Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Exclusive: Occidental Petroleum Buys DAC Startup Holocene

That makes two direct air capture acquisitions for the oil and gas major.

The Oxy logo grabbing Holocene.
Heatmap News/Getty Images

The Trump administration may not be enthusiastic about supporting megaprojects to suck carbon dioxide out of the air, but that’s not dampening Occidental Petroleum’s interest in the technology. Heatmap has learned that the oil and gas giant recently acquired the direct air capture startup Holocene for an undisclosed amount.

This is the second direct air capture company the fossil fuel producer has acquired in less than two years through its subsidiary, Oxy Low Carbon Ventures. It’s a sign “that the sector has legs,” Jason Hochman, the executive director of the Direct Air Capture Coalition, told me. “Why would Occidental acquire Holocene if they didn’t see a future in the sector as a whole? If they didn’t think there was money to be made?”

Like every other climate tech industry, direct air capture startups have faced a great deal of uncertainty since Trump took office. While the technology has historically had bipartisan support, the Trump administration has been excising programs and projects with seemingly any connection to climate change. It has hollowed out the Department of Energy’s carbon dioxide removal team, my colleague Katie Brigham reported in February, leaving just one employee overseeing the $3.5 billion Direct Air Capture Hubs program that was authorized by the Infrastructure Investment and Jobs Act. Additional cuts at the Office of Clean Energy Demonstrations, which also has a role in overseeing the program, or even a potential closure of that office, are expected in the coming weeks. The Direct Air Capture Hubs were also on a list of grants the administration was considering trying to cut.

Non-governmental funding for DAC is also precarious, as interest from new buyers in purchasing carbon removal has waned. A few companies have continued to announce new projects and deals, but Hochman told me he expects to see a fair amount of consolidation of the industry in the near term.

Occidental previously acquired Carbon Engineering, a pioneer in direct air capture technology, for $1.1 billion in August 2023, after working closely with the Canadian company to build its first major project in the United States. That project, a plant called Stratos in Ector County, Texas, is now nearing completion and expected to begin operating later this year. It’s designed to siphon 500,000 tons of carbon dioxide from the air per year.

Holocene “has an innovative direct air capture technology that is additive to Carbon Engineering,” William Fitzgerald, a spokesperson for Occidental told me in an email. “We believe combining these technologies will enable us to advance our R&D activities to improve the efficiency of our direct air capture process, reduce CO2 capture costs, and accelerate DAC deployment.”

Oxy’s acquisition of Carbon Engineering was controversial among climate advocates. While many see direct air capture as a promising way to clean up the excess carbon that will remain in the atmosphere even after emissions decline, skeptics worry that oil companies will use it as justification to keep producing oil — a fear that Oxy has not exactly allayed.

The company plans to take some of the carbon it captures and sequester it in dedicated carbon storage wells. It signed a deal to sequester 500,000 tons of carbon on behalf of Microsoft last year. But it will also pump carbon into aging oil wells to increase oil production, a process called enhanced oil recovery. In the past, Oxy’s CEO Vicki Hollub has framed its investments in direct air capture tech as a way to produce “net-zero oil,” and as a “license to continue to operate” as an oil producer.

More recently, Hollub has shifted her pitch to appeal to the Trump administration’s push for energy dominance. On an earnings call in February, she told investors that the industry could tap an additional 50 billion to 70 billion barrels of oil with the help of carbon captured from the atmosphere.

But direct air capture — both the technology itself, and the market for it — is still in its infancy. There are only so many deep-pocketed buyers like Microsoft willing to pay for sequestration. Unless Occidental sees more demand for carbon removal, its best business case for developing the technology is to recover oil.

“I understand the skepticism in certain quarters,” Hochman told me. “But the fact is that companies like Occidental have the exact set of expertise, of infrastructure, of the people who understand subsurface geology, and the balance sheets to do large projects and to scale this technology.” They’ll be able to build projects at scale much more quickly than a startup that spun out of a university lab, he said.

That’s not quite what Holocene is, but it’s not far off. A trio of MBA students at Stanford — two of whom were veterans of the leading direct air capture company Climeworks — started Holocene in 2023. They wanted to pursue a new approach to sucking carbon from the air that they licensed from the Oak Ridge National Laboratory, a government lab. I wrote about the startup last fall when it announced a deal to remove 100,000 tons of carbon from the atmosphere for Google at a record low price of $100 per ton.

At the time, Holocene had raised about $6 million from grants, prizes, and smaller carbon removal contracts, and built a very small pilot plant in Knoxville, Tennessee, that could scrub just 10 tons of CO2 from the air per year. When I last spoke to them, they were looking for funding to build a larger demonstration plant. They declined to comment for this story.

Holocene’s technology is similar to that of Carbon Engineering. Both companies use fans to pull air into a closed system, where it passes through a liquid with a unique chemistry that attracts CO2. In the case of Carbon Engineering, the carbon in the air binds with potassium hydroxide in water; in Holocene’s system, it binds with amino acids. Then both companies react that carbon-rich water with another chemical that further concentrates the CO2 into solids that can be filtered out. The last step is heating those solids, releasing the CO2 so that it can be sequestered underground.

Holocene’s advantage — and the reason it thinks it can achieve $100 per ton carbon removal — is that it uses a unique chemistry that requires relatively low heat to separate the CO2. Whereas Carbon Engineering uses natural gas for that final step, Holocene told me it could use renewable electricity, or even waste heat from a data center.

Hochman was hopeful that the deal would be an encouraging signal to the market. “It’s real money changing hands because of the hypothesis on the part of a large company that there’s a future in DAC. I would see that as something that would reassure investors in this sector, if not catalyze more investment.”

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Ideas

A Backup Plan for the AI Boom

If it turns out to be a bubble, billions of dollars of energy assets will be on the line.

Popping the AI bubble.
Heatmap Illustration/Getty Images

The data center investment boom has already transformed the American economy. It is now poised to transform the American energy system.

Hyperscalers — including tech giants such as Microsoft and Meta, as well as leaders in artificial intelligence like OpenAI and CoreWeave — are investing eyewatering amounts of capital into developing new energy resources to feed their power-hungry data infrastructure. Those data centers are already straining the existing energy grid, prompting widespread political anxiety over an energy supply crisis and a ratepayer affordability shock. Nothing in recent memory has thrown policymakers’ decades-long underinvestment in the health of our energy grid into such stark relief. The commercial potential of next-generation energy technologies such as advanced nuclear, batteries, and grid-enhancing applications now hinge on the speed and scale of the AI buildout.

Keep reading...Show less
Blue
Energy

Winter Is Going to Be a Problem

With more electric heating in the Northeast comes greater strains on the grid.

A snowflake power line.
Heatmap Illustration/Getty Images

The electric grid is built for heat. The days when the system is under the most stress are typically humid summer evenings, when air conditioning is still going full blast, appliances are being turned on as commuters return home, and solar generation is fading, stretching the generation and distribution grid to its limits.

But as home heating and transportation goes increasingly electric, more of the country — even some of the chilliest areas — may start to struggle with demand that peaks in the winter.

Keep reading...Show less
Blue
A data center and power lines.
Heatmap Illustration/Getty Images

The future of the American electric grid is being determined in the docket of the Federal Energy Regulatory Commission.

The Trump administration tasked federal energy regulators last month to come up with new rules that would allow large loads — i.e. data centers — to connect to the grid faster without ballooning electricity bills. The order has set off a flurry of reactions, as the major players in the electricity system — the data center developers, the power producers, the utilities — jockey to ensure that any new rules don’t impinge upon their business models. The initial public comment period closed last week, meaning now FERC will have to go through hundreds of comments from industry, government, and advocacy stakeholders, hoping to help shape the rule before it’s released at the end of April.

Keep reading...Show less
Green