You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Buildings are one of the few places where individuals have direct control over greenhouse gas emissions. You can’t instantly reduce a farmer’s beef production by eating less meat or personally shut down a natural gas power plant. But if you’re a homeowner, it’s up to you whether or not you’re burning fossil fuels every time you heat your home, use hot water, dry your clothes, or cook food. Together, these activities account for about 7% of annual U.S. fossil fuel-related carbon emissions.
That may not sound like a lot, but it adds up. When you buy a new heating system or a new clothes dryer, you’re investing in a machine you’re going to use for 15 to 20 years or more. You can decide to lock in a system that burns fossil fuels and is guaranteed to add greenhouse gases to the atmosphere throughout that time — or you can invest in one that can drive down emissions as the electric grid becomes cleaner. (If you want some advice for which new appliances to go with, we have some guides for that.)
“There’s an inflection point that we’re facing right now,” Sara Baldwin, the senior electrification director at the think tank Energy Innovation, told me. “If we lock in another two decades of fossil fuel infrastructure in our homes, we’ve got way more work down the line.”
That’s not to say these are easy changes to make. Perhaps it’s not even totally fair to say “it’s up to you,” because for some homeowners, the cost of making some of these changes will be out of reach. Electric appliances are often more expensive to install than their fossil fuel counterparts. And in some cases, as in places where natural gas is much cheaper than electricity, the switch might also increase your energy bills, even though the appliances themselves are more efficient.
If you have the means, though, the benefits can be significant. Replacing your furnace with an electric heat pump — which can both heat and cool your home — could have two-for-one benefits for those without central air, especially as summers get hotter. Many homeowners also praise the quieter, more even temperature control that heat pumps provide. Electrify any of your appliances and you’ll also be helping to reduce local outdoor air pollution; switch to an electric cooktop and you’ll reduce indoor air pollution for you and your family, as well.
Another way to think about electrification is as a chance to leave your mark on the world. Political scientist Leah Stokes, who serves as policy counsel to the electrification advocacy group Rewiring America in addition to teaching at the University of California, Santa Barbara, told me she likes to think of the appliances in our homes as “the infrastructure that we are in charge of.” You can lobby your representatives to build bike lanes, but the decision is mostly out of your hands. You’re the only one that can decide to change out your furnace or your water heater, however. “These are huge opportunities for us to make legacy impacts on carbon pollution,” Stokes said. And unlike behavioral changes such as eating vegetarian, you only have to do it once. “If you sell that house, if you die, it's a piece of infrastructure that continues on.”
Making these changes won’t necessarily result in immediate emission reductions. It depends on where you live and where your power comes from. If a lot of your electricity comes from coal, for example, a natural gas furnace might emit less carbon than even the most efficient heat pump. But that’s just how the math works out today. Researchers who have modeled out the emissions impacts over the average lifetime of the equipment — about 16 years — have found that as the grid continues along its trajectory of getting cleaner, heat pumps will emit less carbon overall in every state.
Not every home electrification project will get you the same carbon bang for your buck. Space heating is by far the most energy-intensive thing we do in our homes, so from an emissions standpoint, replacing your boiler or furnace is the most effective change you can make. Clothes dryers and stoves use so little energy, comparatively, that swapping them out looks almost inconsequential for the climate, at least on paper.
But the reason electrifying your home can be such a high leverage action is not just because of the absolute emission reductions you can achieve. It can also accelerate structural changes. If you’re currently a natural gas customer, going fully electric means you’ll be able to disconnect from the local distribution system and stop paying into the pool of funds used to maintain it. That can increase rates for the remaining customers, which is far from ideal. But it also makes the economics of electrification more attractive.
“It's very important that we can't leave low income people behind,” said Stokes. “But the more folks who get off of gas, even a small number, it can really start to force the question of, should we start thinking about if we should be investing hundreds of millions of dollars into aging gas infrastructure? Or should we use that money to subsidize electrification for low income folks?”
So, where to begin? Space heating is the biggest opportunity, but it’s also the most expensive and complicated project. There’s no reason you have to start there, especially if your existing heater has a lot of life left in it. “Don't start with the hardest thing,” said Baldwin. “If it feels daunting, start with the easiest thing, or start with something that feels within reach.”
Larry Waters, an HVAC contractor I interviewed for our heat pump guide, recommends making a “gas inventory” — a list of all of your gas appliances and how old they are. Replace whichever appliance is nearest to the end of its useful life first, but plan ahead for future projects. Figure out if you’ll need to budget in an electrical upgrade, or if you can combine any of the work to save money.
The following guides will help you navigate each of these projects, with recommendations from experts who are on the ground, helping homeowners through this every day.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
1. Marion County, Indiana — State legislators made a U-turn this week in Indiana.
2. Baldwin County, Alabama — Alabamians are fighting a solar project they say was dropped into their laps without adequate warning.
3. Orleans Parish, Louisiana — The Crescent City has closed its doors to data centers, at least until next year.
A conversation with Emily Pritzkow of Wisconsin Building Trades
This week’s conversation is with Emily Pritzkow, executive director for the Wisconsin Building Trades, which represents over 40,000 workers at 15 unions, including the International Brotherhood of Electrical Workers, the International Union of Operating Engineers, and the Wisconsin Pipe Trades Association. I wanted to speak with her about the kinds of jobs needed to build and maintain data centers and whether they have a big impact on how communities view a project. Our conversation was edited for length and clarity.
So first of all, how do data centers actually drive employment for your members?
From an infrastructure perspective, these are massive hyperscale projects. They require extensive electrical infrastructure and really sophisticated cooling systems, work that will sustain our building trades workforce for years – and beyond, because as you probably see, these facilities often expand. Within the building trades, we see the most work on these projects. Our electricians and almost every other skilled trade you can think of, they’re on site not only building facilities but maintaining them after the fact.
We also view it through the lens of requiring our skilled trades to be there for ongoing maintenance, system upgrades, and emergency repairs.
What’s the access level for these jobs?
If you have a union signatory employer and you work for them, you will need to complete an apprenticeship to get the skills you need, or it can be through the union directly. It’s folks from all ranges of life, whether they’re just graduating from high school or, well, I was recently talking to an office manager who had a 50-year-old apprentice.
These apprenticeship programs are done at our training centers. They’re funded through contributions from our journey workers and from our signatory contractors. We have programs without taxpayer dollars and use our existing workforce to bring on the next generation.
Where’s the interest in these jobs at the moment? I’m trying to understand the extent to which potential employment benefits are welcomed by communities with data center development.
This is a hot topic right now. And it’s a complicated topic and an issue that’s evolving – technology is evolving. But what we do find is engagement from the trades is a huge benefit to these projects when they come to a community because we are the community. We have operated in Wisconsin for 130 years. Our partnership with our building trades unions is often viewed by local stakeholders as the first step of building trust, frankly; they know that when we’re on a project, it’s their neighbors getting good jobs and their kids being able to perhaps train in their own backyard. And local officials know our track record. We’re accountable to stakeholders.
We are a valuable player when we are engaged and involved in these sting decisions.
When do you get engaged and to what extent?
Everyone operates differently but we often get engaged pretty early on because, obviously, our workforce is necessary to build the project. They need the manpower, they need to talk to us early on about what pipeline we have for the work. We need to talk about build-out expectations and timelines and apprenticeship recruitment, so we’re involved early on. We’ve had notable partnerships, like Microsoft in southeast Wisconsin. They’re now the single largest taxpayer in Racine County. That project is now looking to expand.
When we are involved early on, it really shows what can happen. And there are incredible stories coming out of that job site every day about what that work has meant for our union members.
To what extent are some of these communities taking in the labor piece when it comes to data centers?
I think that’s a challenging question to answer because it varies on the individual person, on what their priority is as a member of a community. What they know, what they prioritize.
Across the board, again, we’re a known entity. We are not an external player; we live in these communities and often have training centers in them. They know the value that comes from our workers and the careers we provide.
I don’t think I’ve seen anyone who says that is a bad thing. But I do think there are other factors people are weighing when they’re considering these projects and they’re incredibly personal.
How do you reckon with the personal nature of this issue, given the employment of your members is also at stake? How do you grapple with that?
Well, look, we respect, over anything else, local decision-making. That’s how this should work.
We’re not here to push through something that is not embraced by communities. We are there to answer questions and good actors and provide information about our workforce, what it can mean. But these are decisions individual communities need to make together.
What sorts of communities are welcoming these projects, from your perspective?
That’s another challenging question because I think we only have a few to go off of here.
I would say more information earlier on the better. That’s true in any case, but especially with this. For us, when we go about our day-to-day activities, that is how our most successful projects work. Good communication. Time to think things through. It is very early days, so we have some great success stories we can point to but definitely more to come.
The number of data centers opposed in Republican-voting areas has risen 330% over the past six months.
It’s probably an exaggeration to say that there are more alligators than people in Colleton County, South Carolina, but it’s close. A rural swath of the Lowcountry that went for Trump by almost 20%, the “alligator alley” is nearly 10% coastal marshes and wetlands, and is home to one of the largest undeveloped watersheds in the nation. Only 38,600 people — about the population of New York’s Kew Gardens neighborhood — call the county home.
Colleton County could soon have a new landmark, though: South Carolina’s first gigawatt data center project, proposed by Eagle Rock Partners.
That’s if it overcomes mounting local opposition, however. Although the White House has drummed up data centers as the key to beating China in the race for AI dominance, Heatmap Pro data indicate that a backlash is growing from deep within President Donald Trump’s strongholds in rural America.
According to Heatmap Pro data, there are 129 embattled data centers located in Republican-voting areas. The vast majority of these counties are rural; just six occurred in counties with more than 1,000 people per square mile. That’s compared with 93 projects opposed in Democratic areas, which are much more evenly distributed across rural and more urban areas.
Most of this opposition is fairly recent. Six months ago, only 28 data centers proposed in low-density, Trump-friendly countries faced community opposition. In the past six months, that number has jumped by 95 projects. Heatmap’s data “shows there is a split, especially if you look at where data centers have been opposed over the past six months or so,” says Charlie Clynes, a data analyst with Heatmap Pro. “Most of the data centers facing new fights are in Republican places that are relatively sparsely populated, and so you’re seeing more conflict there than in Democratic areas, especially in Democratic areas that are sparsely populated.”
All in all, the number of data centers that have faced opposition in Republican areas has risen 330% over the past six months.
Our polling reflects the breakdown in the GOP: Rural Republicans exhibit greater resistance to hypothetical data center projects in their communities than urban Republicans: only 45% of GOP voters in rural areas support data centers being built nearby, compared with nearly 60% of urban Republicans.

Such a pattern recently played out in Livingston County, Michigan, a farming area that went 61% for President Donald Trump, and “is known for being friendly to businesses.” Like Colleton County, the Michigan county has low population density; last fall, hundreds of the residents of Howell Township attended public meetings to oppose Meta’s proposed 1,000-acre, $1 billion AI training data center in their community. Ultimately, the uprising was successful, and the developer withdrew the Livingston County project.
Across the five case studies I looked at today for The Fight — in addition to Colleton and Livingston Counties, Carson County, Texas; Tucker County, West Virginia; and Columbia County, Georgia, are three other red, rural examples of communities that opposed data centers, albeit without success — opposition tended to be rooted in concerns about water consumption, noise pollution, and environmental degradation. Returning to South Carolina for a moment: One of the two Colleton residents suing the county for its data center-friendly zoning ordinance wrote in a press release that he is doing so because “we cannot allow” a data center “to threaten our star-filled night skies, natural quiet, and enjoyment of landscapes with light, water, and noise pollution.” (In general, our polling has found that people who strongly oppose clean energy are also most likely to oppose data centers.)
Rural Republicans’ recent turn on data centers is significant. Of 222 data centers that have faced or are currently facing opposition, the majority — 55% —are located in red low-population-density areas. Developers take note: Contrary to their sleepy outside appearances, counties like South Carolina’s alligator alley clearly have teeth.