You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
We chat with data scientist Clayton Page Aldern about neuroplasticity, the problem of consciousness, and his new book, The Weight of Nature.
Thinking is physical. Thankfully, one of the many wonderful things about the human brain is that we don’t have to confront this unsettling fact very much — that the environment around us shapes our perceptions and reactions, that all human experience is the result of secreted hormones and synaptic transmission. In other words, our brains let us think we’re in charge.
Unfortunately, as with so many other things, climate change is interfering. “As the environment changes, you should expect to change too,” writes author, neuroscientist, and Grist senior data scientist Clayton Page Aldern in his gripping new book, The Weight of Nature: How a Changing Climate Changes Our Brains. “It is the job of your brain to model the world as it is,” he goes on. “And the world is mutating.”
You may already be familiar with some of his examples — that the heat can make us dumber and more aggressive, and that people who survive traumatic weather events can get post-traumatic stress disorder. But Aldern’s book — which, in spite of its author’s technical background, is immensely readable and literary — pushes far past the familiar, touching on topics as wide-ranging as brain-eating amoebas, language death, and free will. The common theme throughout, though, is that climate is our unseen “puppeteer.”
Our conversation has been edited and condensed for clarity.
You use the phrase “the weight of nature” in several contexts throughout the book. It made me think of both Altas, as in “the weight on our shoulders,” and also the idea of determinism that you get into a bit. At what point in the writing process did you come up with the title?
It was early on that the title came to me, but it was not the original title. I’ve been working on this project for six or seven years, and initially my working title was something awful like Nature’s Marionette, which sought to communicate this notion of forcing our hands — the puppetmaster behind our decision-making.
But I wanted to be able to communicate this feeling of being guided by the environment — in addition to carrying said burden — because it felt like weight. It does feel heavy, and heaviness does a lot of things, including forcing our hands.
Is there something about brains that makes them uniquely vulnerable to climate change? I ask because I’m sure books could be written about how climate change hurts our hearts or lungs, too. But it seems to impact our brains in a variety of terrifying forms.
Hearts do one thing: They beat. Brains are always reaching outward, and so, by extension, they’re enmeshed in the same manner in which one can imagine our entire bodies to be enmeshed in this “environment.”
More specifically, in addition to the reaching-out action, brains are actively modeling the world around us. That is what they do. This notion of having an active organ, as opposed to a somewhat passive organ, makes the difference because brains are always integrating new information about the world. And the world is changing.
As we come to terms with this changing world — and when I use the phrase “come to terms,” I’m not seeking to deploy some kind of intellectual or emotional metaphor here. I mean, on a biophysical level, as we’re coming to terms with these changes — then neurochemical changes result accordingly. We respond in kind. Certainly, our other organs are adaptive to various degrees, but the whole point of the brain is its adaptive nature, right? It seeks to model the world around us, and it implements change through a system known as neuroplasticity. It is an organ that is built for modeling and integrating change. And so, is it any wonder that climate change acts directly on this organ in ways it may not act on others?
The chapter about Karl Friston and the give-and-take of perception — in which you write, “our actions are the world’s sensations, and our sensations are the world’s actions” — completely blew my mind.
I haven’t even told this to my editor, but I think if I’m ever granted the privilege of writing a book again, I might try to pitch a biography of Karl Friston. His research is unbelievably interesting.
Is his work well-known among neuroscientists, or is it kind of fringe even within the community?
That’s a fabulous question, and I'll tell you why: Karl is one of the most cited neuroscientists of all time, but most neuroscientists have not heard of him. The reason that paradox is true is because, early in his career, he developed some of the basic algorithmic technology underlying functional resonance in functional magnetic resonance imaging: fMRI. And so, anytime anybody uses fMRI, which most neuroscientists do, there’s this casual Fristonian citation that goes back to his early work.
Far fewer people have paid attention to his groundbreaking work on what’s called the free energy hypothesis. If you Google, like, “the most influential neuroscientists of all time,” he’s always on these lists, but nobody knows who he is. Well, nobody is a stretch; he’s reasonably well-known in sub-communities. But by and large, he’s such an abstract thinker, and his material is so difficult to internalize, that most people who are attracted to his work fall into the neuro-theory community, computational neuroscientists, theoretical neuroscientists — and that’s, frankly, the vast minority of neuroscientists. So he is somewhat of an unknown entity, which is just astounding because he has literally been in the running for the Nobel.
Something that struck me was how many gaps there are in the science of understanding our own brains — we often seem to know the general region where thoughts or impulses originate but not quite the mechanics of how they work. Are there certain mysteries about our consciousness and perception that might always remain slightly out of our reach?
There’s a huge body of research that seeks to address whether or not the question of consciousness, and understanding it, is unravelable at all. This is known as the hard problem of consciousness. Have we made progress in our understanding of consciousness over the past 100 or 200 years? Well, almost certainly, yes. And in neuroscience, we’ve come closer to an understanding of what perception is and what consciousness is.
Will another 20 years or so get us closer to an ultimate, grounded, and internalized rational scientific representation there of? Maybe! But there are also people today who argue with just as much empirical backing that the notion of solving consciousness — the notion of, basically, a self coming to understand itself — is a logically impossible act.
I’m not a consciousness researcher, so I’m not sure if I have enough background to really say that I’ve made my mind up. But there are certainly folks out there who say consciousness is not something that’s solvable, it’s not something that we will ever understand in the same materialistic terms that, perhaps, we understand the heart.
I’m going to be obnoxious and ask the AI question. You didn’t really get into the possibility and pitfalls of technology, but I’m wondering if it was back of mind at all while you were writing?
I’m going to give you an obnoxious answer. In fact, it’s a decades-old obnoxious answer. When I’m thinking about this stuff, my instinct is to think about technology in terms of the manners in which it removes us from nature. So much of the promise in this area of research — and I do think there’s promise, I don’t think it’s all doom and gloom — is that this intimate relationship we have with the planet is also that which can be leveraged to help mediate some of these detrimental effects.
There’s a fabulous book from a couple of years ago, The Nature Fix, by Florence Williams; I have come to understand my book as its dark version. The Nature Fix details all the manners in which interacting with nature, as opposed to the built environment, is essential for mental, psychological, spiritual, and neurological health.
This is an obnoxious answer because it’s the classic “Oh, kids are all looking at their phones!” But I think that’s real — the handheld devices and the omniscience of the all-knowing screen, which, perhaps we can extend that to the LLMs. As it were, there’s this suite of technologies that mediates our relationship both with knowledge writ large and the broader environment outside of ourselves. In my estimate, it filters the world in a way that I suspect is preventing us from interacting with some of the benefits that the environment has to offer.
The same things that make our brains incredible — their ability to adapt, create, and use language — are also what allowed us to invent the combustion engine, organize global commodities markets, and design machines for fracking. In a sense, the climate fight requires beating back against the weight and consequences of our own brains, right?
When I think about this question, it’s less about “how can we ensure we’re using the tools of evolution, the powers of the brain, for good,” and more about coming to terms with the fact that something like free will doesn’t exist.
There’s this thinker, Timothy Morton, who writes a lot about our enmeshment with the environment and the degree to which one cannot separate the self from the greater universe. Taken to its extreme, that thinking — which I think is very powerful — implies that what we need to wrap our heads around and come to terms with is the fact that we’re not really making decisions, per se. It’s just a universe of particles in motion. So grappling with what Morton calls the ecological thought, grappling with this notion of determinism and enmeshment, and trying to suss out the moral responsibilities that fall out of that relationship — that, to me, is a worthy task and, frankly, an unsolved problem.
As a neuroscientist working in the climate space, what keeps you up at night?
The 20-year timeline keeps me up at night. A lot of the research that we’re coming to terms with today is going to make itself known on a much more visceral level over the next 20 to 50 years. If it is in fact the case that cyanobacterial blooms are releasing a neurotoxin that is spurring an increased risk of ALS, that neurodegenerative disease isn’t necessarily going to manifest in people whom it is likely to affect for a number of years. We’re not going to see in tangible, visceral terms a corresponding spike in this disease in the general population for another couple of decades.
I just published a piece in The Guardian about some of these effects, and one of the researchers I interviewed for that piece basically said what I’m trying to communicate now, which is: We’re in the midst of a grand experiment. It’s not like a lab where you’ve got a rat, and you’re selectively exposing it to one toxin over the course of some fixed time period and measuring the results. The lab that we’re in is the Earth and we are exposed to climatic and environmental stressors in this soup, chronically, for years and years, and in unknown quantities. At some point, we’re going to look around and say, “Oh, this is really bad. We should do something about this.” And for many people, it will be too late.
What gives you hope?
I don’t like hope. I think that hope breeds complacency — or, at least, false hope does. I tend personally not to look for vectors of hope per se, which is not to say that I’m a pessimist or a nihilist or anything like that. I look for climate solutions, for example, or sources of resilience, or stories of the capacity of the human spirit that inspire me with a feeling of desire. I’m interested in having images out there in the world that point my compass toward a future that I would like to realize.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Businesses were already bracing for a crash. Then came another 50% tariff on Chinese goods.
When I wrote Heatmap’s guide to driving less last year, I didn’t anticipate that a good motivation for doing so would be that every car in America was about to get a lot more expensive.
Then again, no one saw the breadth and depth of the Trump administration’s tariffs coming. “We would characterize this slate of tariffs as ‘worse than the worst case scenario,’” one group of veteran securities analysts wrote in a note to investors last week, a sentiment echoed across Wall Street and reflected in four days of stock market turmoil so far.
But if the economic downturn has renewed your interest in purchasing a bike or e-bike, you’ll want to act fast — and it may already be too late. Because Trump’s “Liberation Day” tariffs stack on top of his other tariffs and duties, the U.S. bicycle trade association PeopleForBikes calculated that beginning on April 9, the day the newest tariffs come into effect, the duty on e-bikes from China would be 79%, up from nothing at all under President Biden. The tariff on most non-electric bikes from China, meanwhile, would spike to 90%, up from 11% on January 1 of this year. Then on Tuesday, the White House announced that it would add another 50% tariff on China on top of that whole tariff stack, starting Wednesday, in retaliation for Beijing’s counter-tariffs.
Prior to the latest announcement, Jay Townley, a founding partner of the cycling industry consulting firm Human Powered Solutions, had told me that if the Trump administration actually followed through on a retaliatory 50% tariff on top of those duties, then “we’re out of business because nobody can afford to bring in a bicycle product at 100% or more in tariffs.”
It’s difficult to overstate how existential the tariffs are for the bicycle industry. Imports account for 97% of the bikes purchased in the United States, of which 87% come from China, making it “one of the most import-dependent and China-dependent industries in the U.S.,” according to a 2021 analysis by the Coalition for a Prosperous America, which advocates for trade-protectionist policies.
Many U.S. cycling brands have grumbled for years about America’s relatively generous de minimis exemption, a policy of waiving duties on items valued at less than $800. The loophole — which is what enables shoppers to buy dirt-cheap clothes from brands like Temu, Shein, and Alibaba — has also allowed for uncertified helmets and non-compliant e-bikes and e-bike batteries to flood the U.S. market. These batteries, which are often falsely marketed as meeting international safety standards, have been responsible for deadly e-bike fires in places like New York City. “A going retail for a good lithium-ion replacement battery for an e-bike is $800 to $1,000,” Townley said. “You look online, and you’ll see batteries at $350, $400, that come direct to you from China under the de minimis exemption.”
Cyclingnews reported recently that Robert Margevicius, the executive vice president of the American bicycle giant Specialized, had filed a complaint with the Trump administration over losing “billions in collectable tariffs” through the loophole. A spokesperson for Specialized defended Margevicius’ comment by calling it an “industry-wide position that is aligned with PeopleForBikes.” (Specialized did not respond to a request for clarification from Heatmap, though a spokesperson told Cyclingnews that de minimis imports permit “unsafe products and intellectual property violation.” PeopleForBikes’ general and policy counsel Matt Moore told me in an email that “we have supported reforming the way the U.S. treats low-value de minimis imports for several years.”)
Trump indeed axed China’s de minimis exemption as part of his April 2 tariffs — a small win for the U.S. bicycle brands. But any protection afforded by duties on cheap imported bikes and e-bikes will be erased by the damage from high tariffs imposed on China and other Asian countries. Fewer than 500,000 bicycles in a 10 million-unit market are even assembled in the United States, and essentially none is entirely manufactured here. “We do not know how to make a bike,” Townley told me flatly. Though a number of major U.S. brands employ engineers to design their bikes, when it comes to home-shoring manufacturing, “all of that knowledge resides in Taiwan, China, Vietnam. It isn’t here.”
In recent years, Chinese factories had become “very proficient at shipping goods from third-party countries” in order to avoid European anti-dumping duties, as well as leftover tariffs from Trump’s first term, Rick Vosper, an industry veteran and columnist at Bicycle Retailer and Industry News, told me. “Many Chinese companies built bicycle assembly plants in Vietnam specifically so the sourcing sticker would not say ‘made in China,’” he added. Of course, those bikes and component parts are now also subject to Trump’s tariffs, which are as high as 57% for Vietnam, 60% for Cambodia, and 43% for Taiwan for most bikes. (A potential added tariff on countries that import oil from Venezuela could bump them even higher.)
The tariffs could not come at a worse time for the industry. 2019 marked one of the slowest years for the U.S. specialty retail bike business in two decades, so when COVID hit — and suddenly everyone wanted a bicycle as a way of exercising and getting around — there was “no inventory to be had, but a huge influx of customers,” Vosper told me. In response, “major players put in huge increases in their orders.”
But by 2023, the COVID-induced demand had evaporated, leaving suppliers with hundreds of millions of dollars in inventory that they couldn’t move. Even by discounting wholesale prices below their own cost to make the product and offering buy-one-get-one deals, dealers couldn’t get the bikes off their hands. “All the people who wanted to buy a bike during COVID have bought a bike and are not ready to buy another one anytime soon,” Vosper said.
Going into 2025, many retailers were still dealing with the COVID-induced bicycle glut; Mike Blok, the founder of Brooklyn Carbon Bike Company in New York City, told me he could think of three or four tristate-area shops off the top of his head that have closed in recent months because they were sitting on inventory.
Blok, however, was cautiously optimistic about his own position. While he stressed that he isn’t a fan of the tariffs, he also largely sells pre-owned bikes. On the low end of the market, the tariffs will likely raise prices no more than about $15 or $20, which might not make much of a difference to consumer behavior. But for something like a higher-end carbon fiber bike, which can run $2,700 or higher and is almost entirely produced in Taiwan, the tariffs could mean an increase of hundreds of dollars for customers. “I think what that will mean for me is that more folks will be open to the pre-owned option,” Blok said, although he also anticipates his input costs for repairs and tuning will go up.
But there’s a bigger, and perhaps even more obvious, problem for bike retailers beyond their products becoming more expensive. “What I sell is not a staple good; people don’t need a bike,” Blok reminded me. “So as folks’ discretionary income diminishes because other things become more expensive, they’ll have less to spend on discretionary items.”
Townley, the industry consultant, confirmed that many major cycling brands had already seen the writing on the wall before Trump announced his tariffs and begun to pivot to re-sale. Bicycling Magazine, a hobbyist publication, is even promoting “buying used” as one of its “tips to help you save” under Trump’s tariffs. Savvy retailers might be able to pivot and rely on their service, customer loyalty, and re-sale businesses to stay afloat during the hard days ahead; Moore of PeopleForBikes also noted that “repair services may increase” as people look to fix what they already have.
And if you don’t have a bike or e-bike but were thinking about getting one as a way to lighten your car dependency, decarbonize your life, or just because they’re cool, “there are still good values to be found,” Moore went on. “Now is a great time to avoid a likely increase in prices.” Townley anticipated that depending on inventory, we’re likely 30 to 40 days away from seeing prices go up.
In the meantime, cycling organizations are scrambling to keep their members abreast of the coming changes. “PeopleForBikes is encouraging our members to contact their elected representatives about the very real impacts these tariffs will have on their companies and our industry,” Moore told me. The National Bicycle Dealers Association, a nonprofit supporting specialty bicycle retailers, has teamed up with the D.C.-based League of American Bicyclists, a ridership organization, to explore lobbying lawmakers for the first time in decades in the hopes that some might oppose the tariffs or explore carve-outs for the industry.
But Townley, whose firm Human Powered Solutions is assisting in NBDA’s effort, shared a grim conversation he had at a recent trade show in Las Vegas, where a new board member at a cycling organization had asked him “what can we do” about Trump’s tariffs.
“I said, ‘You’re out of time,” Townley recalled. “There isn’t much that can be done. All we can do is react.”
Any household savings will barely make a dent in the added costs from Trump’s many tariffs.
Donald Trump’s tariffs — the “fentanyl” levies on Canada, China, and Mexico, the “reciprocal” tariffs on nearly every country (and some uninhabited islands), and the global 10% tariff — will almost certainly cause consumer goods on average to get more expensive. The Yale Budget Lab estimates that in combination, the tariffs Trump has announced so far in his second term will cause prices to rise 2.3%, reducing purchasing power by $3,800 per year per household.
But there’s one very important consumer good that seems due to decline in price.
Trump administration officials — including the president himself — have touted cheaper oil to suggest that the economic response to the tariffs hasn’t been all bad. On Sunday, Secretary of the Treasury Scott Bessent told NBC, “Oil prices went down almost 15% in two days, which impacts working Americans much more than the stock market does.”
Trump picked up this line on Truth Social Monday morning. “Oil prices are down, interest rates are down (the slow moving Fed should cut rates!), food prices are down, there is NO INFLATION,” he wrote. He then spent the day posting quotes from Fox Business commentators echoing that idea, first Maria Bartiromo (“Rates are plummeting, oil prices are plummeting, deregulation is happening. President Trump is not going to bend”) then Charles Payne (“What we’re not talking about is, oil was $76, now it’s $65. Gasoline prices are going to plummet”).
But according to Neil Dutta, head of economic research at Renaissance Macro Research, pointing to falling oil prices as a stimulus is just another example of the “4D chess” theory, under which some market participants attribute motives to Trump’s trade policy beyond his stated goal of reducing trade deficits to as near zero (or surplus!) as possible.
Instead, oil markets are primarily “responding to the recession risk that comes from the tariff and the trade war,” Dutta told me. “That is the main story.” In short, oil markets see less global trade and less global production, and therefore falling demand for oil. The effect on household consumption, he said, was a “second order effect.”
It is true that falling oil prices will help “stabilize consumption,” Dutta told me (although they could also devastate America’s own oil industry). “It helps. It’ll provide some lift to real income growth for consumers, because they’re not spending as much on gasoline.” But “to fully offset the trade war effects, you basically need to get oil down to zero.”
That’s confirmed by some simple and extremely back of the envelope math. In 2023, households on average consumed about 700 gallons of gasoline per year, based on Energy Information Administration calculations that the average gasoline price in 2023 was $3.52, while the Bureau of Labor Statistics put average household gasoline expenditures at about $2,450.
Let’s generously assume that due to the tariffs and Trump’s regulatory and diplomatic efforts, gas prices drop from the $3.26 they were at on Monday, according to AAA, to $2.60, the average price in 2019. (GasBuddy petroleum analyst Patrick De Haanwrote Monday that the tariffs combined with OPEC+ production hikes could lead gas prices “to fall below $3 per gallon.”)
Let’s also assume that this drop in gas prices does not cause people to drive more or buy less fuel-efficient vehicles. In that case, those same 700 gallons cost the average American $1,820, which would generate annual savings of $630 on average per household. If we went to the lowest price since the Russian invasion of Ukraine, about $3 per gallon, total consumption of 700 gallons would cost a household about $2,100, saving $350 per household per year.
That being said, $1,820 is a pretty low level for annual gasoline consumption. In 2021, as the economy was recovering from the Covid recession and before gas prices popped, annual gasoline expenditures only got as low as $1,948; in 2020 — when oil prices dropped to literally negative dollars per barrel and gas prices got down to $1.85 a gallon — annual expenditures were just over $1,500.
In any case, if you remember the opening paragraphs of this story, even the most generous estimated savings would go nowhere near surmounting the overall rise in prices forecast by the Yale Budget Lab. $630 is less than $3,800! (JPMorgan has forecast a more mild increase in prices of 1% to 1.5%, but agrees that prices will likely rise and purchasing power will decline.)
But maybe look at it this way: You might be able to drive a little more than you expected to, even as your costs elsewhere are going up. Just please be careful! You don’t want to get into a bad accident and have to replace your car: New car prices are expected to rise by several thousand dollars due to Trump’s tariffs.
With cars about to get more expensive, it might be time to start tinkering.
More than a decade ago, when I was a young editor at Popular Mechanics, we got a Nissan Leaf. It was a big deal. The magazine had always kept long-term test cars to give readers a full report of how they drove over weeks and months. A true test of the first true production electric vehicle from a major car company felt like a watershed moment: The future was finally beginning. They even installed a destination charger in the basement of the Hearst Corporation’s Manhattan skyscraper.
That Leaf was a bit of a lump, aesthetically and mechanically. It looked like a potato, got about 100 miles of range, and delivered only 110 horsepower or so via its electric motors. This made the O.G. Leaf a scapegoat for Top Gear-style car enthusiasts eager to slander EVs as low-testosterone automobiles of the meek, forced upon an unwilling population of drivers. Once the rise of Tesla in the 2010s had smashed that paradigm and led lots of people to see electric vehicles as sexy and powerful, the original Leaf faded from the public imagination, a relic of the earliest days of the new EV revolution.
Yet lots of those cars are still around. I see a few prowling my workplace parking garage or roaming the streets of Los Angeles. With the faded performance of their old batteries, these long-running EVs aren’t good for much but short-distance city driving. Ignore the outdated battery pack for a second, though, and what surrounds that unit is a perfectly serviceable EV.
That’s exactly what a new brand of EV restorers see. Last week, car site The Autopiancovered DIYers who are scooping up cheap old Leafs, some costing as little as $3,000, and swapping in affordable Chinese-made 62 kilowatt-hour battery units in place of the original 24 kilowatt-hour units to instantly boost the car’s range to about 250 miles. One restorer bought a new battery on the Chinese site Alibaba for $6,000 ($4,500, plus $1,500 to ship that beast across the sea).
The possibility of the (relatively) simple battery swap is a longtime EV owner’s daydream. In the earlier days of the electrification race, many manufacturers and drivers saw simple and quick battery exchange as the solution for EV road-tripping. Instead of waiting half an hour for a battery to recharge, you’d swap your depleted unit for a fully charged one and be on your way. Even Tesla tested this approach last decade before settling for good on the Supercharger network of fast-charging stations.
There are still companies experimenting with battery swaps, but this technology lost. Other EV startups and legacy car companies that followed Nissan and Tesla into making production EVs embraced the rechargeable lithium-ion battery that is meant to be refilled at a fast-charging station and is not designed to be easily removed from the vehicle. Buy an electric vehicle and you’re buying a big battery with a long warranty but no clear plan for replacement. The companies imagine their EVs as something like a smartphone: It’s far from impossible to replace the battery and give the car a new life, but most people won’t bother and will simply move on to a new car when they can’t take the limitations of their old one anymore.
I think about this impasse a lot. My 2019 Tesla Model 3 began its life with a nominal 240 miles of range. Now that the vehicle has nearly six years and 70,000 miles on it, its maximum range is down to just 200, while its functional range at highway speed is much less than that. I don’t want to sink money into another vehicle, which means living with an EV’s range that diminishes as the years go by.
But what if, one day, I replaced its battery? Even if it costs thousands of dollars to achieve, a big range boost via a new battery would make an older EV feel new again, and at a cost that’s still far less than financing a whole new car. The thought is even more compelling in the age of Trump-imposed tariffs that will raise already-expensive new vehicles to a place that’s simply out of reach for many people (though new battery units will be heavily tariffed, too).
This is no simple weekend task. Car enthusiasts have been swapping parts and modifying gas-burning vehicles since the dawn of the automotive age, but modern EVs aren’t exactly made with the garage mechanic in mind. Because so few EVs are on the road, there is a dearth of qualified mechanics and not a huge population of people with the savvy to conduct major surgery on an electric car without electrocuting themselves. A battery-replacing owner would need to acquire not only the correct pack but also potentially adapters and other equipment necessary to make the new battery play nice with the older car. Some Nissan Leaf modifiers are finding their replacement packs aren’t exactly the same size, shape or weight, The Autopian says, meaning they need things like spacers to make the battery sit in just the right place.
A new battery isn’t a fix-all either. The motors and other electrical components wear down and will need to be replaced eventually, too. A man in Norway who drove his Tesla more than a million miles has replaced at least four battery packs and 14 motors, turning his EV into a sort of car of Theseus.
Crucially, though, EVs are much simpler, mechanically, than combustion-powered cars, what with the latter’s belts and spark plugs and thousands of moving parts. The car that surrounds a depleted battery pack might be in perfectly good shape to keep on running for thousands of miles to come if the owner were to install a new unit, one that could potentially give the EV more driving range than it had when it was new.
The battery swap is still the domain of serious top-tier DIYers, and not for the mildly interested or faint of heart. But it is a sign of things to come. A market for very affordable used Teslas is booming as owners ditch their cars at any cost to distance themselves from Elon Musk. Old Leafs, Chevy Bolts and other EVs from the 2010s can be had for cheap. The generation of early vehicles that came with an unacceptably low 100 to 150 miles of range would look a lot more enticing if you imagine today’s battery packs swapped into them. The possibility of a like-new old EV will look more and more promising, especially as millions of Americans realize they can no longer afford a new car.