently stood up their climate-focused venture arms, and “we’ll see if it continues into the next few years.”
Notably, Sublime and Windfall Bio both also have millions in DOE grants, and another of MCJ’s portfolio companies, bio-based chemicals maker Solugen, has a “conditional commitment” from the LPO for a loan guarantee of over $200 million. Since that money isn’t yet obligated, there’s a good chance it might never actually materialize, which could stall construction on the company’s in-progress biomanufacturing facility.
Simms told me that the main thing he’s encouraging MCJ’s portfolio companies to do at this stage is to contact their local representatives — not to advocate for climate action in general, but rather “to push on the very specific tax credit that they are planning to use and to talk about how it creates jobs locally in their districts.”
Getting startups to shift the narrative away from decarbonization and climate and toward their multitudinous co-benefits — from energy security to supply chain resilience — is of course a strategy many are already deploying to one degree or another. And investors were quick to remind me that the landscape may not be quite as bleak as it appears.
“We’ve made more investments, and we have a pipeline of more attractive investments now than we have in the last couple of years,” Porter told me. That’s because in spite of whatever havoc the Trump administration is wreaking, a lot of climate tech companies are reaching a critical juncture that could position the sector overall for “a record number of IPOs this year and next,” Porter said. The question is, “will these macro uncertainties — political, economic, financial uncertainty — hold companies back from going public?”
As with so many economic downturns and periods of instability, investors also see this as a moment for the true blue startups and venture capitalists to prove their worth and business acumen in an environment that’s working against them. “Now we have the hardcore founders, the people who really are driven by building economically viable, long-term, massively impactful companies, and the investors who understand the markets very well, coming together around clean business models that aren’t dependent on swinging from one subsidy vine to the next subsidy vine,” Beebe told me.
“There is no opportunity that’s an absolute no, even in this current situation, across the entire space,” the anonymous climate tech investor told me. “And so this might be one of the most important points — I won’t say a high point, necessarily — but it might be a moment of truth that the energy transition needs to embrace.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Energy Transfer’s legal win, battery storage, and the Cybertruck
Current conditions: Red flag warnings are in place for much of Florida • Spain is bracing for extreme rainfall from Storm Martinho, the fourth named storm in less than two weeks • Today marks the vernal equinox, or the first day of spring.
A jury has ordered Greenpeace to pay more than $660 million in damages to one of the country’s largest fossil fuel infrastructure companies after finding the environmental group liable for defamation, conspiracy, and physical damages at the Dakota Access Pipeline. Greenpeace participated in large protests, some violent and disruptive, at the pipeline in 2016, though it has maintained that its involvement was insignificant and came at the request of the local Standing Rock Sioux Tribe. The project eventually went ahead and is operational today, but Texas-based Energy Transfer sued the environmental organization, accusing it of inciting the uprising and encouraging violence. “We should all be concerned about the future of the First Amendment, and lawsuits like this aimed at destroying our rights to peaceful protest and free speech,” said Deepa Padmanabha, senior legal counsel for Greenpeace USA. The group said it plans to appeal.
The Department of Energy yesterday approved a permit for the Calcasieu Pass 2 liquified natural gas terminal in Louisiana, allowing the facility to export to countries without a free trade agreement. The project hasn’t yet been constructed and is still waiting for final approvals from the independent Federal Energy Regulatory Commission, but the DOE’s green light means it faces one less hurdle.
CP2 was awaiting DOE’s go-ahead when the Biden administration announced its now notorious pause on approvals for new LNG export facilities. The project’s opponents argue it’s a “carbon bomb.” Analysis from the National Resources Defense Council suggested the greenhouse gases from the project would be equivalent to putting more than 1.85 million additional gas-fueled automobiles on the road, while the Sierra Club found it would amount to about 190 million tons of carbon dioxide equivalent annually.
President Trump met with 15 to 20 major oil and gas executives from the American Petroleum Institute at the White House yesterday. This was the president’s first meeting with fossil fuel bosses since his second term began in January. Interior Secretary Doug Burgum and Energy Secretary Chris Wright were also in the room. Everyone is staying pretty quiet about what exactly was said, but according to Burgum and Wright, the conversation focused heavily on permitting reform and bolstering the grid. Reuters reported that “executives had been expected to express concerns over Trump’s tariffs and stress the industry view that higher oil prices are needed to help meet Trump’s promise to grow domestic production.” Burgum, however, stressed that oil prices didn’t come up in the chat. “Price is set by supply and demand,” he said. “There was nothing we could say in that room that could change that one iota, and so it wasn’t really a topic of discussion.” The price of U.S. crude has dropped 13% since Trump returned to office, according to CNBC, on a combination of recession fears triggered by Trump’s tariffs and rising oil output from OPEC countries.
The U.S. installed 1,250 megawatts of residential battery storage last year, the highest amount ever and nearly 60% more than in 2023, according to a new report from the American Clean Power Association and Wood Mackenzie. Overall, battery storage installations across all sectors hit a new record in 2024 at 12.3 gigawatts of new capacity. Storage is expected to continue to grow next year, but uncertainties around tariffs and tax incentives could slow things down.
China is delaying approval for construction of BYD’s Mexico plant because authorities worry the electric carmaker’s technology could leak into the United States, according to the Financial Times. “The commerce ministry’s biggest concern is Mexico’s proximity to the U.S.,” sources told the FT. As Heatmap’s Robinson Meyer writes, BYD continues to set the global standard for EV innovation, and “American and European carmakers are still struggling to catch up.” This week the company unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes.
Tesla has recalled 46,096 Cybertrucks over an exterior trim panel that can fall off and become a road hazard. This is the eighth recall for the truck since it went on sale at the end of 2023.
This fusion startup is ahead of schedule.
Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.
Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”
The company thinks it can achieve simplicity via its artificial intelligence software, which controls the reactor’s magnetic field keeping the unruly plasma at the heart of the fusion reaction confined and stabilized. Unlike typical stellarators, which rely on the ultra-precise manufacturing and installment of dozens of huge, twisted magnets, Thea’s design uses exactly 450 smaller, simpler planar magnets, arranged in the more familiar donut-shaped configuration. These magnets are still able to generate a helical magnetic field — thought to keep the plasma better stabilized than a tokamak — because each magnet is individually controlled via the company’s software, just like “the array of pixels in your computer screen,” Berzin told me.
“We’re able to utilize the control system that we built and very specifically modulate and control each magnet slightly differently,” Berzin explained, allowing Thea to “make those really complicated, really precise magnetic fields that you need for a stellarator, but with simple hardware.”
This should make manufacturing a whole lot easier and cheaper, Berzin told me. If one of Thea’s magnets is mounted somewhat imperfectly, or wear and tear of the power plant slightly shifts its location or degrades its performance over time, Thea’s AI system can automatically compensate. “It then can just tune that magnet slightly differently — it turns that magnet down, it turns the one next to it up, and the magnetic field stays perfect,” Berzin explained. As he told me, a system that relies on hardware precision is generally much more expensive than a system that depends on well-designed software. The idea is that Thea’s magnets can thus be mass manufactured in a way that’s conducive to “a business versus a science project.”
In 2023, Thea published a technical report proving out the physics behind its so-called “planar coil stellarator,” which allowed the company to raise its $20 million Series A last year, led by the climate tech firm Prelude Ventures. To validate the hardware behind its initial concept, Thea built a 3x3 array of magnets, representative of one section of its overall “donut” shaped reactor. This array was then integrated with Thea’s software and brought online towards the end of last year.
The results that Thea announced today were obtained during testing last month, and prove that the company can create and precisely control the complex magnetic field shapes necessary for fusion power. These results will allow the company to raise a Series B in the “next couple of years,” Berzin said. During this time, Thea will be working to scale up manufacturing such that it can progress from making one or two magnets per week to making multiple per day at its New Jersey-based facility.
The company’s engineers are also planning to stress test their AI software, such that it can adapt to a range of issues that could arise after decades of fusion power plant operation. “So we’re going to start breaking hardware in this device over the next month or two,” Berzin told me. “We’re purposely going to mismount a magnet by a centimeter, put it back in and not tell the control system what we did. And then we’re going to purposely short out some of the magnetic coils.” If the system can create a strong, stable magnetic field anyway, this will serve as further proof of concept for Thea’s software-oriented approach to a simplified reactor design.
The company is still years away from producing actual fusion power though. Like many others in the space, Thea hopes to bring fusion electrons to the grid sometime in the 2030s. Maybe this simple hardware, advanced software approach is what will finally do the trick.
The Chinese carmaker says it can charge EVs in 5 minutes. Can America ever catch up?
The Chinese automaker BYD might have cracked one of the toughest problems in electric cars.
On Tuesday, BYD unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes. That’s made possible because of a 1,000-volt architecture and what BYD describes as matching charging capability, which could theoretically add nearly one mile of range every second.
It’s still not entirely clear whether the technology actually works, although BYD has a good track record on that front. But it suggests that the highest-end EVs worldwide could soon add range as fast as gasoline-powered cars can now, eliminating one of the biggest obstacles to EV adoption.
The new charging platform won’t work everywhere. BYD says that it will also build 4,000 chargers across China that will be able to take advantage of these maximum speeds. If this pans out, then BYD will be able to charge its newest vehicles twice as fast as Tesla’s next generation of superchargers can.
“This is a good thing,” Jeremy Wallace, a Chinese studies professor at Johns Hopkins University, told me. “Yes, it’s a Chinese company. And there are geopolitical implications to that. But the better the technology gets, the easier it is to decarbonize.”
“As someone who has waited in line for chargers in Pennsylvania and New Jersey, I look forward to the day when charging doesn’t take that long,” he added.
The announcement also suggests that the Chinese EV sector remains as dynamic as ever and continues to set the global standard for EV innovation — and that American and European carmakers are still struggling to catch up. The Trump administration is doing little to help the industry catch up: It has proposed repealing the Inflation Reduction Act’s tax credits for EV buyers, which provide demand-side support for the fledgling industry, and the Environmental Protection Agency is working to roll back tailpipe-pollution rules that have furnished early profits to EV makers, including Tesla. Against that background, what — if anything — can U.S. companies do to catch up?
The situation isn’t totally hopeless, but it’s not great.
BYD’s mega-charging capability is made possible by two underlying innovations. First, BYD’s new platform — the wiring, battery, and motors that make up the electronic guts of the car — will be capable of channeling up to 1,000 volts. That is only a small step-change above the best platforms available elsewhere— the forthcoming Gravity SUV from the American carmaker Lucid is built on a 926-volt platform, while the Cybertruck’s platform is 800 volts — but BYD will be able to leverage its technological firepower with mass manufacturing capacity unrivaled by any other brand.
Second, BYD’s forthcoming chargers will be capable of using the platform’s full voltage. These chargers may need to be built close to power grid infrastructure because of the amount of electricity that they will demand.
But sitting underneath these innovations is a sprawling technological ecosystem that keeps all Chinese electronics companies ahead — and that guarantees Chinese advantages well into the future.
“China’s decisive advantage over the U.S. when it comes to innovation is that it has an entrenched workforce that is able to continuously iterate on technological advances,” Dan Wang, a researcher of China’s technology industry and a fellow at the Paul Tsai China Center at Yale Law School, told me.
The country is able to innovate so relentlessly because of its abundance of process knowledge, Wang said. This community of engineering practice may have been seeded by Apple’s iPhone-manufacturing effort in the aughts and Tesla’s carmaking prowess in the 2010s, but it has now taken on a life of its own.
“Shenzhen is the center of the world’s hardware manufacturing industry because it has workers rubbing shoulders with academics rubbing shoulders with investors rubbing shoulders with engineers,” Wang told me. “And you have a more hustle-type culture because it’s so much harder to maintain technological moats and technological differentiation, because people are so competitive in these sorts of spaces.”
In a way, Shenzhen is the modern-day version of the hardware and software ecosystem that used to exist in northern California — Silicon Valley. But while the California technology industry now largely focuses on software, China has taken over the hardware side.
That allows the country to debut new technological innovations much faster than any other country can, he added. “The comparison I hear is that if you have a new charging platform or a new battery chemistry, Volkswagen and BMW will say, We’ll hustle to put this into our systems, and we’ll put it in five years from now. Tesla might say, we’ll hustle and get it in a year from now.”
“China can say, we’ll put it in three months from now,” he said.“You have a much more focused concentration of talent in China, which collapses coordination time.”
That culture has allowed the same companies and engineers to rapidly advance in manufacturing skill and complexity. It has helped CATL, which originally made batteries for smartphones, to become one of the world’s top EV battery makers. And it has helped BYD — which is close to unseating Tesla as the world’s No. 1 seller of electric vehicles — move from making lackluster gasoline cars to some of the world’s best and cheapest EVs.
It will be a while until America can duplicate that manufacturing capability, partly because of the number of headwinds it faces, Wang said.