You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
In aligning with fossil fuel companies, the administration is deepening skepticism of carbon removal.
For as long as people have been talking about building machines that suck carbon dioxide from the atmosphere, the concept has sparked fierce debate. Would such a tool be used the way that scientists envision — alongside aggressive emission cuts? Or would it be co-opted to prolong dependence on fossil fuels?
Suddenly these questions have become less theoretical. Last month, Carbon Engineering, one of the first companies to actually build a “direct air capture” machine, was acquired by Occidental Petroleum, a fossil fuel company that plans to use the technology to market “net-zero oil.” The Biden administration has also selected Occidental as a potential recipient of one of two major grants, worth up to $600 million each, to build a “DAC hub” in South Texas near Corpus Christi. As part of the same announcement, the Department of Energy gave funding to oil and gas companies in California, Alaska, and Alabama for the early planning stages of additional hubs.
“Cutting back on our carbon emissions alone won’t reverse the growing impacts of climate change," Energy Secretary Jennifer Granholm said in a press release for the DAC hub awards. "We also need to remove the CO2 that we’ve already put in the atmosphere,”
She’s right. The UN’s Intergovernmental Panel on Climate Change says pursuing carbon removal is “unavoidable” if the world hopes to limit warming to safer temperatures — but it will only work if we stop burning so much oil and gas. In handing the reins of this new industry to fossil fuel companies, the administration has confused the message, stoking the mistrust of those already skeptical of the technology, and giving carbon removal projects with no fossil fuel connections a steeper hill to climb to earn support.
It hasn’t helped that Occidental’s CEO, Vicki Hollub, has described DAC as a “license to continue to operate.” Shortly after the Biden administration’s announcement, she told NPR that thanks to this technology, “there’s no reason not to produce oil and gas forever.” When I reached out to Occidental for clarification, a spokesperson denied that the company will use the technology to pump more oil than it otherwise would. He pointed me to another statement from Hollub in 2022 where she said producing net-zero oil was about “just meeting demand,” and that as long as there was demand for oil, it was better to meet it with a lower-carbon product.
But the aforementioned events have invited fierce blowback. On Wednesday, 17 climate and environmental justice organizations sent a letter to Secretary Granholm calling on the DOE to revoke its funding offers to fossil fuel companies. “There may be paths forward for equitable, climate-positive DAC, but they do not look like the one we’re on now,” they wrote.
Get one great climate story in your inbox every day:
Climate advocates and community groups are not just concerned about giving fossil fuel companies a license to keep producing. Their objection is tied to where these projects are being deployed. The DAC hubs are almost all being planned in economically distressed areas that have hosted fossil fuel production for decades. The bipartisan infrastructure law, which funded the hubs, requires that at least two meet those characteristics.
This makes some economic and political sense. If you need to build pipelines to transport CO2 or drill into the ground to store it, this is where the knowhow resides. The requirement is also intended as a way to create new jobs and transition workers in places that might otherwise be devastated by the decline of the oil and gas industry. But since fossil fuel companies have a track record of polluting these areas with cancerous chemicals and fighting regulations, locals worry about the risks of putting new technology into their hands.
These fears are not unfounded. There are different types of direct air capture technology, but many require energy or heat to separate and compress the CO2 after it is collected, which could create additional pollution depending on how it is generated. The compressed carbon may then have to be transported, via pipeline, to its final destination. While CO2 pipelines have a good safety record, a highly publicized accident in Mississippi that hospitalized 45 people has fanned fears of ruptures.
Perhaps the biggest worry is around what happens next. Some companies, including Occidental, inject CO2 into depleted oil fields in an effort to squeeze the last drops out. But DOE-funded hubs will not be permitted to do this. Instead, the compressed CO2 will likely be injected into a saline aquifer, a layer of permeable rock thousands of feet underground, which is capped by an impermeable layer that prevents the CO2 from leaking out.
Some geological storage wells have been storing carbon successfully for decades, but there are only a handful of such sites operating around the world. A recent report to Congress detailing U.S. experience with CO2 injection summarized several potential risks to human health associated with it, including drinking water contamination, leaks, effects on soil health, and earthquakes. However, it also noted that CO2 injection wells have more stringent construction, testing, and monitoring regulations than other types.
In Kern County, California, where three DAC hubs have been proposed, all of this invokes deja vu. Juan Flores, an organizer for the Center on Race, Poverty and the Environment, one of the signatories to Wednesday’s letter, told me it reminds people of fracking, which brought increased risk of respiratory problems, cancer, preterm birth, and psychological stress to the area. “They experimented with our communities, they denied the new dangers for many years,” he said. “Now our community members are saying, ‘this again?’”
The DOE hubs program required companies to submit a plan for providing community benefits when they applied for funding. But in Kern County, oil and gas companies have squandered their goodwill, Dan Ress, a staff attorney at the Center told me. For example, the California Resources Corporation, an oil and gas company that won an $11 million DOE grant to do an engineering study for a hub in Kern County, recently supported a multi-million dollar campaign to repeal hard-won regulations banning oil drilling next to homes and schools. “This is the same company saying, oh yeah, we want to be good neighbors and do great community benefits? Absolutely not, get out of here,” said Ress.
The feeling of being the unwitting subjects of an experiment also came up in my conversation with Roishetta Ozane, a community organizer in Lake Charles, Louisiana. That’s where another DAC hub called Project Cypress, which could receive up to $600 million from the DOE, is under development. “We don't want to be guinea pigs for something that's never been tried and tested before on this scale,” Ozane told me.
Ozane is the director of the Vessel Project, a grassroots group supporting the needs of black, indigenous, people of color, and low income people in an industrial city where petrochemical production has dramatically expanded over the past decade. (The group was not a signatory on the letter.) She said Lakes Charles is overburdened with pollution and still recovering from a spate of destructive hurricanes in 2020. “We're saying, hey, you might be right. These DAC hubs might work. But why are you testing it in our community?”
There are no fossil fuel companies involved in Project Cypress. But that does not give Ozane any peace of mind. She worries it would “open the floodgates” for companies to keep releasing toxic emissions into the area, as long as they pay someone to pull carbon out of the air afterward.
Multiple people I spoke with in Louisiana and Texas also brought up a history of local officials giving heavy industry a free pass on pollution and major tax breaks. Why should they believe that the DAC hubs will be any better regulated or bring in much-needed revenue?
But local attitudes along the Gulf Coast are varied and complex. Prior to the hubs announcement, Data for Progress, a polling and research non-profit that spearheaded Wednesday’s letter, held a series of focus groups about DAC in Louisiana and Texas. One key finding, Celina Scott-Buechler, a senior fellow who led the research, told me, was that there was a tension between concerns like Ozane’s, and an awareness that fossil fuel companies historically have been the primary sources of good jobs in these communities.
“I think people make a calculated risk decision,” one focus group participant in Lake Charles said. “They're like, oh, so I could be around these chemicals that could have a long-term effect. I may not see them for the next 20, 30 years, but if it's going to take care of my family and give my family a nice home and a good vehicle to drive, then I'll work tirelessly to provide that for my family. But I may die at 65.”
Another stressed that there was a “big need for jobs” and that “sometimes people's need for employment overshadows whether it's good for the environment or not.”
Patrick Nye, who lives in the Corpus Christi area near where Occidental is building its South Texas hub, embodies this tension. Nye owns an energy company that produces oil and generates wind power, but he also runs an environmental group that’s fighting the local expansion of liquified natural gas export facilities and proposed seawater desalination projects. When I asked about his oil business, he said he didn’t have the heart to let his employees go and puts his profits toward his activism.
Nye is skeptical that direct air capture will work, but he thinks it’s worth trying. “If this works, this may help save the planet,” he said. He also sees a lot of potential opportunities flowing to the local university and its graduates. And he thinks the hub will be far enough away from where people live that if things go wrong, few will be impacted. Occidental is building its hub in a largely undeveloped area about 45 miles south of Corpus Christi on King Ranch, the largest private ranch in the country.
At the same time, he’s worried local officials will just rubber stamp the project without proper study. “King Ranch is really well known, they're very politically positioned,” he said. “They have a lot of clout to get this thing done, and it has to be looked at with a very fine tooth comb.”
In addition to requesting DOE withdraw grants for fossil fuel companies, the letter sent Wednesday makes a pitch for how the agency can roll out the DAC hubs program more equitably. The authors propose that projects in areas with extractive industries be co-created or co-owned by communities, actively work to reduce local pollution, have rigorous data transparency, and that locals should have the right to refuse them. They also want community benefits plans to be legally binding, with consequences if companies fail to comply.
All these requirements might sound unfair to companies who are just trying to tackle climate change and make a better world, Scott-Buechler acknowledged. “The question that I ask is, a better world for whom?”
I asked her what it would look like in practice for a community to co-own a DAC hub, considering these are first-of-a-kind projects that are incredibly expensive and financially risky. Would communities be taking on those risks?
This was something that Data for Progress and other groups were still studying, she said, looking at possibilities like having the project held in public trust, or replicating the solar cooperative model. She recognizes that not all communities will be interested in ownership, but thinks it should be an option.
When I asked the DOE how it defends the choice to support fossil fuel company-led projects, a spokesperson told me the agency is “leveraging these companies' significant expertise in managing large energy infrastructure projects and applying this experience to developing DAC projects that are cost-effective, efficient, equitable, and environmentally responsible.”
She also emphasized that Occidental and Project Cypress have only been selected for “award negotiation” and not “officially” awarded yet. “If projects are awarded, DOE and the awardee will have frequent, meaningful engagement with the impacted local community and impacted workers throughout the lifecycle of the project,” she said.
Meanwhile, the agency has also launched a public process to develop a set of safety, environmental stewardship, accountability, and community engagement guidelines for all carbon management projects that it will encourage project developers to (voluntarily) abide by.
But the Biden administration seems eager to support Occidental in its pursuit of direct air capture and encourage more oil and gas companies to follow its lead. During a carbon capture conference last year, Secretary Granholm applauded Oxy’s CEO Vicki Hollub for investing in carbon removal, saying this reflects “exactly the kind of bold thinking we need more of.” Earlier this year, she told a room of oil and gas executives, “We need the energy sector stepping up … few are better positioned to crack open cost-effective carbon management.”
The debate over whether direct air capture is a moral hazard is likely to rage on long after these projects are up and running. But the money is going out the door now. “This is something that is not just coming anymore, it's here,” said Scott Buechler. “Is there a collective vision for what might be able to come next?”
Read more about carbon capture:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Businesses were already bracing for a crash. Then came another 50% tariff on Chinese goods.
When I wrote Heatmap’s guide to driving less last year, I didn’t anticipate that a good motivation for doing so would be that every car in America was about to get a lot more expensive.
Then again, no one saw the breadth and depth of the Trump administration’s tariffs coming. “We would characterize this slate of tariffs as ‘worse than the worst case scenario,’” one group of veteran securities analysts wrote in a note to investors last week, a sentiment echoed across Wall Street and reflected in four days of stock market turmoil so far.
But if the economic downturn has renewed your interest in purchasing a bike or e-bike, you’ll want to act fast — and it may already be too late. Because Trump’s “Liberation Day” tariffs stack on top of his other tariffs and duties, the U.S. bicycle trade association PeopleForBikes calculated that beginning on April 9, the day the newest tariffs come into effect, the duty on e-bikes from China would be 79%, up from nothing at all under President Biden. The tariff on most non-electric bikes from China, meanwhile, would spike to 90%, up from 11% on January 1 of this year. Then on Tuesday, the White House announced that it would add another 50% tariff on China on top of that whole tariff stack, starting Wednesday, in retaliation for Beijing’s counter-tariffs.
Prior to the latest announcement, Jay Townley, a founding partner of the cycling industry consulting firm Human Powered Solutions, had told me that if the Trump administration actually followed through on a retaliatory 50% tariff on top of those duties, then “we’re out of business because nobody can afford to bring in a bicycle product at 100% or more in tariffs.”
It’s difficult to overstate how existential the tariffs are for the bicycle industry. Imports account for 97% of the bikes purchased in the United States, of which 87% come from China, making it “one of the most import-dependent and China-dependent industries in the U.S.,” according to a 2021 analysis by the Coalition for a Prosperous America, which advocates for trade-protectionist policies.
Many U.S. cycling brands have grumbled for years about America’s relatively generous de minimis exemption, a policy of waiving duties on items valued at less than $800. The loophole — which is what enables shoppers to buy dirt-cheap clothes from brands like Temu, Shein, and Alibaba — has also allowed for uncertified helmets and non-compliant e-bikes and e-bike batteries to flood the U.S. market. These batteries, which are often falsely marketed as meeting international safety standards, have been responsible for deadly e-bike fires in places like New York City. “A going retail for a good lithium-ion replacement battery for an e-bike is $800 to $1,000,” Townley said. “You look online, and you’ll see batteries at $350, $400, that come direct to you from China under the de minimis exemption.”
Cyclingnews reported recently that Robert Margevicius, the executive vice president of the American bicycle giant Specialized, had filed a complaint with the Trump administration over losing “billions in collectable tariffs” through the loophole. A spokesperson for Specialized defended Margevicius’ comment by calling it an “industry-wide position that is aligned with PeopleForBikes.” (Specialized did not respond to a request for clarification from Heatmap, though a spokesperson told Cyclingnews that de minimis imports permit “unsafe products and intellectual property violation.” PeopleForBikes’ general and policy counsel Matt Moore told me in an email that “we have supported reforming the way the U.S. treats low-value de minimis imports for several years.”)
Trump indeed axed China’s de minimis exemption as part of his April 2 tariffs — a small win for the U.S. bicycle brands. But any protection afforded by duties on cheap imported bikes and e-bikes will be erased by the damage from high tariffs imposed on China and other Asian countries. Fewer than 500,000 bicycles in a 10 million-unit market are even assembled in the United States, and essentially none is entirely manufactured here. “We do not know how to make a bike,” Townley told me flatly. Though a number of major U.S. brands employ engineers to design their bikes, when it comes to home-shoring manufacturing, “all of that knowledge resides in Taiwan, China, Vietnam. It isn’t here.”
In recent years, Chinese factories had become “very proficient at shipping goods from third-party countries” in order to avoid European anti-dumping duties, as well as leftover tariffs from Trump’s first term, Rick Vosper, an industry veteran and columnist at Bicycle Retailer and Industry News, told me. “Many Chinese companies built bicycle assembly plants in Vietnam specifically so the sourcing sticker would not say ‘made in China,’” he added. Of course, those bikes and component parts are now also subject to Trump’s tariffs, which are as high as 57% for Vietnam, 60% for Cambodia, and 43% for Taiwan for most bikes. (A potential added tariff on countries that import oil from Venezuela could bump them even higher.)
The tariffs could not come at a worse time for the industry. 2019 marked one of the slowest years for the U.S. specialty retail bike business in two decades, so when COVID hit — and suddenly everyone wanted a bicycle as a way of exercising and getting around — there was “no inventory to be had, but a huge influx of customers,” Vosper told me. In response, “major players put in huge increases in their orders.”
But by 2023, the COVID-induced demand had evaporated, leaving suppliers with hundreds of millions of dollars in inventory that they couldn’t move. Even by discounting wholesale prices below their own cost to make the product and offering buy-one-get-one deals, dealers couldn’t get the bikes off their hands. “All the people who wanted to buy a bike during COVID have bought a bike and are not ready to buy another one anytime soon,” Vosper said.
Going into 2025, many retailers were still dealing with the COVID-induced bicycle glut; Mike Blok, the founder of Brooklyn Carbon Bike Company in New York City, told me he could think of three or four tristate-area shops off the top of his head that have closed in recent months because they were sitting on inventory.
Blok, however, was cautiously optimistic about his own position. While he stressed that he isn’t a fan of the tariffs, he also largely sells pre-owned bikes. On the low end of the market, the tariffs will likely raise prices no more than about $15 or $20, which might not make much of a difference to consumer behavior. But for something like a higher-end carbon fiber bike, which can run $2,700 or higher and is almost entirely produced in Taiwan, the tariffs could mean an increase of hundreds of dollars for customers. “I think what that will mean for me is that more folks will be open to the pre-owned option,” Blok said, although he also anticipates his input costs for repairs and tuning will go up.
But there’s a bigger, and perhaps even more obvious, problem for bike retailers beyond their products becoming more expensive. “What I sell is not a staple good; people don’t need a bike,” Blok reminded me. “So as folks’ discretionary income diminishes because other things become more expensive, they’ll have less to spend on discretionary items.”
Townley, the industry consultant, confirmed that many major cycling brands had already seen the writing on the wall before Trump announced his tariffs and begun to pivot to re-sale. Bicycling Magazine, a hobbyist publication, is even promoting “buying used” as one of its “tips to help you save” under Trump’s tariffs. Savvy retailers might be able to pivot and rely on their service, customer loyalty, and re-sale businesses to stay afloat during the hard days ahead; Moore of PeopleForBikes also noted that “repair services may increase” as people look to fix what they already have.
And if you don’t have a bike or e-bike but were thinking about getting one as a way to lighten your car dependency, decarbonize your life, or just because they’re cool, “there are still good values to be found,” Moore went on. “Now is a great time to avoid a likely increase in prices.” Townley anticipated that depending on inventory, we’re likely 30 to 40 days away from seeing prices go up.
In the meantime, cycling organizations are scrambling to keep their members abreast of the coming changes. “PeopleForBikes is encouraging our members to contact their elected representatives about the very real impacts these tariffs will have on their companies and our industry,” Moore told me. The National Bicycle Dealers Association, a nonprofit supporting specialty bicycle retailers, has teamed up with the D.C.-based League of American Bicyclists, a ridership organization, to explore lobbying lawmakers for the first time in decades in the hopes that some might oppose the tariffs or explore carve-outs for the industry.
But Townley, whose firm Human Powered Solutions is assisting in NBDA’s effort, shared a grim conversation he had at a recent trade show in Las Vegas, where a new board member at a cycling organization had asked him “what can we do” about Trump’s tariffs.
“I said, ‘You’re out of time,” Townley recalled. “There isn’t much that can be done. All we can do is react.”
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.