You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The imminent closure of Duke University’s herbarium sparked an outcry in the natural sciences community. But the loss to climate science could be even worse.
Kathleen Pryer did not watch March Madness this year.
That isn’t unusual in and of itself — Pryer describes herself as “not a basketball person,” though that might still raise a few eyebrows this time of year at Duke University, her place of employment. But the professor of biology has been a bit distracted lately. For the past few months, she’s been on defense, fending off a loss of her own: the pending closure of the school’s herbarium.
A herbarium (or plural, herbaria) is a collection of preserved plants, typically dried and mounted on sheets of rigid paper. The oldest existing collection in the world, the Gherardo Cibo herbarium in Rome, dates back to the mid 1500s; many U.S. collections are well over a century old. Browsing digitized herbaria online, one can easily get sucked in by their unintended whimsy; though the preserved plants are scientific specimens, traditionally collected by botanists to be used in the study of taxonomy during Western biology’s golden age of naming things, the pages remind me more of the pale, beautiful botanical illustrations in my childhood copy of Thumbelina.
Duke’s herbarium turns 103 this year and contains 825,000 specimens, making it one of the largest collections in the country. But back in mid-February, Susan Alberts, Duke’s dean of natural sciences, sent an email to Pryer, who curates the herbarium, and four other associated faculty members to inform them that “it’s in the best interests of both Duke and the herbarium to find a new home or homes for these collections.”
Though there had long been rumblings about the future of Duke’s herbarium — calls for “strategic plans,” hand-wringing about funds, worry about hiring new staff — the news came as both a shock and a slap in the face to the faculty, chief among them Pryer. “It’s some kind of little stinky plot,” she told me, adding, “I didn’t just roll over when it happened. I reached out to absolutely everybody I could think of.”
The news of Duke’s herbarium closure ricocheted through the tight-knit natural sciences community. Mason Heberling, an associate curator in the Section of Botany at the Carnegie Museum of Natural History, told me it should be a “wake-up call” for other researchers. The Duke herbarium is prestigious and hardly a “languishing collection,” he explained; researchers and faculty can easily slip into taking their herbaria for granted. “I’ve realized now that a huge part of my job as a curator will need to be explaining why these collections are important,” he said.
Swiftly, botanists and curators came to Duke’s defense. Opinion pieces and quotes decrying Duke’s decision appeared in the pages of The New York Times and Science. A petition went up on Change.org urging the school to reconsider its decision. Online fora burbled with discontent. “This may be the single worst thing to ever happen to Southeastern botany,” one post on Reddit read, with 64 additional comments piling on the administration for being “profit-obsessed business assholes.” “They could probably fund the entire thing with the salary of one head [basketball] coach,” grumbled another commenter.
The criticism of Duke’s decision is rooted in both a romantic nostalgia about herbaria — the same way you might feel fondly about hand-painted globes or cabinets of curiosities — and a very modern sense of scientific urgency. Researchers have only recently started leveraging the collections as invaluable pieces of data in the greater picture of climate change. “Herbaria are, in many ways, one of our best places to understand nature across space, time, and species,” Charles Davis, the curator of vascular plants at the nation’s largest private herbaria, at Harvard University, told me. “These collections are snapshots of events and occurrences in space and time that you just can’t easily replicate anywhere else. In fact, I would argue it’s impossible.”
Think of it this way: Worldwide, there are about 3,600 herbaria located in 193 different countries that collectively hold about 400 million specimens. Botanists estimate as much as half of the planet’s undiscovered flora could be found in herbaria backlogs. Barbara Thiers, the editor of the Index Herbariorum, a digital guide to the world’s collections, told me that when she was the director of the New York Botanical Garden Herbarium, “we had a huge room filled with unidentified species; I think there were 35,000 or 40,000 specimens in there.” That wasn’t for lack of effort — Thiers said that for many of the plant groups, there simply aren’t any working experts or published literature for curators to consult.
Because the climate is changing so fast, many plants in herbaria will go extinct before they’re formally discovered and named, a process known as a “dark extinction.” “It’s a very sobering feeling to touch the leaves of a tree that doesn’t exist anymore,” Erin Zimmerman, an evolutionary biologist and author of the forthcoming book Unrooted: Botany, Motherhood, and the Fight to Save an Old Science, told me, recalling coming across such a specimen in an herbarium while doing her own research. She likened herbaria to a library, but in her description I also heard echoes of a church: “The specimens are sometimes very old; you have to be very gentle with them, which just adds to the sense of holding something precious,” she went on.
Dwindling biodiversity is only the most obvious way herbaria are critical to 21st-century science. “Phenology, whether it’s when plants flower or when birds migrate, is one of the most important signals of climate change response,” Davis, the Harvard curator, said. Still, our long-term datasets aren’t very robust; research on how plants are changing with warming climates typically dates back only 25 to 30 years, tends to concentrate on the U.S. and Western Europe, and centers on easily observable phenomena, like the leafing out of woody trees. Researchers can turn to herbaria for centuries-old records of where certain plants grew and when they flowered, helping to bridge gaps in our understanding.
Heberling, of the Carnegie Museum of Natural History, tracks environmental changes in his research, but he didn’t start using herbaria until well after he’d obtained his Ph.D. Only then did he realize “herbarium specimens are incredible archives of the past,” he told me.
“You can look at the tiny pores, the stomata, on the leaves” of a plant in a herbarium and “see how that has changed over time with increased carbon dioxide,” Heberling said. Scientists have even used this method to create CO2 records.
Admittedly, climate science is still a relatively cutting-edge use case for the herbarium; according to Davis’ research, “global change biology” remains one of the least popular ways to leverage herbaria, well behind “taxonomic monographs” and “species distributions” that still dominate the field. Still, “there are things that, five to 10 years ago, I’d never even imagined we’d be doing today with herbarium specimens,” he told me.
As a result, Duke’s herbarium closure has made some question the university’s commitment to climate research — something that Alberts, the school’s natural sciences dean, emphatically refuted when I raised the question with her. She told me that a rough search revealed that only 23 of the 2,000 papers published by Duke researchers over the past few decades on climate change contained the word “herbarium” anywhere in them. “With my knowledge about all of the climate change research that’s been going on at Duke, the herbarium is not really central to whether or not Duke studies climate change,” she said.
For her part, Pryer has bristled at the administration’s insinuations that the herbarium is of limited use to students and faculty on campus. “You don’t measure a collection by who uses it,” she told me. “As I’ve been naughty enough to say, it’s not a toilet. People outside — the global community — uses it. That’s how you measure its value; things like 90 refereed publications a year [across all disciplines] cite the Duke collections.” Pryer can quickly tick off the climate projects that have come through the herbarium’s halls, including her recent supervision of a local high schooler’s research paper that found the pink lady’s slipper is flowering in the area 17 days earlier than it used to.
Duke is “not an appropriate home for a herbarium that is this large and valuable” for a number of reasons, according to Alberts, ranging from the need to hire new faculty to manage it (Pryer and several of her colleagues are approaching retirement) to the collection’s current building needing renovations. “I have had people email me saying, ‘I know you have enough money, I know you have the facilities.’ I’m like, ‘I’m sorry, you should tell me who you’re talking to, because we don’t,’” Alberts said. She added that she plans to be personally involved in finding the right home for Duke’s herbarium over the next several years.
After all, it’s not like the potential untapped climate records in the Duke collection are being destroyed (though both Pryer and Davis told me they’ve had deans wonder aloud if they could be, since many herbaria are now digitized). The goal is only to move the collection somewhere where it might be better utilized.
Thiers, though, said this is exactly what makes the natural science community so alarmed. As the collection is split up, ideally, the Index Herbariorum would record where Duke’s specimens get sent so scientists can still find them. But when new collections absorb the materials, curators will weed out duplicates, sending unneeded pages elsewhere — at which point specimens can fall between the cracks. “Before you know it, individual specimens will be lost,” Thiers said. “I can almost guarantee that as these secondary moves happen, people will not keep up with the database records.”
There is also a worst-case scenario everyone seemed nervous to mention: that Duke’s collection, in whole or in part, will end up in storage somewhere. Herbarium specimens are extremely susceptible to insect damage and must be kept in expensive, climate-controlled cabinets and rooms. “If they’re putting boxes in a storage storeroom someplace, they’ll be worthless in no time,” Thiers warned. The unidentified plants and uncollected climate data — all of it could be lost. And the cruelest part? Scientists wouldn’t even know what they are losing; it’s a dark extinction of a dark extinction.
When I spoke with Alberts, she said there were no updates on the administration’s plans for the herbarium. She expressed sympathy, though, for the faculty who oppose the administration’s decision. The herbarium “is their life’s work, and it’s important that they have a voice in this process,” she said.
Pryer is determined to keep fighting, even if this isn’t exactly how she’d pictured spending her golden years at Duke. “It’s having an impact on my research and on my health,” she told me. “It’s been pretty unrelenting. I’m anxious for something to resolve.”
She looked tired. There was a faculty meeting later in the day, and she hoped she’d be able to get more clarity about the administration’s decision then. “I don’t want this to go on forever,” she said. “But I also don’t want there to be a decision that makes Duke look insane.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The energy secretary's philosophy is all over the Senate mega-bill.
As the Senate Finance Committee worked on its version of the reconciliation bill that would, among things, overhaul the Inflation Reduction Act, there was much speculation among observers that there could be a carve out for sources of power like geothermal, hydropower, and nuclear, which provide steady generation and tend to be more popular among Republicans, along the lines of the slightly better treatment received by advanced nuclear in the House bill.
Instead, the Senate Finance Committee’s text didn’t carve out these “firm” sources of power, it carved out solar and wind, preserving tax credits for everything else through 2035, while sunsetting solar and wind by 2028.
For much of the last few months — and for years before he was sworn in as Secretary of Energy — Chris Wright has been expounding on his philosophy of energy and climate. If anything, the Senate Finance draft seems to hew closer to Wright’s worldview than Trump’s, which is less specific, even more critical of renewables (especially wind), and largely in favor of nuclear power when it comes to non-carbon-emitting generation.
“I’m sure Secretary Wright’s strong support for firm technologies over the past few months played a role in Chairman Crapo’s approach to energy tax credit reform,” Pavan Venkatakrishnan, an infrastructure fellow at the Institute for Progress, told me.
Wright argues that climate change is real but not a top-tier concern and that it certainly should not be addressed by restricting energy usage, which he sees as foundational to the good life here and abroad.
And among energy sources, the former fracking executive is no opponent of fossil fuels but is also enthusiastic about energy innovation.
In his company Liberty Energy’s Bettering Human Lives report, published last year, which doubles as a kind of manifesto, Wright wrote that “viable paths to reducing greenhouse gas (GHG) emissions can only come from reliable and affordable low-carbon energy technologies,” and specifically listed next-generation nuclear and geothermal, which Liberty had invested in through the geothermal company Fervo and nuclear company Oklo.
“To achieve largescale human betterment, we will need significant future energy additions from nuclear, hydropower, geothermal, and all other viable energy technologies,” the report read.
And he’s often been skeptical of renewables along the lines of many Congressional Republicans, that they aren’t reliable enough and require additional resources to fully support the grid.
“Maybe the biggest problem is intermittency,” Wright said at a Liberty Energy event last year.
“You can build a lot of wind and solar, and then at night, the sun’s not shining and then sometimes the wind doesn’t blow, and you have no energy. So to keep society running, you have to have a whole second separate energy system,” Wright said.
In testimony to the House of Representatives last week, Wright said “If you’re not there at peak demand, you’re just a parasite on the grid, because you just make the other sources turn up and down as you come and go.”
Many critics of the Republican reconciliation bills have noted that much of the electricity generation pipeline is solar, wind, or storage, and so cutting off their tax credits risks leaving the country at an energy shortage while gas turbines take years and years to actually get on the grid.
But as Congress was working on the reconciliation bill, Wright made a series of widely noted public appearances where he promoted clean firm power and continued government support for it.
“My recommendation has been to leave behind the equivalent of the wind and solar tax credits — through if you start construction by 2031 — for nuclear fission and fusion and geothermal,” Wright said at an event earlier this month.
In May, Wright addressed the Nuclear Energy Institute, outlining his support for sunsetting wind and solar tax credits will working to kickstart nuclear power. “My personal goal would be to much more rapidly sunset the technologies that have been around and have been living on decades of subsidies,” Wright said. He also supported a “window” of “favorable treatment” for nuclear and geothermal.
“I’m in favor of every nudge, every incentive we can get from the federal government to restart this industry,” Wright said.
While Wright has been skeptical of wind and solar and optimistic about nuclear and geothermal for years, he’s also started talking more positively about energy storage. In the past, he’s talked up hydrocarbons for “coming with their own storage,” as he put it in a 2018 podcast.
But at an appearance at ARPA-E in March, Wright gave some of his most extended thoughts on energy storage, which sits somewhat awkwardly between variable resources like solar and wind and firm resources like nuclear and geothermal.
“Solar is growing very fast, getting more efficient and taking panels, cheaper materials and developing energy,” Wright said. “The biggest problem there is the sun doesn’t always shine, and we don’t know when clouds are going to come and when it’s not going to shine, but if we can get energy storage better, that’s a game changer.”
At least until 2035.
When I reached out to climate tech investors on Tuesday to gauge their reaction to the Senate’s proposed overhaul of the clean energy tax credits, I thought I might get a standard dose of can-do investor optimism. Though the proposal from the Senate Finance committee would cut tax credits for wind and solar, it would preserve them for other sources of clean energy, such as geothermal, nuclear, and batteries — areas of significant focus and investment for many climate-focused venture firms.
But the vibe ended up being fairly divided. While many investors expressed cautious optimism about what this latest text could mean for their particular portfolio companies, others worried that by slashing incentives for solar and wind, the bill’s implications for the energy transition at large would be categorically terrible.
“We have investments in nuclear, we have investments in geothermal, we have investments in carbon capture. All of that stuff is probably going to get a boost from this, because so much money is going to be flowing out of quote, unquote, ‘slightly more established’ zero emissions technologies,” Susan Su, a climate tech investor at Toba Capital, told me. “So we’re diversified. But for me, as a human being, and as somebody that cares about climate change and cares about having an abundant energy future, this is very short-sighted.”
Bigger picture aside, the idea that the Senate proposal could lead to more capital for non-solar, non-wind clean energy technologies was shared by other investors, many of whom responded with tentative hope when I asked for their thoughts on the bill.
“The extension of the nuclear and geothermal tax credits compared to the House bill is really important,” Rachel Slaybaugh, a climate tech investor at DCVC, told me. The venture firm has invested in the nuclear fission company Radiant Nuclear, the fusion company Zap Energy, and the geothermal startup Fervo Energy. As for how Slaybaugh has been feeling since the bill’s passage as well as the general sentiment among DCVC’s portfolio companies, she told me that “it's mostly been the relief of like, thank you for at least supporting clean, firm and bringing transferability back.”
Indeed, the proposed bill not only fully preserves tax credits for most forms of zero-emissions power until 2034, but also keeps tax credit transferability on the books. This financing mechanism is essential for renewable energy developers who cannot fully utilize the tax credits themselves, as it allows them to sell credits to other companies for cash. All of this puts nascent clean, firm technologies on far more stable footing than after the House’s version of the bill was released last month.
Carmichael Roberts of Breakthrough Energy Ventures echoed these sentiments via email when he told me, “the Senate proposal is a meaningful improvement over the House version for clean energy companies. It creates more predictability and a clearer runway for emerging technologies that are not yet fully commercial.” Breakthrough invests in multiple fusion, geothermal, and long-duration energy storage startups.
Amy Duffuor, co-founder and general partner at Azolla Ventures, also acknowledged in an email that it’s “encouraging” that the Senate has “seen the way forward on clean firm baseload power.” However, she issued a warning that the unsettled policy environment is leading to “material risks and uncertainties for start-ups reliant on current tax incentives.”
Solar and wind are by far the most widely deployed and cost-competitive forms of renewable energy. So while they now mainly exist outside the remit of venture firms, there are numerous climate-focused startups that operate downstream of this tech. Think about all the software companies working to optimize load forecasting, implement demand response programs, facilitate power purchase agreements, monitor grid assets, and so much more. By proxy, these startups are now threatened by the Senate’s proposal to phase out the investment and production tax credits for solar and wind projects beginning next year, with a full termination after 2027.
“I think solar and wind will survive. But it's going to be like 80% of the deals don't pencil for a long time,” Ryan Guay, co-founder and president of the software startup Euclid Power, told me. Euclid makes data management and workflow tools for renewable project developers, so if the tax credits for solar and wind go kaput, that will mean less business for them. In the meantime though, Guay expects to be especially busy as developers rush to build projects before their tax credit eligibility expires.
As Guay explained to me, it’s not just the rescission of tax credits that he believes will kill such a large percent of solar and wind projects. It’s the combined impact of those cuts, the bill’s foreign entity of concern rules restricting materials from China, and Trump’s tariffs on Chinese-made components. “You’re not giving the industry enough time to actually build that robust domestic supply chain, which I agree needs to happen,” Guay told me. “I’m all for the security of the grid, but our supply chains are already very constrained.”
Many investors also expressed frustration and confusion over why Senate Republicans, and the Trump administration at large, would target incentives for solar and wind — the fastest growing domestic energy sources — while touting an agenda of energy dominance and American leadership. Some even used the president’s own language around energy issues to deride the One Big Beautiful Bill’s treatment of solar and wind as well as its repeal of the electric vehicle tax credits.
“The rollbacks of the IRA weaken the U.S. in key areas like energy dominance and the auto industry, which is rapidly becoming synonymous with the EV industry,” Matt Eggers, a managing director at the climate-tech investment firm Prelude Ventures, wrote to me in an email. “This bill will still ultimately cost us economic growth, jobs, and strategic positioning on the world stage.”
“The only real question is, are we going to double down on the future and on American dynamism?” Andrew Beebe, managing director at Obvious Ventures, asked in an emailed response. “Or are we going to cling to the past by trying to hold back a future of abundant, clean, and affordable energy?”
Su wanted to focus on the bigger picture too. While the Senate’s proposal gives tax credits for solar and wind a much longer phaseout period than the House’s bill — which would have required projects to start construction within 60 days of the bill’s passage and enter service by 2028 — Su still doesn’t think the Senate’s version is much to celebrate.
“The specific changes that came through in the Senate version are really kind of nibbling at the edges and at the end of the day, this is a huge blow for our emissions trajectory,” Su told me. She’s always been a big believer that there’s still a significant amount of cutting edge innovation in the solar and wind sectors, she told me. For example, Toba is an investor in Swift Solar, a startup developing high-efficiency perovskite solar cells. Nixing tax credits that benefit the solar industry will hit these smaller players especially hard, she told me.
With the Senate now working to finalize the bill, investors agreed that the current proposal is certainly not the worst case scenario. But many did say it was worse than they had — perhaps overly optimistically — been holding out for.
“To me, it's really bad because it now has a major Senate stamp of approval,” Su told me. The Senate usually tempers the more extreme, partisan impulses of the House. Thus, the closer a bill gets to clearing the Senate, the closer it usually is to its final form. Now, it seems, the reconciliation bill is suddenly feeling very real for people.
“At least back between May 22 and [Monday], we didn't know what was going to get amended, so there was still this window of hope that things could change more dramatically." Su said. Now that window is slowly closing, and the picture of what incentives will — and won’t — survive is coming into greater focus.
Rob and Jesse talk with John Henry Harris, the cofounder and CEO of Harbinger Motors.
You might not think that often about medium-duty trucks, but they’re all around you: ambulances, UPS and FedEx delivery trucks, school buses. And although they make up a relatively small share of vehicles on the road, they generate an outsized amount of carbon pollution. They’re also a surprisingly ripe target for electrification, because so many medium-duty trucks drive fewer than 150 miles a day.
On this week’s episode of Shift Key, Rob and Jesse talk with John Henry Harris, the cofounder and CEO of Harbinger Motors. Harbinger is a Los Angeles-based startup that sells electric and hybrid chassis for medium-duty vehicles, such as delivery vans, moving trucks, and ambulances.
Rob, John, and Jesse chat about why medium-duty trucking is unlike any other vehicle segment, how to design an electric truck to last 20 years, and how President Trump’s tariffs are already stalling out manufacturing firms. Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: What is it like building a final assembly plant — a U.S. factory — in this moment?
John Harris: I would say lots of people talk about how excited they are about U.S. manufacturing, but that's very different than putting their money where their mouth is. Building a final assembly line, like we have — our team here is really good, that they made it feel not that hard. The challenge is the whole supply chain.
If we look at what we build here in-house at Harbinger, we have a final assembly line where we bolt parts together to make chassis. We also have two sub-component assembly lines where we take copper and make motors, and where we take cells and make batteries. All three of those lines work pretty well. We're pumping out chassis, and they roll out the door, and we sell them to people, which is great. But it’s all the stuff that goes into those, that's the most challenging. There's a lot of trade policy at certain hours of the day, on certain days of the week — depending on when we check — that is theoretically supposed to encourage us manufacturing.
But it's really not because of the volatility. It costs us an enormous amount to build the supply chain, to feed these lines. And when we have volatile trade policy, our reaction, and everyone else's reaction, is to just pause. It’s not to spend more money on U.S. manufacturing, because we were already doing that. We were spending a lot on U.S. manufacturing as part of our core approach to manufacturing.
The latest trade policy has caused us to spend less money on U.S. manufacturing — not more, because we're unclear on what is the demand environment going to be, what is the policy going to be next week? We were getting ready to make major investments to take certain manufacturing tasks in our supply chain out of China and move them to Mexico, for example. Now we’re not. We were getting ready to invest in certain kinds of automation to do things in house, and now we're waiting. So the volatility is dramatically shrinking investment in US manufacturing, including ours.
Meyer: And can you just explain, why did you make that decision to pause investment and how does trade policy affect that decision?
Harris: When we had 25% tariffs on China, if we take content out of China and move it to Mexico, we break even — if that. We might still end up underwater. That's because there's better automation in China. There's much higher labor productivity. And — this one is always shocking to people — there’s lower logistics costs. When we move stuff from Shenzhen to our factory, in many cases it costs us less than moving shipments from Monterey.
Mentioned:
CalStart’s data on medium-duty electric trucks deployed in the U.S.
Here’s the chart that John showed Rob and Jesse:
Courtesy of Harbinger
It draws on data from Bloomberg in China, the ICCT, and the Calstart ZET Dashboard in the United States.
Jesse’s case for EVs with gas tanks — which are called extended range electric vehicles