You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The U.S. is burning through forests, and replanting them is expensive.

Wildfires are razing U.S. forests faster than either natural regrowth or active replanting can restore them. There’s a nearly 4 million-acre backlog in the western U.S. of forests that have burned and not been re-seeded. That’s slightly larger than the size of Connecticut. And unless we pick up the pace, the shortfall could increase two to three times over by 2050 as wildfires get worse under a warming climate.
These are the findings of a study published last week on the yawning gap between reforestation needs and reforestation capacity in the western U.S. Trees are still the country’s most important resource to counteract climate change, offsetting more than 12% of annual greenhouse gas emissions as of 2021. But in some areas like in the fire-ravaged Rocky Mountain region, forests have become a net source of carbon to the atmosphere, releasing more than they draw down. To prevent the reforestation gap from widening, the new study warns, we have to fix the “reforestation pipeline” — our capacity to collect seeds, grow seedlings, and plant them.
It also highlights solutions. The research was primarily funded by a company that finances tree-planting efforts by selling credits to carbon-emitting businesses based on the amount of carbon the trees suck up, allowing those businesses to offset their own emissions. To rebuild the country’s reforestation capacity, the study recommends — surprise, surprise — expanding the role of forest carbon offsets, among other ideas.
Some might look at this paper and dismiss it as biased science, but it got me thinking about the long-running debate in the climate community over trees. Should companies be allowed to offset their emissions from burning fossil fuel by planting carbon-sucking forests? It’s easy to say no. Too many forest-related carbon offset projects have come under fire for using faulty accounting methods or for “protecting” forests that were at no risk of being felled. Plus, there’s the larger risk that offsets provide a license to emit.
But when you contemplate the chasm between the funding and infrastructure required to restore forests and current capacity and incentives — not just in the U.S., but also globally — it’s easy to see why so many people ignore these realities and say we must finance reforestation through carbon markets. The new study spells out the predicament quite clearly.
Solomon Dobrowski, the lead author and a professor of landscape ecology at the University of Montana, was quick to tell me that these numbers were a rough estimate. “I'm not so hung up on the absolute number,” he said. “We can increase the precision of that number. But the take-home message here is that the needs are rapidly outstripping our capacity to fill them.”
Dobrowski studies how forests grow back after a disturbance like a wildfire, and he’s been documenting a concerning trend. Larger, more severe fires are “punching these big holes into landscapes,” he told me. A severe burn might leave a mile-long stretch between nearest living trees, making it impossible for the forest to regenerate through natural seed dispersal.
At the same time, the government is struggling to pick up the slack. Due to funding shortfalls, the U.S. Forest Service has managed to address “just 6% of post-wildfire replanting needs” per year over the last decade.
The average area burned in the U.S. more than doubled from 2000 to 2017 compared to the preceding 17-year period. But the uptick in severe fires is not the only reason we’ve fallen so far behind on reforestation. At the same time fires have increased, both public and private forestry shops have collapsed. Ironically, the decline of an ecologically destructive industry — logging — also gutted the potential for an ecologically regenerative forestry industry to thrive.
Previously, most of the Forest Service’s reforestation work was funded by the agency’s timber sales. But beginning in the 1990s, logging on public lands sharply declined due to a confluence of factors, including over-harvesting in previous decades and the listing of the northern spotted owl as protected under the Endangered Species Act. The agency’s non-fire workforce has decreased by 40% over the past two decades. It also shut down more than half its nurseries, leaving just six remaining. Many state-owned nurseries have also closed due to budget cuts and reduced demand for seedlings.
Today, the reforestation supply chain is mostly sustained by private companies serving what’s left of the wood product and fiber industry. State and local regulations require companies to replant in the areas they harvest. But since the industry is concentrated on the west coast, so is the supply chain — 95% of seedling production in the western U.S. occurs in Washington, Oregon, and California. That means interior states like Montana, Colorado, Arizona, and New Mexico, which are seeing increasingly large fires, have no mature supply chain to support reforestation.
The New Mexico Natural Resources Department, for example, estimates it needs 150 million to 390 million seedlings to replant the acres burned in the past 20 years. But the only big nursery in the state, a research center at New Mexico State University, can supply just 300,000 seedlings per year. The nearest U.S. Forest Service nursery serving the region is in Boise, Idaho, more than 700 miles away. Matthew Hurteau, a forest ecologist at the University of New Mexico who is a co-author on the reforestation study, told me he has been working with the state to develop a new nursery capable of producing 5 million seedlings a year. The project has received some funding from the U.S. Department of Agriculture and the state government, but still needs to raise roughly $60 million more, Hurteau said.
Nurseries aren’t the only bottleneck. Hurteau has also been working to build the state’s seedbank, a time-consuming process that requires going out into the field and collecting seeds one by one. Another piece of the puzzle is workforce development. Dowbrowski pointed out that the majority of tree planting today is not done by government workers but rather by private contractors that hire H2B guest workers. Due to federal limits on immigration, reforestation contractors haven’t even been able to hire enough to meet current planting demand.
The new paper is far from the first to highlight these issues, and policymakers are beginning to address the problem. In 2021, the Forest Service got a major infusion of cash from the Bipartisan Infrastructure Law, which lifted the cap on its annual budget for reforestation from $30 million to at least $140 million with the directive to clear its backlog.
But Dobrowski said this is a far cry from all that’s needed. In the study, he and his co-authors estimated that clearing the existing backlog in the West alone could cost at least $3.6 billion. And that’s a conservative estimate — it doesn’t include the cost of building more greenhouses or expanding the workforce. “The reality is that the feds don’t have the infrastructure and workforce to address this at scale,” he told me. The Forest Service budget also won’t address reforestation needs on private lands, which account for about 30% of forested land in the western U.S.
After establishing the scale of the problem, the paper raises a followup question: How can we scale the reforestation supply chain? There, it pivots to argue that “new economic drivers” — like carbon markets — “can modernize the reforestation pipeline and align tree planting efforts with broader ecosystem resilience and climate mitigation goals.”
This is precisely what Mast Reforestation, the company that funded the research, is trying to do. Mast is vertically integrated — it collects seeds, grows seedlings, and plants them. The company has developed software to improve the efficiency of each of these steps and increase the chances of success, i.e. to minimize tree deaths. To fund its tree-planting efforts, Mast sells carbon credits based on the amount of CO2 the trees will remove from the atmosphere over their lifetimes. It only plants on privately owned, previously burned land that wouldn’t have otherwise been replanted (because the owner couldn’t afford it) or regenerated (because the burn was so severe). The idea is to create a more stable source of financing for reforestation not subject to the whims of congressional appropriations.
Matthew Aghai, an ecologist who works as the chief science officer at Mast and another of the study’s co-authors, told me there’s a misunderstanding among policymakers and the general public that when forests burn, the government is ready to step in, and all that’s needed is more funding for seedling production. Aghai hopes the new paper illuminates the truth, and how risky it is to wait for state backing that may never arrive. He told me that he sought out Dobrowski to work with him because he knew, as a former academic himself, that if he had written the paper on his own, there would have been a stigma attached to it. “I think the best way for me to get those ideas out was actually something that needs to happen in our broader market, which is a lot more collaboration,” he said.
There are many climate advocates who believe the problems with carbon offsets can be fixed, that the markets can be reformed, and that “high quality” nature-based credits are possible. Indeed, many consider restoring trust in nature-based carbon credits an imperative if we are to fund reforestation at the level that tackling climate change requires. A few weeks ago, Google, Meta, Microsoft, and Salesforce announced a new coalition called Symbiosis that will purchase up to 20 million tons of carbon removal credits from nature-based projects that “meet the highest quality bar” and “reflect the latest and greatest science.” Then, last Tuesday, the Biden administration followed up with a show of support for fixing the voluntary carbon market, because it can “deliver steady, reliable revenue streams to a range of decarbonization projects, programs, and practices, including nature-based solutions.”
But there is one fundamental problem with selling carbon credits based on trees, which no amount of reform or commitment to high integrity can solve. Fossil fuel CO2 emissions are essentially permanent — they stay in the atmosphere for upward of a thousand years. The CO2 sequestered by forests is not. Trees die. In a warming world, with worsening pest outbreaks, drought, and wildfires, the chances of a tree making it to a thousand years without releasing at least some of its stored carbon are slimmer than ever.
Hurteau, despite contributing to the paper, is deeply skeptical of financing reforestation through the sale of carbon credits. “We need to be making monster investments in maintaining forest cover globally, and I understand why people look at carbon finance to do this,” he said. “But you can't fly in an airplane and pay somebody to plant trees and have it zero out. From an energy balance perspective, for the Earth’s system, that's not real.”
When I raised this with Dobrowski, who endorsed the paper’s conclusions about the potential for carbon markets, he said it’s something he struggles with. He agreed that a ton of fossil fuel emissions is not the same as a ton of carbon sequestered in trees, but comes back to the fact that we need new incentive structures for people to do reforestation and be better stewards of our forests. It’s something I’ve heard echoed many times over in my reporting — the unspoken subtext essentially being, do you have any better ideas to raise the billions of dollars needed to do this?
Aghai had a slightly different take. To him, the one-to-one math isn’t so important “as long as the trajectory is moving forward, we're accumulating carbon, we're protecting watersheds, we're increasing the biodiversity index.” That may sound a bit hand-wavy — and it still gives a pass to polluters. But then he raised an interesting point, one that I don’t think I’ve heard before. The environmental damage caused by fossil fuels is not just the carbon they spew into the atmosphere. And the value forests provide is not just the carbon they sequester.
“Carbon’s our currency right now. It’s the thing that everyone is measuring around,” he said. “But what about all the other destruction that comes with the energy sector? There's cascading effects that impact water, soils, methane. Forests tend to stabilize everything by moving us toward homeostasis at a landscape level. For me, these markets will work when we catalyze them at a regional, dare I say global scale.”
Are these benefits enough to dismiss the incongruity inherent to forest carbon offsets? To say, for example, that trees might not actually offset the full amount of carbon that Google is putting in the atmosphere, but the funding Google is providing to get these trees in the ground makes some greater, unquantifiable progress toward our climate goals?
Some scientists have proposed alternative solutions. Myles Allen, a professor of geosystem science at the University of Oxford, has advocated for “like for like” offsetting, in which companies only buy nature-based carbon credits to offset their emissions from nature-based sources, such as land cleared to grow food. To offset fossil fuel emissions, the logic goes, they could buy other kinds of credits, like those based on carbon captured from the air and sequestered deep underground for millenia. The European Union is currently considering a rule that would require companies adhere to this principle. Others have suggested companies could make “contributions” to climate mitigation through investments in forests, rather than buying offsets.
Both would be significant departures from the way corporate sustainability managers have used carbon markets in the past. But the current system is in crisis. The volume of carbon credits traded declined precipitously in the last two years as buyers were spooked off buying offsets. Forestry-related credits, in particular, contracted from $1.1 billion in sales in 2022 to just $351 million in sales in 2023, a 69% drop. Within that, the vast majority of the credits traded during both years came from forestry projects that reduced emissions, not reforestation projects like Mast’s that remove carbon from the atmosphere.
Even if you agree with Aghai that carbon markets are our best hope at addressing the reforestation gap, gaining the trust of buyers is a prerequisite. That means that scientists, companies, and governance groups like the Integrity Council for the Voluntary Carbon Market first have to converge on what these credits actually mean and how they can be used.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The storm currently battering Jamaica is the third Category 5 to form in the Atlantic Ocean this year, matching the previous record.
As Hurricane Melissa cuts its slow, deadly path across Jamaica on its way to Cuba, meteorologists have been left to marvel and puzzle over its “rapid intensification” — from around 70 miles per hour winds on Sunday to 185 on Tuesday, from tropical storm to Category 5 hurricane in just a few days, from Category 2 occurring in less than 24 hours.
The storm is “one of the most powerful hurricane landfalls on record in the Atlantic basin,” the National Weather Service said Tuesday afternoon. Though the NWS expected “continued weakening” as the storm crossed Jamaica, “Melissa is expected to reach southeastern Cuba as an extremely dangerous major hurricane, and it will still be a strong hurricane when it moves across the southeastern Bahamas.”
So how did the storm get so strong, so fast? One reason may be the exceptionally warm Caribbean and Atlantic.
“The part of the Atlantic where Hurricane Melissa is churning is like a boiler that has been left on for too long. The ocean waters are around 30 degrees Celsius, 2 to 3 degrees above normal, and the warmth runs deep,” University of Redding research scientist Akshay Deoras said in a public statement. (Those exceedingly warm temperatures are “up to 700 times more likely due to human-caused climate change,” the climate communication group Climate Central said in a press release.)
Based on Intergovernmental Panel on Climate Change reports, the National Oceanic and Atmospheric Administration concluded in 2024 that “tropical cyclone intensities globally are projected to increase” due to anthropogenic climate change, and that “rapid intensification is also projected to increase.”
NOAA also noted that research suggested “an observed increase in the probability of rapid intensification” for tropical cyclones from 1982 to 2017 The review was still circumspect, however, labeling “increased intensities” and “rapid intensification” as “examples of possible emerging human influences.”
What is well known is that hurricanes require warm water to form — at least 80 degrees Fahrenheit, according to NOAA. “As long as the base of this weather system remains over warm water and its top is not sheared apart by high-altitude winds, it will strengthen and grow.”
A 2023 paper by hurricane researcher Andra Garner argued that between 1971 and 2020, rates of intensification of Atlantic tropical storms “have already changed as anthropogenic greenhouse gas emissions have warmed the planet and oceans,” and specifically that the number of these storms that intensify from Category 1 or weaker “into a major hurricane” — as Melissa did so quickly — “has more than doubled in the modern era relative to the historical era.”
“Hurricane Melissa has been astonishing to watch — even as someone who studies how these storms are impacted by a warming climate, and as someone who knows that this kind of dangerous storm is likely to become more common as we warm the planet,” Garner told me by email. She likened the warm ocean waters to “an extra shot of caffeine in your morning coffee — it’s not only enough to get the storm going, it’s an extra boost that can really super-charge the storm.”
This year has been an outlier for the Atlantic with three Category 5 storms, University of Miami senior research associate Brian McNoldy wrote on his blog. “For only the second time in recorded history, an Atlantic season has produced three Category 5 hurricanes,” with wind speeds reaching and exceeding 157 miles per hour, he wrote. “The previous year was 2005. This puts 2025 in an elite class of hurricane seasons. It also means that nearly 7% of all known Category 5 hurricanes have occurred just in this year.” One of those Category 5 storms in 2005 was Hurricane Katrina.
Jamaican emergency response officials said that thousands of people were already in shelters amidst storm surge, flooding, power outages, and landslides. Even as the center of the storm passed over Jamaica Tuesday evening, the National Weather Service warned that “damaging winds, catastrophic flash flooding and life-threatening storm surge continues in Jamaica.”
With Trump turning the might of the federal government against the decarbonization economy, these investors are getting ready to consolidate — and, hopefully, profit.
Since Trump’s inauguration, investors have been quick to remind me that some of the world’s strongest, most resilient companies have emerged from periods of uncertainty, taking shape and cementing their market position amid profound economic upheaval.
On the one hand, this can sound like folks grasping at optimism during a time when Washington is taking a hammer to both clean energy policies and valuable sources of government funding. But on the other hand — well, it’s true. Google emerged from the dot-com crash with its market lead solidified, Airbnb launched amid the global financial crisis, and Sunrun rose to dominance after the first clean tech bubble burst.
The circumstances may change, but behind all of these against-the-odds successes are investors who saw opportunity where others saw risk. In the climate tech landscape of 2025, well-capitalized investors are eyeing some of the more mature sectors being battered by federal policy or market uncertainty — think solar, wind, biogas, and electric transportation — rather than the fresh-faced startups pursuing more cutting edge tech.
“History does not repeat, but it certainly rhymes,” Andrew Beebe, managing director at Obvious Ventures, told me. He was working as the chief commercial officer at the solar company Suntech Power when the first climate tech bubble collapsed in the wake of the 2008 financial crisis. Back then, venture capital and project financing dried up instantly, as banks and investors faced heavy losses from their exposure to risky assets. This time around, “there’s plenty of capital at all stages of venture,” as well as infrastructure investing, he said. That means firms can afford to swoop in to finance or acquire undervalued startups and established companies alike.
“I think you’re gonna see a lot of projects in development change hands,” Beebe told me.
Investors don’t generally publicize when the companies or projects that they’re backing become “distressed assets,” i.e. are in financial trouble, nor do they broadcast when their explicit goal is to turn said projects around. But that’s often what opportunistic investing entails.
“As investors in the energy and infrastructure space — which is inherently in transition — we take it as a very important point of our strategy to be opportunistic,” Giulia Siccardo, a managing director at Quinbrook, told me. (Prior to joining the investment firm, Siccardo was director of the Department of Energy’s Office of Manufacturing & Energy Supply Chains under President Biden.)
Quinbrook sees opportunities in biogas and renewable natural gas, a sector that once enjoyed “very cushioned margins” thanks to investor interest in corporate sustainability, Siccardo told me, but which has lately gone into a “rapid decline.” But she’s also looking at solar and storage, where developers are rushing to build projects before tax credits expire, as well as grid and transmission infrastructure, given the dire need for upgrades and buildout as load growth increases.
As of now, the only investment Quinbrook has explicitly described as opportunistic is its acquisition of a biomethane facility in Junction City, Oregon. When it opened in 2013, the facility used food waste — which otherwise would have emitted methane in a landfill — to produce renewable biogas for clean electricity generation. But after Shell acquired the plant, it switched to converting cow manure and agricultural residue into renewable natural gas for heavy-duty transportation fuels, a process that it’s operated commercially since 2021. Siccardo declined to provide information about the plant’s performance at the time of Quinbrook’s acquisition, though presumably, it has yet to reach its total production capacity of 730,000 million British thermal units per year — enough to supply about 12,000 U.S. households.
The extension of the clean fuel production tax credit, plus the potential for hyperscalers to purchase RNG credits, are still driving demand, however. And that’s increased Siccardo’s confidence in pursuing investments and acquisitions in the space. “That’s a market that, from a policy standpoint, has actually been pretty stable — and you might even say favored — by the One Big Beautiful Bill relative to other technologies,” she explained.
Solar, meanwhile, is still cheap and quick to deploy, with or without the tax credits, Siccardo told me. “If you strip away all subsidies, and are just looking at, what is the technology that’s delivering the lowest cost electron, and which technology has the least supply chain bottlenecks right now in North America —- that drives you to solar and storage,” she said.
Another leading infrastructure investment firm, Generate Capital, is also looking to cash in on the moment. After replacing its CEO and enacting company-wide layoffs, Generate’s head of external affairs, Jonah Goldman, told me that “managers who understand the [climate] space and who can take advantage of the opportunities that are underpriced in this tougher market environment are set up to succeed.”
The firm also sees major opportunities when it comes to good old solar and storage projects. In an open letter, Generate’s new CEO, David Crane, wrote that “for the first time in nearly four decades, the U.S. has an insatiable need for more power: as much as we can produce, as soon as we can, wherever and however we can produce it.”
Crane sees it as the duty of Generate and other investors to use mergers and acquisitions as a tool to help clean tech scale and mature. “If companies across our subsectors were publicly traded, the market itself would act as a centripetal force towards industry consolidation,” he wrote. But because many clean energy companies are privately funded, Crane said “it is up to us, the providers of that private capital, to force industry improvement, through consolidation and otherwise.”
Helping solar companies accelerate their construction timelines to lock in tax credit eligibility has actually become an opportunistic market of its own, Chris Creed, a managing partner at Galvanize Climate Solutions and co-head of its credit division, told me. “Helping those companies that need to start or complete their projects within a predetermined time frame because of changes in the tax credit framework became an investable opportunity for us,” Creed told me. “We have a number of deals in our near term pipeline that basically came about as a result of that.”
Given that some solar companies are bound to fare better than others, he agreed that mergers and acquisitions were likely — among competitors as well as involving companies working in different stages of a supply chain. “It wouldn’t shock me if you saw some horizontal consolidation or some vertical integration,” Creed told me.
Consolidation can only go so far, though. So while investors seem to agree that solar, storage, and even the administration’s nemesis — wind — are positioned for a long and fruitful future, when it comes to more emergent technologies, not all will survive the headwinds. Beebe thinks there’s been “irrational exuberance” around both green hydrogen and direct air capture, for example, and that seasoned investors will give those spaces a pass.
Electric mobility — e.g. EVs, electric planes, and even electrified shipping — and grid scalability — which includes upgrades to make the grid more efficient, flexible, and optimized — are two sectors that Beebe is betting will survive the turmoil.
But for all investors that have the capability to do so, for now, “the easy bet is just to move your money outside the U.S.” Beebe told me.
We might be starting to see just that. Quinbrook also invests in the U.K. and Australia, and just announced its first Canadian investment last week. It acquired an ownership stake in Elemental Clean Fuels, an energy developer making renewable fuels such as RNG, low-carbon methanol, and — yes — clean hydrogen.
Last week, Generate announced that it had closed $43 million in funding from the Canadian company Fiera Infrastructure Private Debt for its North American portfolio of anaerobic digestion projects, which produce renewable natural gas — Generate’s first cross-currency, cross-border deal.
Creed still has confidence in the U.S. market, however, telling me he’s “very bullish on American innovation.” He certainly acknowledges that it’s a tough time out there for any investor deciding where to park their money, but thinks that ultimately, “that volatility should manifest itself as excess returns to investors who are able to figure out their investment strategy and deploy in this environment.”
Exactly what firms will manage this remains an open question, and the opportunities may be short-lived — but it’s a race that plenty of investors are getting in on.
“I mean, God bless the Europeans for caring about climate.”
Bill Gates, the billionaire co-founder of Microsoft and one of the world’s most important funders of climate-related causes, has a new message: Lighten up on the “doomsday.”
In a new memo, called “Three tough truths about climate,” Gates calls for a “strategic pivot.” Climate-concerned philanthropy should focus on global health and poverty, he says, which will still cause more human suffering than global warming.
“I’m not saying we should ignore temperature-related deaths because diseases are a bigger problem,” he writes. “What I am saying is that we should deal with disease and extreme weather in proportion to the suffering they cause, and that we should go after the underlying conditions that leave people vulnerable to them. While we need to limit the number of extremely hot and cold days, we also need to make sure that fewer people live in poverty and poor health so that extreme weather isn’t such a threat to them.”
This new focus didn’t come with a change in funding priorities — but that’s partly because some big shake-ups have already happened. In February, Heatmap reported that Breakthrough Energy, Gates’ climate-focused funding group, had slashed its grant-making budget. Gates later closed Breakthrough’s policy and advocacy office altogether.
Despite eliminating those financial commitments, he still dwells on two of his longtime obsessions in the new memo: cutting the “green premium” for energy technologies, meaning the delta between the cost of carbon-emitting and clean energy technologies, and improving the measurement of how spending can do the most for human welfare. The same topics dominated his thinking when I last spoke to the billionaire at the 2023 United Nations climate conference in Dubai.
What seems to have shifted, instead, is the global political environment. The Trump administration and Elon Musk gutted the federal government’s spending on global public health causes, such as vaccines and malaria prevention. European countries have also cut back their global aid spending, although not as dramatically as the U.S.
Gates seemingly now feels called to their defense: “Vaccines are the undisputed champion of lives saved per dollar spent,” he writes, praising the vaccine alliance Gavi in particular. “Energy innovation is a good buy not because it saves lives now, but because it will provide cheap clean energy and eventually lower emissions, which will have large benefits for human welfare in the future.”
Last week, Gates shared his thinking about climate change at a roundtable with a handful of reporters. He was, as always, engaging. I’ve shared some of his new takes on climate policy below. His quotes have been edited for clarity.
The environment we’re in today, the policies for climate change are less accommodating. It’s hard to name a country where you’d say, Oh, the climate policies are more accommodating today than they have been in the past.
The thesis I had was that middle income countries — who were already, at that time, the majority of all emissions — would never pay a premium for greenness. And so you could say, well, maybe the rich countries should subsidize that. But you know, the amounts involved would get you up to, like, 4% of rich country budgets would have to be transferred to do that. And we’re at 1% and going down. And there are some other worthy things that that money goes for, other than subsidizing positive green premium type approaches. So the thesis in the book [How to Avoid a Climate Disaster, published in 2021] is we had to innovate our way to negative green premiums for the middle income countries.
Climate [change] is an evil thing in that it’s caused by rich countries and high middle-income countries and the primary burden [falls on poor countries]. When I looked into climate activists, I said, Well, this is incredible. They care about poor countries so much. That’s wonderful, that they feel guilty about it. But in fact, a lot of climate activists, they have such an extreme view of what’s going to happen in rich countries — their climate activism is not because they care about poor farmers and Africa, it’s because they have some purported view that, like, New York City, can’t deal with the flooding or the heat.
The other challenge we have in the climate movement is in order to have some degree of accountability, it was very focused on short-term goals and per-country reports. And the per-country reporting thing is, in a way, a good thing, because a country — certainly when it comes to deforestation or what it’s doing on its electric grid, there is sovereign accountability for what’s being done. But I mean, the way everybody makes steel is the same. The way everybody makes the cement, it’s the same. The way we make fertilizer, it’s all the same. And so there can’t be some wonderful surprise, where some country comes in and, you know, gives you this little number [for its Paris Agreement goals], and you go, Wow, good! You’re so tough, you’re so good, you’re so amazing. Because other than deforestation and your particular electric grid, these are all global things.
If you’re a rich country, the costs of adaptation are just one of many, many things that are not gigantic, huge percentages of GDP — you know, rebuilding L.A. so that it’s like the Getty Museum, in terms of there’s no brush that can catch on fire, there’s no roof that can catch on fire, adds about 10% cost to the rebuild. It’s not like, Oh my god, we can’t live in LA. There’s no apocalyptic story for rich countries. [Climate adaptation] is one of many things that you should pay attention to, like, Does your health system work? Does your education system work? Does your political system work? There are a variety of things that are also quite important.
The place where it gets really tough is in these poor countries. But you know, what is the greatest tool for climate adaptation? Getting rich — growing your economy is the biggest single thing, living in conditions where you don’t face big climate problems. So when you say to an African country, Hey, you have a natural gas deposit, and we’re going to try to block you from getting financing for using that natural gas deposit … It probably won’t work, because there’s a lot of money in the world. It’s not clear how you’d achieve that. And it’s also in terms of the warming effect of that natural gas, versus the improvement of the conditions of the people in that country — it’s not even a close thing.
People in the [climate] movement, we do have to say to ourselves, For the Europeans, how much were they willing to pay in order to support climate? — and did we overestimate in terms of forcing them to switch to electric cars, to buy electric heat pumps, to have their price of electricity be higher? Did we overestimate their willingness to pay with some of those policies? And you do have to be careful because if your climate policies are too aggressive, you will be unelected, and you’ll have a right-wing government that cares not a bit about climate. I mean, God bless the Europeans for caring about climate. You worry they care so much about it that the people you talk to, you won’t be able to meet with them again, because they won’t be in power.