You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new Nature paper outlines the relationship between rising temperatures and the literal rotation of the Earth.
Thinking too hard about time is a little like thinking too hard about blinking; it seems natural and intuitive until suddenly you’re sweating and it makes no sense at all. At least, that’s how I felt when I came across an incredible new study published in Nature this afternoon by Duncan Agnew, a geophysicist at the Scripps Institution of Oceanography, suggesting that climate change might be affecting global timekeeping.
Our internationally agreed-upon clock, Coordinated Universal Time (UTC), consists of two components: the one you’re familiar with, which is the complete rotation of the Earth around its axis, as well as the average taken from 400 atomic clocks around the world. Since the 1970s, UTC has added 27 leap seconds at irregular intervals to keep pace with atomic clocks as the Earth’s rotation has gradually slowed. Then that rotation started to speed up in 2016; June 29, 2022, set a record for the planet’s shortest day, with the Earth completing a full rotation 1.59 milliseconds short of 24 hours. Timekeepers anticipated at that point that we’d need our first-ever negative leap second around 2026 to account for the acceleration.
But such a model doesn’t properly account for the transformative changes the planet is undergoing due to climate change — specifically, the billions of tons of ice melting from Greenland and Antarctica every year.
Using mathematical modeling, Agnew found that the melt-off, as measured by gravity-tracking satellites, has again decreased the Earth’s angular velocity to the extent that a negative leap second will actually be required three years later than estimates, in 2029.
While a second here or there might not seem like much on a cosmic scale, as Agnew explained to me, these kinds of discrepancies throw into question the entire idea of basing our time system on the physical position of the Earth. Even more mind-bogglingly, Agnew’s modeling makes the astonishing case that so long as it is, climate change will be “inextricably linked” to global timekeeping.
Confused? So was I, until Agnew talked me through his research. Our conversation has been edited and condensed for clarity.
How did you get involved in researching this? I’d never have expected there to be a relationship between climate change and timekeeping.
Pure accident. I’m a geophysicist and I have an avocational interest in timekeeping, so I know all about leap seconds and the history of atomic clocks. I thought about writing a paper figuring out statistically what the next century would bring in terms of leap seconds.
When I started working on the paper, I realized there was a signal that I needed to allow for, which was the change induced by melting ice — which has been studied, there are plenty of papers on this satellite gravity signal. But nobody has, as far as I can tell, related it to rotation. Mostly because, from a geophysical standpoint, that’s not very interesting.
Interesting. Or, well, I guess not interesting.
I mean, there is geophysical literature on this, but it’s largely, Okay, we see this signal, and gravity doesn’t mesh with what we think we know about ice melt. Does it measure what we think we know about sea level change? How does the geophysics all fit together? And the fact that it changes Earth’s rotation is kind of a side issue.
I did not know about this when I got started on this project; it appeared as I was working on it. I thought, “Wait, I need to allow for this.” And when I did, it produced the — I don’t want to use the words “more important” because of the climate change part, but it produced a secondary result, which was that this potential for a negative leap second became clear.
Walk me through how the ice melting at the poles changes the Earth’s rotation.
This is the part that’s easy to explain. Ice melts. A lot of water that used to be at the poles is now distributed all over the ocean. Some of it is close to the equator. The standard picture for what’s called change of angular velocity because of moment of inertia — ignore all the verbiage — but the standard picture is of an ice skater who is spinning. She has her arms over her head. When she puts her arms out, she will slow down — like the water going from the poles to the equator. And that’s it. This is the simple part of the problem.
So what’s the hard part?
The hard part is explaining the part about the Earth’s core. If you have two things that are connected to each other and rotating and one of them slows down, the other one has to speed up. I have not been able to think of an ice skater-like-metaphor to go with that, but the simple one is if you were to put a bowl of water on a lazy Susan and you spin the bowl, then the water will start to spin. It won’t spin initially, but then it will start.
If you started stirring the water in the other direction, that would slow the Lazy Susan down. And that’s the interaction between the core and the solid part of the Earth.
And is that causing the negative leap second to move back three years?
That’s why the leap second might happen at all. On a very long timescale, what’s happening is that the tides are slowing the Earth down. The Earth being slower than an atomic clock means that you need a positive leap second every so often. That was the case in 1972, when they started using leap seconds. The assumption was that the Earth would just keep slowing down and so there would be more positive leap seconds over time.
Instead, the Earth has sped up, entirely because of the core, and that’s not something that people necessarily anticipated. When you take the effect of melting ice out, it becomes clear there’s this steady deceleration of the core; the core is rotating more and more slowly. If you extrapolate that — which is a somewhat risky thing to do, you can’t really predict what the core is going to do — then you discover that there is a leap second, in 2029. The ice melting is going in the other direction; if the ice melting hadn’t occurred, then the leap second would come even earlier. Is this all making sense?
I think I’m grasping it.
Just so you know, one of the two reviewers of this paper was someone in geophysics who said, “I know all this stuff. I wasn’t familiar with the rotation part. This paper has an awful lot of moving parts.”
So, it’s just a difference of a second. Why does this even matter?
We are all familiar with the problem of not being synchronized — we just went through it. If you forget that we did Daylight Savings Time, then you’re an hour off from everybody else and it’s bewildering and a nuisance.
Same problem with leap seconds, except for us, a second is not a big deal. For a computer network, though, a second is a big deal. And why is that? Well, for example, in the United States, the rules for stock markets say that everything that is done has to be accurately timed to a 20th of a second. In Europe, it’s actually to the nearest 1,000th of a second. If we were all just farmers or something, it wouldn’t be a problem, but there’s this whole infrastructure that’s invisible to us that tells our phones what time it is, and allows GPS to work, and everything else.
The easiest thing to do would be to not have a negative leap second. Indeed, there are plans not to have leap seconds anymore because for computer networks, they’re an enormous problem. They arrive at irregular intervals; some human being has to put the information into the computer; the computer has to have a program that tells it when the leap seconds are; and most computer programs can’t tell whether it’s a plus or minus second because there’s never been a minus before. From the computer network standpoint, it would be simplest to just not do this.
So, you ask, why are we doing this? In 1972, when leap seconds were instituted, there were two communities that cared about precise time. One was the people who cared about the frequency of your radio station and other kinds of telecommunications. They wanted to use atomic clocks with frequencies that didn’t change, but that didn’t mesh with what the Earth was doing.
Who cares about time telling you how the Earth is rotating? Well, the answer then was that there were people who used the stars for celestial navigation. Back then, celestial navigation was used not just for ships, but for airplanes — if you flew across the ocean, there was a guy in the cockpit, an actual navigator, who would use a periscope to look at the stars and locate the plane, if only as sort of a backup system. That community is now gone. Almost nobody uses celestial navigation as a primary, or even a secondary, way of finding out where they are anymore because of GPS.
My own personal view — and I can warn you, there’s a huge amount of dispute about this — is that we’d be fine if we just stopped having leap seconds at all.
Is there a … governing body of time? That forces us to do leap seconds?
There’s a giant tangle of international organizations that deal with this, but the rules were set by the people in charge of keeping radio stations aligned because radio broadcasts were how time signals were distributed back in 1972. So the rule was created. Who makes that decision is something called the International Earth Rotation and Reference Systems Service, which uses astronomy to monitor what the Earth is doing. They can predict a little bit in advance where things are going to be, and if within six months things are going to be more than half a second out, they will announce there will be a leap second.
Back to climate change: It seems pretty amazing that something like melting ice can throw things off so much.
All the stuff about negative seconds is important, but it’s only important because of this infrastructure, because we have all these rules. Strip all of that away and the most important result becomes the fact that climate change has caused an amount of ice melt that is enough to change the rotation rate of the entire Earth in a way that’s visible.
How do you talk to people about the gigatons of ice that Greenland loses every year? Do you talk about “water that could cover the entire United States to the depth of X” to get it into people’s minds? Yes, these are small changes in the rotation rate, but just the fact that we can say, “Look, this is slowing down the entire Earth” seems like another way of saying that climate change is unprecedented and important.
How do we proceed, then, if climate change is messing with our system?
There was a lot of resistance to even introducing atomic time. Time was thought of as being about Earth’s rotation and the astronomers didn’t want to give it up. In fact, in the 19th century, observatories would make money by selling time signals to the rest of the community. Then, in the 1950s, the physicists showed up, ran atomic clocks, never looked at the stars, and said, “We can do time better.” The physicists were right. But it took the astronomical community a while to come around to accepting that was how time was going to be defined.
If we get rid of leap seconds then we’d really have cut the connection between the way in which human beings have always thought of time as being, say, from noon to noon, or from sunrise to sunset, and we’d be replacing it with some bunch of guys in a laboratory somewhere running a machine. For some people, it’s very troubling to think of severing the keeping of time from the Earth’s rotation.
You lose a bit of the romance, I think. But clearly, tying our way of describing the linear passage of sequential events to the Earth’s rotation is going to be messy.
Exactly right. There’s a quote from, of all people, St. Augustine, saying, “I know what time is, but if somebody asked me, I can’t tell them.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The agency provided a list to the Sierra Club, which in turn provided the list to Heatmap.
Officials at the Environmental Protection Agency remain closed-lipped about which grants they’ve canceled. Earlier this week, however, the office provided a written list to the Sierra Club in response to a Freedom of Information Act request, which begins to shed light on some of the agency’s actions.
The document shows 49 individual grants that were either “canceled” or prevented from being awarded from January 20 through March 7, which is the day the public information office conducted its search in response to the FOIA request. The grants’ total cumulative value is more than $230 million, although some $30 million appears to have already been paid out to recipients.
The numbers don’t quite line up with what the agency has said publicly. The EPA published three press releases between Trump’s inauguration and March 7, announcing that it had canceled a total of 42 grants and “saved” Americans roughly $227 million. In its first such announcement on February 14, the agency said it was canceling a $50 million grant to the Climate Justice Alliance, but the only grant to that organization on the FOIA spreadsheet is listed at $12 million. To make matters more confusing, there are only $185 million worth of EPA grant cuts listed on the Department of Government Efficiency’s website from the same time period. (Zeldin later announced more than 400 additional grant terminations on March 10.)
Nonetheless, the document gives a clearer picture of which grants Administrator Lee Zeldin has targeted. Nearly half of the canceled grants are related to environmental justice initiatives, which is not surprising, given the Trump administration’s directives to root out these types of programs. But nearly as many were funding research into lower-carbon construction materials and better product labeling to prevent greenwashing.
Here’s the full list of grants, by program:
A few more details and observations from this list:
In the original FOIA request, Sierra Club had asked for a lot more information, including communications between EPA and the grant recipients, and explanations for why the grants — which in many cases involved binding contracts between the government and recipients — were being terminated. In its response, EPA said it was still working on the rest of the request and expected to issue a complete response by April 12.
Defenders of the Inflation Reduction Act have hit on what they hope will be a persuasive argument for why it should stay.
With the fate of the Inflation Reduction Act and its tax credits for building and producing clean energy hanging in the balance, the law’s supporters have increasingly turned to dollars-and-cents arguments in favor of its preservation. Since the election, industry and research groups have put out a handful of reports making the broad argument that in addition to higher greenhouse gas emissions, taking away these tax credits would mean higher electricity bills.
The American Clean Power Association put out a report in December, authored by the consulting firm ICF, arguing that “energy tax credits will drive $1.9 trillion in growth, creating 13.7 million jobs and delivering 4x return on investment.”
The Solar Energy Industries Association followed that up last month with a letter citing an analysis by Aurora Energy Research, which found that undoing the tax credits for wind, solar, and storage would reduce clean energy deployment by 237 gigawatts through 2040 and cost nearly 100,000 jobs, all while raising bills by hundreds of dollars in Texas and New York. (Other groups, including the conservative environmental group ConservAmerica and the Clean Energy Buyers Association have commissioned similar research and come up with similar results.)
And just this week, Energy Innovation, a clean energy research group that had previously published widely cited research arguing that clean energy deployment was not linked to the run-up in retail electricity prices, published a report that found repealing the Inflation Reduction Act would “increase cumulative household energy costs by $32 billion” over the next decade, among other economic impacts.
The tax credits “make clean energy even more economic than it already is, particularly for developers,” explained Energy Innovation senior director Robbie Orvis. “When you add more of those technologies, you bring down the electricity cost significantly,” he said.
Historically, the price of fossil fuels like natural gas and coal have set the wholesale price for electricity. With renewables, however, the operating costs associated with procuring those fuels go away. The fewer of those you have, “the lower the price drops,” Orvis said. Without the tax credits to support the growth and deployment of renewables, the analysis found that annual energy costs per U.S. household would go up some $48 annually by 2030, and $68 by 2035.
These arguments come at a time when retail electricity prices in much of the country have grown substantially. Since December 2019, average retail electricity prices have risen from about $0.13 per kilowatt-hour to almost $0.18, according to the Bureau of Labor Statistics. In Massachusetts and California, rates are over $0.30 a kilowatt-hour, according to the Energy Information Administration. As Energy Innovation researchers have pointed out, states with higher renewable penetration sometimes have higher rates, including California, but often do not, as in South Dakota, where 77% of its electricity comes from renewables.
Retail electricity prices are not solely determined by fuel costs Distribution costs for maintaining the whole electrical system are also a factor. In California, for example,it’s these costs that have driven a spike in rates, as utilities have had to harden their grids against wildfires. Across the whole country, utilities have had to ramp up capital investment in grid equipment as it’s aged, driving up distribution costs, a 2024 Energy Innovation report argued.
A similar analysis by Aurora Energy Research (the one cited by SEIA) that just looked at investment and production tax credits for wind, solar, and batteries found that if they were removed, electricity bills would increase hundreds of dollars per year on average, and by as much as $40 per month in New York and $29 per month in Texas.
One reason the bill impact could be so high, Aurora’s Martin Anderson told me, is that states with aggressive goals for decarbonizing the electricity sector would still have to procure clean energy in a world where its deployment would have gotten more expensive. New York is targetinga target for getting 70% of its electricity from renewable sources by 2030, while Minnesota has a goal for its utilities to sell 55% clean electricity by 2035 and could see its average cost increase by $22 a month. Some of these states may have to resort to purchasing renewable energy certificates to make up the difference as new generation projects in the state become less attractive.
Bills in Texas, on the other hand, would likely go up because wind and solar investment would slow down, meaning that Texans’ large-scale energy consumption would be increasingly met with fossil fuels (Texas has a Renewable Portfolio Standard that it has long since surpassed).
This emphasis from industry and advocacy groups on the dollars and cents of clean energy policy is hardly new — when the House of Representatives passed the (doomed) Waxman-Markey cap and trade bill in 2009, then-Speaker of the House Nancy Pelosi told the House, “Remember these four words for what this legislation means: jobs, jobs, jobs, and jobs.”
More recently, when Democratic Senators Martin Heinrich and Tim Kaine hosted a press conference to press their case for preserving the Inflation Reduction Act, the email that landed in reporters’ inboxes read “Heinrich, Kaine Host Press Conference on Trump’s War on Affordable, American-Made Energy.”
“Trump’s war on the Inflation Reduction Act will kill American jobs, raise costs on families, weaken our economic competitiveness, and erode American global energy dominance,” Heinrich told me in an emailed statement. “Trump should end his destructive crusade on affordable energy and start putting the interests of working people first.”
That the impacts and benefits of the IRA are spread between blue and red states speaks to the political calculation of clean energy proponents, hoping that a bill that subsidized solar panels in Texas, battery factories in Georgia, and battery storage in Southern California could bring about a bipartisan alliance to keep it alive. While Congressional Republicans will be scouring the budget for every last dollar to help fund an extension of the 2017 Tax Cuts and Jobs Act, a group of House Republicans have gone on the record in defense of the IRA’s tax credits.
“There's been so much research on the emissions impact of the IRA over the past few years, but there's been comparatively less research on the economic benefits and the household energy benefits,” Orvis said. “And I think that one thing that's become evident in the last year or so is that household energy costs — inflation, fossil fuel prices — those do seem to be more top of mind for Americans.”
Opinion modeling from Heatmap Pro shows that lower utility bills is the number one perceived benefit of renewables in much of the country. The only counties where it isn’t the number one perceived benefit are known for being extremely wealthy, extremely crunchy, or both: Boulder and Denver in Colorado; Multnomah (a.k.a. Portland) in Oregon; Arlington in Virginia; and Chittenden in Vermont.
On environmental justice grants, melting glaciers, and Amazon’s carbon credits
Current conditions: Severe thunderstorms are expected across the Mississippi Valley this weekend • Storm Martinho pushed Portugal’s wind power generation to “historic maximums” • It’s 62 degrees Fahrenheit, cloudy, and very quiet at Heathrow Airport outside London, where a large fire at an electricity substation forced the international travel hub to close.
President Trump invoked emergency powers Thursday to expand production of critical minerals and reduce the nation’s reliance on other countries. The executive order relies on the Defense Production Act, which “grants the president powers to ensure the nation’s defense by expanding and expediting the supply of materials and services from the domestic industrial base.”
Former President Biden invoked the act several times during his term, once to accelerate domestic clean energy production, and another time to boost mining and critical minerals for the nation’s large-capacity battery supply chain. Trump’s order calls for identifying “priority projects” for which permits can be expedited, and directs the Department of the Interior to prioritize mineral production and mining as the “primary land uses” of federal lands that are known to contain minerals.
Critical minerals are used in all kinds of clean tech, including solar panels, EV batteries, and wind turbines. Trump’s executive order doesn’t mention these technologies, but says “transportation, infrastructure, defense capabilities, and the next generation of technology rely upon a secure, predictable, and affordable supply of minerals.”
Anonymous current and former staffers at the Environmental Protection Agency have penned an open letter to the American people, slamming the Trump administration’s attacks on climate grants awarded to nonprofits under the Inflation Reduction Act’s Greenhouse Gas Reduction Fund. The letter, published in Environmental Health News, focuses mostly on the grants that were supposed to go toward environmental justice programs, but have since been frozen under the current administration. For example, Climate United was awarded nearly $7 billion to finance clean energy projects in rural, Tribal, and low-income communities.
“It is a waste of taxpayer dollars for the U.S. government to cancel its agreements with grantees and contractors,” the letter states. “It is fraud for the U.S. government to delay payments for services already received. And it is an abuse of power for the Trump administration to block the IRA laws that were mandated by Congress.”
The lives of 2 billion people, or about a quarter of the human population, are threatened by melting glaciers due to climate change. That’s according to UNESCO’s new World Water Development Report, released to correspond with the UN’s first World Day for Glaciers. “As the world warms, glaciers are melting faster than ever, making the water cycle more unpredictable and extreme,” the report says. “And because of glacial retreat, floods, droughts, landslides, and sea-level rise are intensifying, with devastating consequences for people and nature.” Some key stats about the state of the world’s glaciers:
In case you missed it: Amazon has started selling “high-integrity science-based carbon credits” to its suppliers and business customers, as well as companies that have committed to being net-zero by 2040 in line with Amazon’s Climate Pledge, to help them offset their greenhouse gas emissions.
“The voluntary carbon market has been challenged with issues of transparency, credibility, and the availability of high-quality carbon credits, which has led to skepticism about nature and technological carbon removal as an effective tool to combat climate change,” said Kara Hurst, chief sustainability officer at Amazon. “However, the science is clear: We must halt and reverse deforestation and restore millions of miles of forests to slow the worst effects of climate change. We’re using our size and high vetting standards to help promote additional investments in nature, and we are excited to share this new opportunity with companies who are also committed to the difficult work of decarbonizing their operations.”
The Bureau of Land Management is close to approving the environmental review for a transmission line that would connect to BluEarth Renewables’ Lucky Star wind project, Heatmap’s Jael Holzman reports in The Fight. “This is a huge deal,” she says. “For the last two months it has seemed like nothing wind-related could be approved by the Trump administration. But that may be about to change.”
BLM sent local officials an email March 6 with a draft environmental assessment for the transmission line, which is required for the federal government to approve its right-of-way under the National Environmental Policy Act. According to the draft, the entirety of the wind project is sited on private property and “no longer will require access to BLM-administered land.”
The email suggests this draft environmental assessment may soon be available for public comment. BLM’s web page for the transmission line now states an approval granting right-of-way may come as soon as May. BLM last week did something similar with a transmission line that would go to a solar project proposed entirely on private lands. Holzman wonders: “Could private lands become the workaround du jour under Trump?”
Saudi Aramco, the world’s largest oil producer, this week launched a pilot direct air capture unit capable of removing 12 tons of carbon dioxide per year. In 2023 alone, the company’s Scope 1 and Scope 2 emissions totalled 72.6 million metric tons of carbon dioxide equivalent.