You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
DAC startup Holocene has a novel chemistry and backing from Breakthrough Energy and Frontier Climate.
Direct air capture companies are in a race to prove they can reduce the cost of removing carbon from the atmosphere down below $100 per ton. Now, one is closing in on the prize with a first-of-its-kind deal.
On Tuesday, Google announced it will pay the startup Holocene $10 million to remove 100,000 tons of carbon from the atmosphere, to be delivered “by the early 2030s.” The tech giant said the price point was made possible by the federal tax credit for carbon sequestration, and its own willingness to cough up the bulk of the funds upfront.
There’s no question the deal is risky on both sides. Today, most estimates place the cost of direct air capture at upwards of $600 per ton. Bringing the cost down is essential if the tech is ever going to play a meaningful role in tackling climate change. But even the companies that are farthest along, like the Swiss pioneer Climeworks, aren’t sure they will be able to offer a price of $100 per ton by 2030. Holocene has yet to build a commercial plant, so its ability to remove carbon for $100 per ton is pure projection at this point.
But for Google, the goal is more to catalyze a potentially important climate solution than to clean up its carbon footprint.
“The point of our program is to help Google reach net zero in whatever way most helps the world reach net zero,” Randy Spock, the company’s carbon credits and removals lead, told me in an email. “So this deal is an example of us identifying what the planet needs (long-term cost reduction for Direct Air Capture) and then doing what we can to help it take a step in that direction.”
Though Holocene is relatively new to the direct air capture market, it was started by veterans. Co-founders Anca Timofte and Tobias Rüesh spent roughly six years working in research and development at Climeworks back in its early days, when the company was building its first prototypes. Timofte left in 2020 to get an MBA at Stanford, and while there, came across some exciting research out of Oak Ridge National Laboratory that described a new approach to removing carbon from the ambient air — one that seemed to have distinct advantages. Seeing the potential, Timofte decided to start Holocene with Rüesh and another Stanford classmate and, in 2023, licensed the Oak Ridge technology.
“The chemistry from Oak Ridge is special,” Timofte told me. “It's different than all other chemistries, we think, in direct air capture.”
Most direct air capture systems fall into one of two categories, liquid or solid, and each approach has trade-offs. Liquid systems typically have simpler engineering and can capture CO2 continuously, but require more heat, and therefore more energy. Solid systems have lower heat requirements, but work sort of like cartridges that get “charged” with CO2 and have to be “discharged,” and therefore capture CO2 in batches rather than in perpetuity.
Timofte described Holocene’s process as the “best of both worlds.” It captures CO2 in water and operates in a continuous loop, but requires relatively low heat — between 70 to 100 degrees Celsius (158 to 212 degrees Fahrenheit) — which could potentially come from a source of waste heat like a data center. The enabling discovery was the use of two chemicals — an amino acid and a compound called guanidine — that attract CO2 and then further concentrate it within the water, making it easier and less energy-intensive to isolate so that it can be stored securely underground.
After licensing the tech, Holocene moved quickly. Within a year, the team had built a small pilot plant in Knoxville, Tennessee that’s capable of capturing about 10 tons of CO2 annually. That’s, of course, a totally insignificant amount, but it’s enough for the team to demonstrate its approach to potential funders and to keep testing variations on the basic chemistry to refine the system, Timofte told me.
Timofte said the company has made it this far with just over $6 million in grants and prizes from the Department of Energy, Bill Gates’ Breakthrough Energy, and Frontier Climate, a coalition of carbon removal buyers that includes Google in addition to other tech companies. The $500,000 that Holocene got from Frontier was technically a pre-purchase of 332 tons of removal, which would put the current cost per ton at roughly $1,500.
Frontier’s pre-purchases are not a precise indicator of price as they are meant to “pressure-test the viability of novel CDR solutions,” and are granted with the expectation that some ventures will fail. Still, even with a fresh influx of cash from Google and the prospect of a $180 per ton tax credit from the federal government, the company has a steep climb ahead. Timofte told me the team is beginning to fundraise to build their next project — a 2,000- to 5,000-ton per year demonstration plant. When asked about how it reached the $100 per ton deal with Google, she stressed that having a delivery date past 2030 was crucial to the deal.
The industry’s fixation on achieving $100 per ton is somewhat arbitrary. A 2019 National Academies of Sciences report found that estimates of the cost of capturing CO2 via direct air capture spanned “an order of magnitude, from $100 to $1,000” per ton. In 2021, the Biden administration’s Department of Energy set a goal to bring the cost of all kinds of carbon removal below $100 per ton, which seemed to solidify the goal across the field. In 2022, the nonprofit CarbonPlan surveyed carbon removal buyers, suppliers, and brokers, and found that $100 per ton was a common benchmark. “If cost were $100/ton, demand would be practically unlimited,” one supplier said. “Bringing down cost to $100/ton for CDR would be the sweet spot,” said a buyer. CarbonPlan pointed out, however, that the responses weren’t consistent on whether $100 per ton was the desired break-even point for carbon removal companies or the desired price for buyers.
“I think we focus too much on the cost of DAC,” Erin Burns, the executive director of the nonprofit Carbon180 told me when I asked her if $100 per ton was a meaningful goal. “Sure, DAC should and will get cheaper. But we need to also be thinking, right now, about things like renewable energy availability, infrastructure, and reducing emissions as quickly as possible.”
Finding clean sources of power for direct air capture is becoming more of an issue as companies try to scale. At the end of August, a startup called CarbonCapture Inc. announced it would try to relocate a commercial-scale project it had planned to build in Wyoming because it was struggling to procure enough clean energy to power the plant due to competition with data centers and cryptocurrency miners.
Timofte agreed that “clean electrons are hard to come by,” but added that Holocene’s potential to use waste heat might make it a little easier for the company.
“I don't want to dismiss the challenge. I think this is the challenge that everyone faces. We each have to solve it, and the solutions are going to be individual.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Though it might not be as comprehensive or as permanent as renewables advocates have feared, it’s also “just the beginning,” the congressman said.
President-elect Donald Trump’s team is drafting an executive order to “halt offshore wind turbine activities” along the East Coast, working with the office of Republican Rep. Jeff Van Drew of New Jersey, the congressman said in a press release from his office Monday afternoon.
“This executive order is just the beginning,” Van Drew said in a statement. “We will fight tooth and nail to prevent this offshore wind catastrophe from wreaking havoc on the hardworking people who call our coastal towns home.”
The announcement indicates that some in the anti-wind space are leaving open the possibility that Trump’s much-hyped offshore wind ban may be less sweeping than initially suggested.
In its press release, Van Drew’s office said the executive order would “lay the groundwork for permanent measures against the projects,” leaving the door open to only a temporary pause on permitting new projects. The congressman had recently told New Jersey reporters that he anticipates only a six-month moratorium on offshore wind.
The release also stated that the “proposed order” is “expected to be finalized within the first few months of the administration,” which is a far cry from Trump’s promise to stop projects on Day 1. If enacted, a pause would essentially halt all U.S. offshore wind development because the sought-after stretches of national coastline are entirely within federal waters.
Whether this is just caution from Van Drew’s people or a true moderation of Trump’s ambition we’ll soon find out. Inauguration Day is in less than a week.
Imagine for a moment that you’re an aerial firefighter pilot. You have one of the most dangerous jobs in the country, and now you’ve been called in to fight the devastating fires burning in Los Angeles County’s famously tricky, hilly terrain. You’re working long hours — not as long as your colleagues on the ground due to flight time limitations, but the maximum scheduling allows — not to mention the added external pressures you’re also facing. Even the incoming president recently wondered aloud why the fires aren’t under control yet and insinuated that it’s your and your colleagues’ fault.
You’re on a sortie, getting ready for a particularly white-knuckle drop at a low altitude in poor visibility conditions when an object catches your eye outside the cockpit window: an authorized drone dangerously close to your wing.
Aerial firefighters don’t have to imagine this terrifying scenario; they’ve lived it. Last week, a drone punched a hole in the wing of a Québécois “super soaker” plane that had traveled down from Canada to fight the fires, grounding Palisades firefighting operations for an agonizing half-hour. Thirty minutes might not seem like much, but it is precious time lost when the Santa Ana winds have already curtailed aerial operations.
“I am shocked by what happened in Los Angeles with the drone,” Anna Lau, a forestry communication coordinator with the Montana Department of Natural Resources and Conservation, told me. The Montana DNRC has also had to contend with unauthorized drones grounding its firefighting planes. “We’re following what’s going on very closely, and it’s shocking to us,” Lau went on. Leaving the skies clear so that firefighters can get on with their work “just seems like a no-brainer, especially when people are actively trying to tackle the situation at hand and fighting to save homes, property, and lives.”
Courtesy of U.S. Forest Service
Although the super soaker collision was by far the most egregious case, according to authorities there have been at least 40 “incidents involving drones” in the airspace around L.A. since the fires started. (Notably, the Federal Aviation Administration has not granted any waivers for the air space around Palisades, meaning any drone images you see of the region, including on the news, were “probably shot illegally,” Intelligencer reports.) So far, law enforcement has arrested three people connected to drones flying near the L.A. fires, and the FBI is seeking information regarding the super soaker collision.
Such a problem is hardly isolated to these fires, though. The Forest Service reports that drones led to the suspension of or interfered with at least 172 fire responses between 2015 and 2020. Some people, including Mike Fraietta, an FAA-certified drone pilot and the founder of the drone-detection company Gargoyle Systems, believe the true number of interferences is much higher — closer to 400.
Law enforcement likes to say that unauthorized drone use falls into three buckets — clueless, criminal, or careless — and Fraietta was inclined to believe that it’s mostly the former in L.A. Hobbyists and other casual drone operators “don’t know the regulations or that this is a danger,” he said. “There’s a lot of ignorance.” To raise awareness, he suggested law enforcement and the media highlight the steep penalties for flying drones in wildfire no-fly zones, which is punishable by up to 12 months in prison or a fine of $75,000.
“What we’re seeing, particularly in California, is TikTok and Instagram influencers trying to get a shot and get likes,” Fraietta conjectured. In the case of the drone that hit the super soaker, it “might have been a case of citizen journalism, like, Well, I have the ability to get this shot and share what’s going on.”
Emergency management teams are waking up, too. Many technologies are on the horizon for drone detection, identification, and deflection, including Wi-Fi jamming, which was used to ground climate activists’ drones at Heathrow Airport in 2019. Jamming is less practical in an emergency situation like the one in L.A., though, where lives could be at stake if people can’t communicate.
Still, the fact of the matter is that firefighters waste precious time dealing with drones when there are far more pressing issues that need their attention. Lau, in Montana, described how even just a 12-minute interruption to firefighting efforts can put a community at risk. “The biggest public awareness message we put out is, ‘If you fly, we can’t,’” she said.
Fraietta, though, noted that drone technology could be used positively in the future, including on wildfire detection and monitoring, prescribed burns, and communicating with firefighters or victims on the ground.
“We don’t want to see this turn into the FAA saying, ‘Hey everyone, no more drones in the United States because of this incident,’” Fraietta said. “You don’t shut down I-95 because a few people are running drugs up and down it, right? Drones are going to be super beneficial to the country long term.”
But critically, in the case of a wildfire, such tools belong in the right hands — not the hands of your neighbor who got a DJI Mini 3 for Christmas. “Their one shot isn’t worth it,” Lau said.
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Friday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for some of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Six major fires started during the Santa Ana wind event last week:
Officials are investigating the cause of the fires and have not made any public statements yet. Early eyewitness accounts suggest that the Eaton Fire may have started at the base of a transmission tower owned by Southern California Edison. So far, the company has maintained that an analysis of its equipment showed “no interruptions or electrical or operational anomalies until more than one hour after the reported start time of the fire.” A Washington Post investigation found that the Palisades Fire could have risen from the remnants of a fire that burned on New Year’s Eve and reignited.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At more than 40,000 acres burned total, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 9,000 structures damaged as of Friday morning, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 5,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between wet and dry years over the past eight decades.
But climate change is expected to make dry years drier and wet years wetter, creating a “hydroclimate whiplash,” as Daniel Swain, a pre-eminent expert on climate change and weather in California puts it. In a thread on Bluesky, Swain wrote that “in 2024, Southern California experienced an exceptional episode of wet-to-dry hydroclimate whiplash.” Last year’s rainy winter fostered abundant plant growth, and the proceeding dryness primed the vegetation for fire.
Get our best story delivered to your inbox every day:
Editor’s note: This story was last update on Monday, January 13, at 10:00 a.m. ET.