You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Or maybe you want to go electric? Because yes, they are different.
Have you given much thought to the inner workings of your stove? Me neither. Your home probably came with one already installed, and so long as you can turn it on, boil some water and simmer up a sauce, perhaps that’s reason enough not to second guess it.
But if you’re cooking with gas, we’re here to let you know that, culinary connoisseur or not, there are undeniable benefits to switching to either electric or induction cooking. First and foremost, neither relies directly on fossil fuels or emits harmful pollutants such as nitrogen dioxide into your home, making the switch integral to any effort to decarbonize your life — not to mention establish a comfortable living environment. Second, both electric and induction are far more energy efficient than gas.
“So on a gas range, about 70% of the heat that is generated from the gas goes into your kitchen,” DR Richardson, co-founder of the home electrification platform Elephant Energy, told me. “So it's very inefficient. You get hot. The handle gets hot. The kitchen gets hot. Everything gets hot, except your food. And it takes a really long time.” With an electric or induction stove, you can boil water faster and heat your food up quicker, all while reducing your home’s carbon footprint.
Convinced yet? If you’re reading this guide, we sure hope you’re at least intrigued! But even after you’ve decided to make the switch, confusion and analysis paralysis can still loom. Are your needs better suited to electric or induction? Will expensive electrical upgrades be required? How will this impact your cooking? And where are all the stove stores, anyway? So before you start browsing the aisles and showrooms, let’s get up to speed on all things stoves… or is it ranges? You’ll see.
Friday Apaliski is the director of communications at the Building Decarbonization Coalition, a nonprofit composed of members across various sectors including environmental justice groups, energy providers, and equipment manufacturers, seeking alignment on a path towards the elimination of fossil fuels in buildings.
DR Richardson is a co-founder of Elephant Energy, a platform that aims to simplify residential electrification for both homeowners and contractors. The company provides personalized electrification roadmaps and handles the entire installation process, including helping homeowners take advantage of all the available local, state, and federal incentives.
It depends on the cookware you currently own, but you will almost certainly need to replace some items. Induction stoves work with pots and pans that are made of magnetic materials like cast iron and stainless steel, but not those made of glass, aluminum, or copper. You can check to see if your cookware is induction compatible by seeing if a magnet will stick to the bottom, or if the induction logo is present on the bottom.
Everyone has their own affinities, but what we can tell you is that both traditional electric stoves and newer induction stoves are more energy efficient than gas stoves, and when it comes to temperature control, induction stoves are the clear winner. They allow you to make near instantaneous heat adjustments with great precision, while gas stoves take longer to adjust and are less exact to begin with.
Cooking on a new stove will undoubtedly come with a learning curve, what with all the new knobs and buttons and little sounds to get used to. Many cooks are used to relying on the visual cue of the flame to let them know how hot the stove is, but now you’ll be relying on a number on the screen, instead. Especially if you go with induction stove, be assured that you’ll be in good company among some top chefs.
This is indeed a key question — more on this one below.
If you don’t know already, it’s not too hard to find out. When you turn on the stovetop, is there fire? That, folks, is a gas stovetop. It will have a gas supply line that looks like a threaded pipe that connects to the back of the appliance. Gas stovetops are tricky to clean, not particularly sleek, and most prevalent in California, New Jersey, Illinois, Washington DC, New York, and Nevada.
If you have an electric range, the stovetop will be flat with metal coils either exposed or concealed beneath a ceramic glass surface. The coils will glow bright when they’re on. Electric ranges plug directly into 240-volt outlets (newer versions have four prongs, older ones have three), with a cord that looks like a heavy vacuum plug or a small hose. Electric stovetops are always paired with electric ovens — this is the setup that the majority of Americans already have according to the Energy Information Administration.
“So if you have an electric range and you like it, that's wonderful. You should keep it. But generally, when we're talking about transitioning from a gas experience to something else, induction is a much more analogous cooking experience,” Apaliski said.
If you have an induction range, it was probably a very intentional choice! According to a 2022 Consumer Reports survey, only about 3% of Americans have an induction range or cooktop, so big ups if you’re a part of that energy efficient minority. But if you just wandered into a new home and are wondering if it’s got the goods, you might have to turn on the stove to tell. Unlike an electric stovetop, you won’t see the cooking area glow because the surface isn’t actually getting hot, only the cookware is. Induction stoves also plug directly into 240-volt outlets.
But wait! There’s a chance you’re cooking with both gas and electric on a dual-fuel range. The telltale sign will be if your range connects to both a gas supply line as well as a 240-volt outlet (remember that plug?). But if it’s difficult to determine what’s going on back there, here’s what else to look out for: A metal device at the bottom and/or top of the oven’s interior that glows bright when the oven is on indicates that it’s electric! Sometimes these heating elements will be concealed, though. In that case, look for telltale signs of gas: An open flame when the oven is on or a visible pilot light when off. Newer gas stoves might not have either, but rather use an electronic ignition system that you can hear fire up about 30-45 seconds after turning on the oven. If you’re still confused, there’s always your user manual! (You kept that, right?)
If you’re going from an all-gas range to electric or induction and your stove is located on a kitchen island, for example, this could make installing the necessary electrical wiring more complex. It’s something to ask potential contractors about when you get to that stage.
Whenever you add a new electric appliance to your home, there’s the possibility that you’ll need to upgrade your electric panel to accommodate the new load. A new panel can cost thousands of dollars, though, so you’ll want to know ahead of time if this might be necessary. First, check the size of your current electric panel. You can find this information on your main breaker or fuse, a label on the panel itself, or your electric meter.
According to Rewiring America, if your panel is less than 100 amps, an upgrade could be necessary. If it’s anywhere from 100 to 150 amps, you can likely electrify everything in your home — including your range — without a panel upgrade, although some creative planning might be needed (more on that here and below, in the section on finding contractors and installers). If your panel is greater than 150 amps, it’s very likely that you can get an electric range (as well as a bevy of other electrical appliances) without upgrading.
As of now, federal incentives for electric and induction ranges, cooktops, and ovens are not yet available. But Home Electrification and Appliance Rebates programs, established via the Inflation Reduction Act, will roll out on a state-by-state basis over the course of this year and next, with most programs expected to come online in 2025. These rebates could give low- and moderate-income houses up to $840 back on the cost of switching from gas to electric or induction cooking.
While many details have yet to be released, it’s important to note that qualifying customers won’t be required to pay the full price and then apply for reimbursement — rather, the discount will be applied upfront. Once the program becomes available, your state will have a website with more information on how to apply. If you’re cash-strapped today, it could be worth waiting until the federal incentives roll out, as rebates will not be retroactively available.
Many states and municipalities already have their own incentives for electric appliance upgrades though. Unfortunately, there’s currently no centralized database to look these up, so that means doing a little homework. Check with your local utility, as well as your local and state government websites and energy offices for home electrification incentives. If you happen to live in California or Washington state, you can search for local incentives here, via this initiative from the Building Decarbonization Coalition. The NODE Collective is also working to compile data on all residential incentive programs, so keep checking in, more information is coming soon!
Assuming you currently have a gas stove or a dual fuel range, this is the first big choice you’ll have to make. For customers interested in upgrading from electric to induction, let this also be your guide, as an induction stove is indeed the higher-end choice. Here are the main differences between the two:
Electric
Induction
*According to Rewiring America
** According to this paper
Heatmap Recommends: Spring for the induction stove if you can. Not only will it provide a superior cooking experience, but it’s safer too. Induction stoves only heat up magnetic pots and pans, so if you touch the stove’s surface, you won’t get burned. Most will also turn off automatically if there’s no cookware detected.
“Induction is definitely the upgrade in basically every sense, if you can afford it. Induction is a way better cooking experience. It's got way more fun heating and cooking control. It's much more energy efficient. It's much faster,” said Richardson.
If you’re curious about what it’s like to cook with an electric or induction stove, you can buy a standalone single-pot cooktop for well under $100; it will plug straight into a standard outlet. Additionally, Apalinksi says that many libraries (yes, libraries!) and utilities allow residents to borrow an induction cooktop and try it out for a few weeks, completely free of charge.
New electric and induction ranges and cooktops will only be eligible for forthcoming federal incentives if they’re certified by Energy Star, a joint program run by the Environmental Protection Agency and the DOE that provides consumer information on energy efficient products, practices, and standards. You can check out what models of ranges and cooktops qualify here. But to get a handle on the actual look and feel of various options, you should try and find a showroom or head to a large retail store.
“Go to your local big box retailer, whether it's a Home Depot or Best Buy or Lowe's, they tend to have a bunch of models on the floor. Their representatives can talk to you about all the different options out there. But you have to research a little bit ahead of time, otherwise they're going to point you to the latest gas appliance,” said Richardson.
If you learn that making the switch is going to entail particularly cumbersome electrical upgrades, Apaliski said there are some innovative companies such as Channing Street Copper and Impulse Labs that make induction ranges and cooktops that plug into standard outlets. They’re much pricier than your standard range, but if you can afford it, one could be right if you’re looking for plug-and-play simplicity and sleek design.
“So this is great, for example, if you are a renter, or if you are someone who has limited capacity on your electrical panel, or if you are someone who has one of these kitchen islands that is just impossible to get a new electric cord to,” Apaliski said.
If you buy your new range or cooktop from a big box retailer, they’ll typically haul away your old appliance and deliver and install the new one for you at either low or no cost. Don’t assume this is a part of the package, though, and be sure to ask what is and isn’t included before you make your purchase.
But if you’re moving from an all gas range or cooktop to an electric or induction range or cooktop, the complicated part isn’t the installation process, it’s everything that must come before. That includes capping and sealing the gas line for your old stove (this is a job for a plumber) and installing the requisite electric wiring to power your new stove (this is a job for an electrician).
As noted, making the switch could also mean a costly electric panel upgrade. You should ask potential electricians about this right away, as well as about creative solutions that would let you work with your existing panel. If you’re running out of space, you could buy a circuit sharing device like a smart splitter or a circuit pauser, which would allow multiple loads, such as an EV charger and your stove, to share a circuit, or ensure that specific appliances are shut off when you’re approaching your panel’s limit. Richardson recommends getting opinions from a couple different electricians, seconding the idea that if your panel is 100 amps or more, an upgrade is likely not necessary.
Above all, you should make sure that the gas line and electric work is taken care of before the stove installer comes to your home. Richardson said that occasionally, retailers will provide plumbing and electrical services as an add-on option, so it never hurts to ask. But most likely you’ll be sourcing contractors and compiling quotes on your own. If you don’t already have a go to person for the job, ask friends, family, and neighbors for references. Google and Yelp reviews are always there too.
New electric ranges do not usually come with a power cord. You must purchase your own power cord prior to installation.
Once you get time on the calendar with a trustworthy, knowledgeable and fair-priced plumber and electrician, it’s time to schedule the installation of your new range or cooktop. And after that it’s time to metaphorically fire up those resistive coils or electromagnetic fields and make yourself an electrified meal for the ages.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.
On billions for clean energy, Orsted layoffs, and public housing heat pumps
Current conditions: A tropical rainstorm is forming in the Atlantic that’s forecast to barrel along the East Coast through early next week, threatening major coastal flooding and power outages • Hurricane Priscilla is weakening as it tracks northward toward California • The Caucasus region is sweltering in summer-like heat, with the nation of Georgia enduring temperatures of up to 93 degrees Fahrenheit in October.
Base Power, the Texas power company that leases batteries to homeowners and taps the energy for the grid, on Tuesday announced a $1 billion financing round. The Series C funding is set to supercharge the Austin-based company’s meteoric growth. Since starting just two years ago, Base has deployed more than 100 megawatts of residential battery capacity, making it one of the fastest growing distributed energy companies in the nation. The company now plans to build a factory in the old headquarters of the Austin American-Statesman, the leading daily newspaper in the Texan capital. The funding round included major investors who are increasing their stakes, including Valor Equity Partners, Thrive Capital, and Andreessen Horowitz, and at least nine new venture capital investors, including Lowercarbon, Avenir, and Positive Sum. “The chance to reinvent our power system comes once in a generation,” Zach Dell, chief executive and co-founder of Base Power, said in a statement. “The challenge ahead requires the best engineers and operators to solve it and we’re scaling the team to make our abundant energy future a reality.”
The deal came a day after Brookfield Asset Management, the Canadian-American private equity giant, raised a record $23.5 billion for its clean energy fund. At least $5 billion has already been spent on investments such as the renewable power operator Neoen, the energy developer Geronimo Power, and the Indian wind and solar giant Evren. “Energy demand is growing fast, driven by the growth of artificial intelligence as well as electrification in industry and transportation,” Connor Teskey, Brookfield’s president and renewable power chief, said in a press release. “Against this backdrop we need an ‘any and all’ approach to energy investment that will continue to favor low carbon resources.”
Orsted has been facing down headwinds for months. The Danish offshore wind giant has absorbed the Trump administration’s wrath as the White House deployed multiple federal agencies to thwart progress on building seaward turbines in the Northeastern U.S. Then lower-than-forecast winds this year dinged Orsted’s projected earnings for 2025. When the company issued new stock to fund its efforts to fight back against Trump, the energy giant was forced to sell the shares at a steep discount, as I wrote in this newsletter last month. Despite all that, the company has managed to raise the money it needed. On Wednesday, The Wall Street Journal reported that Orsted had raised $9.4 billion. Existing shareholders subscribed for 99.3% of the new shares on offer, but demand for the remaining shares was “extraordinarily high,” the company said.
That wasn’t enough to stave off job cuts. Early Thursday morning, the company announced plans to lay off 2,000 employees between now and 2027. The cuts represented roughly one-quarter of the company’s 8,000-person global workforce. “This is a necessary consequence of our decision to focus our business and the fact that we'll be finalizing our large construction portfolio in the coming years — which is why we'll need fewer employees,” Rasmus Errboe, Orsted’s chief executive, said in a statement published on CNBC. "At the same time, we want to create a more efficient and flexible organization and a more competitive Orsted, ready to bid on new value-accretive offshore wind projects.”
California Governor Gavin Newsom. Mario Tama/Getty Images
California operates the world’s largest geothermal power station, The Geysers, and generates up to 5% of its power from the Earth’s heat. But the state is far behind its neighbors on developing new plants based on next-generation technology. Most of the startups racing to commercialize novel methods are headquartered or building pilot plants in states such as Utah, Nevada, and Texas. A pair of bills to make doing business in California easier for geothermal companies was supposed to change that. Yet while Governor Gavin Newsom signed one statute into law that makes it easier for state regulators to certify geothermal plants, he vetoed a permitting reform bill to which the industry had pegged its hopes. “Every geothermal developer and energy org I talked to was excited about this bill,” Thomas Hochman, who heads the energy program at the right-leaning Foundation for American Innovation, wrote in a post on X. “The legislature did everything right, passing it unanimously. They even reworked it to accommodate certain classic California concerns, such as prevailing wage requirements.”
In a letter announcing his veto, the governor claimed that the law would have added new fees for geothermal projects. But an executive at Zanskar — the startup that, as Heatmap’s Katie Brigham reported last month, is using new technology to locate and tap into conventional geothermal resources — called the governor’s argument “weak sauce.” Far from burdening the industry, Zanskar co-founder Joel Edwards said on X, “this was a clean shot to accelerate geothermal today, and he whiffed it.”
Last month, Generate Capital trumpeted the appointment of its first new chief executive in its 11-year history as the leading infrastructure investment firm sought to realign its approach to survive a tumultuous time in clean-energy financing. Less publicly, as Katie wrote in a scoop last night, it also kicked off company-wide job cuts. In an interview with Katie, Jonah Goldman, the firm’s head of external affairs, said the company “grew quickly and made some mistakes,” and now planned to lay off 50 people.
Generate once invested in “leading-edge technologies,” according to co-founder Jigar Shah, who left the firm to serve as the head of the Biden-era DOE Loan Programs Office. That included investments in projects involving fuel cells, anaerobic digesters, and battery storage. But from the outside, he said on the Open Circuits podcast he now co-hosts, the firm appears to have moved away from taking these riskier but potentially more lucrative bets. “They ended up with 38 people in their capital markets team, and their capital markets team went out to the marketplace and said, Hey, we have all this stuff to sell. And the people that they went to said, Well, that’s interesting, but what we really would love is boring community solar.”
Three of New England’s largest public housing agencies signed deals with the heat pump manufacturer Gradient to replace aging electric heaters and air conditioners with the company’s 120-volt, two-way units that provide both heating and cooling. The Boston Housing Authority, New England’s largest public housing agency, will kick off the deal by installing 100 all-weather, two-way units that both heat and cool at the Hassan Apartments, a complex for seniors and adults with disabilities in Boston’s Mattapan neighborhood. The housing authorities in neighboring Chelsea and Lynn — two formerly industrial, working-class cities just outside Boston — will follow the same approach.
Public housing agencies have long served a vital role in helping to popularize new, more efficient appliances. The New York City Housing Authority, for example, is credited with creating the market for efficient mini fridges in the 1990s. Last year, NYCHA — the nation’s largest public housing system — signed a similar deal with Gradient for heat pumps. Months later, as Heatmap’s Emily Pontecorvo exclusively reported at the time, NYCHA picked a winner in its $32 million contest for an efficient new induction stove for its apartments.
Three chemists — Susumu Kitagawa, Richard Robson, and Omar Yaghi — won the Nobel Prize for “groundbreaking discoveries” that "may contribute to solving some of humankind’s greatest challenges, from pollution to water scarcity.” Just a few grams of the so-called molecular organic frameworks the scientists pioneered could have as much surface area as a soccer field, which can be used to lock gas molecules in place in carbon capture or harvest freshwater from the atmosphere.