Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Exclusive: Occidental Petroleum Buys DAC Startup Holocene

That makes two direct air capture acquisitions for the oil and gas major.

The Oxy logo grabbing Holocene.
Heatmap News/Getty Images

The Trump administration may not be enthusiastic about supporting megaprojects to suck carbon dioxide out of the air, but that’s not dampening Occidental Petroleum’s interest in the technology. Heatmap has learned that the oil and gas giant recently acquired the direct air capture startup Holocene for an undisclosed amount.

This is the second direct air capture company the fossil fuel producer has acquired in less than two years through its subsidiary, Oxy Low Carbon Ventures. It’s a sign “that the sector has legs,” Jason Hochman, the executive director of the Direct Air Capture Coalition, told me. “Why would Occidental acquire Holocene if they didn’t see a future in the sector as a whole? If they didn’t think there was money to be made?”

Like every other climate tech industry, direct air capture startups have faced a great deal of uncertainty since Trump took office. While the technology has historically had bipartisan support, the Trump administration has been excising programs and projects with seemingly any connection to climate change. It has hollowed out the Department of Energy’s carbon dioxide removal team, my colleague Katie Brigham reported in February, leaving just one employee overseeing the $3.5 billion Direct Air Capture Hubs program that was authorized by the Infrastructure Investment and Jobs Act. Additional cuts at the Office of Clean Energy Demonstrations, which also has a role in overseeing the program, or even a potential closure of that office, are expected in the coming weeks. The Direct Air Capture Hubs were also on a list of grants the administration was considering trying to cut.

Non-governmental funding for DAC is also precarious, as interest from new buyers in purchasing carbon removal has waned. A few companies have continued to announce new projects and deals, but Hochman told me he expects to see a fair amount of consolidation of the industry in the near term.

Occidental previously acquired Carbon Engineering, a pioneer in direct air capture technology, for $1.1 billion in August 2023, after working closely with the Canadian company to build its first major project in the United States. That project, a plant called Stratos in Ector County, Texas, is now nearing completion and expected to begin operating later this year. It’s designed to siphon 500,000 tons of carbon dioxide from the air per year.

Holocene “has an innovative direct air capture technology that is additive to Carbon Engineering,” William Fitzgerald, a spokesperson for Occidental told me in an email. “We believe combining these technologies will enable us to advance our R&D activities to improve the efficiency of our direct air capture process, reduce CO2 capture costs, and accelerate DAC deployment.”

Oxy’s acquisition of Carbon Engineering was controversial among climate advocates. While many see direct air capture as a promising way to clean up the excess carbon that will remain in the atmosphere even after emissions decline, skeptics worry that oil companies will use it as justification to keep producing oil — a fear that Oxy has not exactly allayed.

The company plans to take some of the carbon it captures and sequester it in dedicated carbon storage wells. It signed a deal to sequester 500,000 tons of carbon on behalf of Microsoft last year. But it will also pump carbon into aging oil wells to increase oil production, a process called enhanced oil recovery. In the past, Oxy’s CEO Vicki Hollub has framed its investments in direct air capture tech as a way to produce “net-zero oil,” and as a “license to continue to operate” as an oil producer.

More recently, Hollub has shifted her pitch to appeal to the Trump administration’s push for energy dominance. On an earnings call in February, she told investors that the industry could tap an additional 50 billion to 70 billion barrels of oil with the help of carbon captured from the atmosphere.

But direct air capture — both the technology itself, and the market for it — is still in its infancy. There are only so many deep-pocketed buyers like Microsoft willing to pay for sequestration. Unless Occidental sees more demand for carbon removal, its best business case for developing the technology is to recover oil.

“I understand the skepticism in certain quarters,” Hochman told me. “But the fact is that companies like Occidental have the exact set of expertise, of infrastructure, of the people who understand subsurface geology, and the balance sheets to do large projects and to scale this technology.” They’ll be able to build projects at scale much more quickly than a startup that spun out of a university lab, he said.

That’s not quite what Holocene is, but it’s not far off. A trio of MBA students at Stanford — two of whom were veterans of the leading direct air capture company Climeworks — started Holocene in 2023. They wanted to pursue a new approach to sucking carbon from the air that they licensed from the Oak Ridge National Laboratory, a government lab. I wrote about the startup last fall when it announced a deal to remove 100,000 tons of carbon from the atmosphere for Google at a record low price of $100 per ton.

At the time, Holocene had raised about $6 million from grants, prizes, and smaller carbon removal contracts, and built a very small pilot plant in Knoxville, Tennessee, that could scrub just 10 tons of CO2 from the air per year. When I last spoke to them, they were looking for funding to build a larger demonstration plant. They declined to comment for this story.

Holocene’s technology is similar to that of Carbon Engineering. Both companies use fans to pull air into a closed system, where it passes through a liquid with a unique chemistry that attracts CO2. In the case of Carbon Engineering, the carbon in the air binds with potassium hydroxide in water; in Holocene’s system, it binds with amino acids. Then both companies react that carbon-rich water with another chemical that further concentrates the CO2 into solids that can be filtered out. The last step is heating those solids, releasing the CO2 so that it can be sequestered underground.

Holocene’s advantage — and the reason it thinks it can achieve $100 per ton carbon removal — is that it uses a unique chemistry that requires relatively low heat to separate the CO2. Whereas Carbon Engineering uses natural gas for that final step, Holocene told me it could use renewable electricity, or even waste heat from a data center.

Hochman was hopeful that the deal would be an encouraging signal to the market. “It’s real money changing hands because of the hypothesis on the part of a large company that there’s a future in DAC. I would see that as something that would reassure investors in this sector, if not catalyze more investment.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Spotlight

How the Tax Bill Is Empowering Anti-Renewables Activists

A war of attrition is now turning in opponents’ favor.

Massachusetts and solar panels.
Heatmap Illustration/Library of Congress, Getty Images

A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.

Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”

Keep reading...Show less
Yellow
Hotspots

The Midwest Is Becoming Even Tougher for Solar Projects

And more on the week’s most important conflicts around renewables.

The United States.
Heatmap Illustration/Getty Images

1. Wells County, Indiana – One of the nation’s most at-risk solar projects may now be prompting a full on moratorium.

  • Late last week, this county was teed up to potentially advance a new restrictive solar ordinance that would’ve cut off zoning access for large-scale facilities. That’s obviously bad for developers. But it would’ve still allowed solar facilities up to 50 acres and grandfathered in projects that had previously signed agreements with local officials.
  • However, solar opponents swamped the county Area Planning Commission meeting to decide on the ordinance, turning it into an over four-hour display in which many requested in public comments to outright ban solar projects entirely without a grandfathering clause.
  • It’s clear part of the opposition is inflamed over the EDF Paddlefish Solar project, which we ranked last year as one of the nation’s top imperiled renewables facilities in progress. The project has already resulted in a moratorium in another county, Huntington.
  • Although the Paddlefish project is not unique in its risks, it is what we view as a bellwether for the future of solar development in farming communities, as the Fort Wayne-adjacent county is a picturesque display of many areas across the United States. Pro-renewables advocates have sought to tamp down opposition with tactics such as a direct text messaging campaign, which I previously scooped last week.
  • Yet despite the counter-communications, momentum is heading in the other direction. At the meeting, officials ultimately decided to punt a decision to next month so they could edit their draft ordinance to assuage aggrieved residents.
  • Also worth noting: anyone could see from Heatmap Pro data that this county would be an incredibly difficult fight for a solar developer. Despite a slim majority of local support for renewable energy, the county has a nearly 100% opposition risk rating, due in no small part to its large agricultural workforce and MAGA leanings.

2. Clark County, Ohio – Another Ohio county has significantly restricted renewable energy development, this time with big political implications.

Keep reading...Show less
Yellow
Q&A

How a Heatmap Reader Beat a Battery Storage Ban

A conversation with Jeff Seidman, a professor at Vassar College.

Jeffrey Seidman.
Heatmap Illustration

This week’s conversation is with Jeff Seidman, a professor at Vassar College and an avid Heatmap News reader. Last week Seidman claimed a personal victory: he successfully led an effort to overturn a moratorium on battery storage development in the town of Poughkeepsie in Hudson Valley, New York. After reading a thread about the effort he posted to BlueSky, I reached out to chat about what my readers might learn from his endeavors – and how they could replicate them, should they want to.

The following conversation was lightly edited for clarity.

Keep reading...Show less
Yellow