You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

As soon as Friday, the Biden administration could announce who will advance to the next phase of its “clean hydrogen hubs” program, a $7 billion experiment to find out whether and to what extent hydrogen can become a competitive replacement for fossil fuels.
The eventual hubs could touch every corner of the country, but the Department of Energy, which is administering the program, and the applicants themselves, have kept the proposed plans mostly confidential. Each one could include a dozen or more individual projects, but little has been disclosed about what the proposed projects are, where they will be, or what the public process will look like around their development. The awards could help clarify the direction of a massive government program that, right now, contains more questions than answers.
Earlier this week, sources familiar with the Department of Energy’s plans told Bloomberg that Biden is expected to announce the initial winners on Friday when he visits Pennsylvania. On Thursday morning, Reuters reported on a tip that one of the grants would go to the Mid-Atlantic Clean Hydrogen Hub, a partnership between Pennsylvania, Delaware, and New Jersey, while another would go to the Appalachian Regional Clean Hydrogen Hub, led by West Virginia, but involving partners in Pennsylvania, Ohio, and Kentucky as well.
Per the bipartisan infrastructure law, which created the program, the DOE must support the development of at least four hydrogen hubs. Collectively, they have to contain projects that test the use of hydrogen in transportation, power generation, residential and commercial heating, and industry. There also have to be projects that demonstrate different ways to make hydrogen, including using renewable electricity, nuclear energy, and natural gas with carbon capture.
Biden’s announcement will just be the start of a process that will play out over the next five to 10 years. The funding will be rolled out over the course of four phases, and the initial batch of winning proposals will not necessarily all continue to receive support beyond the first phase. Each hub will receive a relatively small grant to conduct planning and analysis over the course of the next 12 to 18 months to ensure their “concept is technologically and financially viable, with input from relevant local stakeholders.” (The DOE’s funding announcement estimated initial grants of $20 million, although Reuters reported the Pennsylvania hub will receive $750 million.) After that point, each will be subjected to a “go/no-go review” to determine whether it can advance to the next phase.
“I think it's important to emphasize that what DOE is announcing is an invitation to negotiate potential funding awards,” Jill Tauber, the vice president of climate and energy at Earthjustice, told me. “So this is not an announcement of final decisions and awards. There are still approvals to be secured.”
Hydrogen is incredibly divisive. Most experts who study decarbonization agree that it holds a lot of promise as a climate solution. It can be burned to provide heat or power to any number of processes, similar to natural gas, without releasing any carbon emissions. But it requires a lot of energy to make hydrogen in the first place, and no one knows yet exactly which applications will make sense.
Climate advocates are wary of two big risks. One is that the process of making hydrogen, whether from electricity or natural gas, could emit so much carbon that it ultimately will be worse for the climate. The other is that even if the production is clean, the hydrogen could be wasted on something like residential heating, which already has more efficient solutions available, rather than reserved for processes that are truly hard to decarbonize.
That’s why the biggest questions for the hydrogen hubs are not just where they will be, but which energy sources they will use and which end-uses they will focus on.
“Hydrogen certainly has the potential to be a clean energy solution that delivers benefits, including economic benefits,” said Tauber. “But it can also drag us deeper into the climate crisis and hurt communities. So both things are on the table right now.” These concerns have already made national news in relation to a high-stakes battle over the rules for the clean hydrogen tax credit, a subsidy that was created by the Inflation Reduction Act.
The term “hubs” might bring to mind a few city blocks of bustling activity, but the hydrogen hubs are shaping up to be far more expansive. Many of the applicants are unlikely alliances between multiple state governments, companies, and universities across wide swathes of the country. For example, a potential hub in the Northeast could involve more than a dozen projects stretched across seven states.
Nearly 80 such groups submitted initial concept papers for hubs to the Department of Energy when it first opened up the application process. Of those, the DOE encouraged 33 groups to file full applications, which were due in April, and the agency will be selecting six to 10 for the first phase of the awards.
Just one of the applicants, a partnership between Colorado, New Mexico, Utah, and Wyoming called the Western Interstate Hydrogen Hub, released its initial concept paper to the public, though with a number of redactions. While the hubs will all be different and designed to the specific circumstances of their region, the document is still helpful for demonstrating what kinds of projects are under consideration.
The document lists eight specific projects. Several are hydrogen production facilities — some would use electricity to make the fuel, others would use gas. A company called Libertad Power would buy hydrogen for a network of hydrogen fueling stations for long-haul trucks that it is planning to build between Texas and California. Xcel Energy, the dominant utility in Colorado, wants to blend hydrogen into the natural gas that it burns in its power plants and delivers to residential and commercial customers. There’s also a 275,000-acre farm on Navajo Nation that would run its tractors and other equipment on hydrogen fuel. Companies would construct pipelines and design trucking routes to transport hydrogen around the region.
In addition to getting more detailed information about the different components of the proposals, advocates like Tauber want DOE to more clearly spell out how it will engage with affected communities as the program progresses. “None of that is clear right now, and hopefully we'll see some of that clarity in the announcement,” she said.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration has yet to publish formal documentation of its decision, leaving several big questions unanswered.
President Trump announced on Thursday that he was repealing the Environmental Protection Agency’s scientific determination that greenhouse gases are dangerous to human health and the natural world.
The signal move would hobble the EPA’s ability to limit heat-trapping pollution from cars, trucks, power plants, and other industrial facilities. It is the most aggressive attack on environmental regulation that the president and his officials have yet attempted.
The move, which was first proposed last summer, has major legal implications. But its importance is also symbolic: It brings the EPA’s official view of climate change much closer to President Trump’s false but long-held claim that anthropogenic global warming — which scientists have long affirmed as a major threat to public health and the environment — is in fact a “con job,” “a hoax,” and a “scam.”
While officials in the first Trump administration frequently sought to undermine climate regulation, arguing that the government’s climate rules were unnecessary or a waste of time and money, they did not formally try to undo the agency’s scientific determination that heat-trapping pollution was dangerous.
The move is only the most recent of a long list of attacks on environmental protections — including the partial rollback of the country’s first climate law, the Inflation Reduction Act, enacted last summer — that Trump and congressional Republicans have overseen since taking office last January.
The repeal has few near-term implications for utilities, clean energy companies, or automakers because the Trump administration has already suspended rules limiting air pollution from vehicles and the power sector. But it could shape the long-term direction of American climate and energy policy.
Several environmental and public health organizations, including the American Lung Association and the Environmental Defense Fund, have vowed to challenge the move in court.
If the Supreme Court eventually rules in favor of the Trump administration, then it would hamstring the ability of any future president — Republican or Democrat — to use the EPA to slow climate change or limit greenhouse gas pollution. The EPA has not yet published the legal documents formalizing the repeal.
Here is what we know — and don’t know — about the repeal for now:
Startups Airloom Energy and Radia looked at the same set of problems and came up with very different solutions.
You’d be forgiven for assuming that wind energy is a technologically stagnant field. After all, the sleek, three-blade turbine has defined the industry for nearly half a century. But even with over 1,000 gigawatts of wind generating capacity installed worldwide, there’s a group of innovators who still see substantial room for improvement.
The problems are myriad. There are places in the world where the conditions are too windy and too volatile for conventional turbines to handle. Wind farms must be sited near existing transportation networks, accessible to the trucks delivering the massive components, leaving vast areas with fantastic wind resources underdeveloped. Today’s turbines have around 1,500 unique parts, and the infrastructure needed to assemble and stand up a turbine’s multi-hundred-foot tower and blades is expensive— giant cranes don’t come cheap.
“We’ve only really ever tried one type of technology,” Neal Rickner, the CEO of the wind power startup Airloom Energy, told me. Now, he’s one of a few entrepreneurs trying a new approach.
Airloom’s system uses much-shorter vertical blades attached to an oval track that resembles a flat rollercoaster — no climbs or drops, just a horizontal loop composed of 58 unique parts. Wind propels the blades around the track, turning a vertical shaft that’s connected to an electricity-producing generator. That differs from conventional turbines, which spin on a vertical plane around a horizontal shaft, like a ferris wheel.
The system is significantly lower to the ground than today’s turbines and has the ability to capture wind from any direction, unlike conventional turbines, allowing for deployment in areas with shifting wind patterns. It promises to be mass manufacturable, cheap, and simple to transport and install, opening up the potential to build systems in a wider variety of geographies — everywhere from airports to remote or even mountainous regions.
Airloom’s CTO, Andrew Streett, brings a background in drone tech that Rickner said helped shape the architecture of Airloom’s blades. “It’s all known tech. And it’s not completely off the shelf, but Andrew’s done it on 17 other platforms,” he told me. Rickner himself spent years at GoogleX working on Makani, a now-defunct wind energy project that attempted to commercialize an airborne wind energy system. The concept involved attaching rotors to autonomous kites, which flew in high-altitude loops to capture wind energy.
That system ultimately proved too complicated, something Airloom’s founder Robert Lumley warned Rickner about a decade ago at an industry conference. As Rickner recalls, he essentially told him, “all of that flying stuff is too complicated. Put all that physics — which is great — put it on the ground, on a rail.” Rickner took the lesson to heart, and when Lumley recruited him to join Airloom’s team a few years ago, he said it felt like an ideal chance to apply all the knowledge he’d accumulated “around what it takes to bring a novel wind technology to a very stodgy market.”
Indeed, the industry has proven difficult to disrupt. While Airloom was founded in 2014, the startup is still in its early stages, though it’s attracted backing from some climate sector heavyweights. Lowercarbon Capital led its $7.5 million seed round in 2024, which also included participation from Breakthrough Energy Ventures. The company also secured $5 million in matching funds from the state of Wyoming, where it’s based, and a $1.25 million contract with the Department of Defense.
Things are moving now. In the coming months, Airloom is preparing to bring its pilot plant online in Wyoming, closely followed by a commercial demo. Rickner told me the plan is to begin construction on a commercial facility by July 4, the deadline for wind to receive federal tax credits.
“If you could just build wind without gigantic or heavy industrial infrastructure — cranes and the like —- you will open up huge parts of the world,” Rickner told me, citing both the Global South and vast stretches of rural America as places where the roads, bridges, cranes, and port infrastructure may be insufficient for transporting and assembling conventional turbines. While modern onshore installations can exceed 600 feet from the tower’s base to the blade’s tip, Airloom’s system is about a fifth that height. Its nimble assembly would also allow turbines to be sited farther from highways, potentially enabling a more “out of sight, out of mind” attitude among residents and passersby who might otherwise resist such developments.
The company expects some of its first installations to be co-located with — you guessed it — data centers, as tech giants are increasingly looking to circumvent lengthy grid interconnection queues by sourcing power directly from onsite renewables, an option Rickner said wasn’t seriously discussed until recently.
Even considering Trump’s cuts to federal incentives for wind, “I’d much rather be doing Airloom today than even a year ago,” Rickner told me. “Now, with behind-the-meter, you’ve got different financing options. You’ve got faster buildout timelines that actually meet a venture company, like Airloom. You can see it’s still a tough road, don’t get me wrong. But a year ago, if you said we’re just going to wait around seven years for the interconnection queue, no venture company is going to survive that.”
It’s certainly not the only company in the sector looking to benefit from the data center boom. But I was still surprised when Rickner pointed out that Airloom’s fundamental value proposition — enabling wind energy in more geographies — is similar to a company that at first glance appears to be in a different category altogether: Radia.
Valued at $1 billion, this startup plans to make a plane as long as a football field to carry blades roughly 30% to 40% longer than today’s largest onshore models. Because larger blades mean more power, Radia’s strategy could make wind energy feasible in low-wind regions or simply boost output where winds are strong. And while the company isn’t looking to become a wind developer itself, “if you look at their pitch, it is the Airloom pitch,” Rickner told me.
Will Athol, Radia’s director of business development, told me that by the time the company was founded in 2016, “it was becoming clear that ground-based infrastructure — bridges, tunnels, roads, that kind of thing — was increasingly limiting where you can deploy the best turbines,” echoing Airloom’s sentiments. So competitors in the wind industry teamed up, requesting logistics input from the aviation industry. Radia responded, and has since raised over $100 million as it works to achieve its first flight by 2030.
Hopefully by that point, the federal war on wind will be a thing of the past. “We see ourselves and wind energy as a longer term play,” Athol told me. Though he acknowledged that these have certainly been “eventful times for the wind industry” in the U.S., there’s also a global market eager for this tech. He sees potential in regions such as India and North Africa, where infrastructure challenges have made it tough to deploy large-scale turbines.
Neither Radia nor Airloom thinks its approach will render today’s turbines obsolete, or that other renewable resources will be completely displaced. “I think if you look at most utilities, they want a mix,” Rickner said. But he’s still pretty confident in Airloom’s potential to seriously alter an industry that’s long been considered mature and constrained to incremental gains.
“When Airloom is 100% successful,” he told me, “we will take a huge chunk of market share.”
On electrolyzers’ decline, Anthropic’s pledge, and Syria’s oil and gas
Current conditions: Warmer air from down south is pushing the cold front in Northeast back up to Canada • Tropical Cyclone Gezani has killed at least 31 in Madagascar • The U.S. Virgin Islands are poised for two days of intense thunderstorms that threaten its grid after a major outage just days ago.
Back in November, Democrats swept to victory in Georgia’s Public Service Commission races, ousting two Republican regulators in what one expert called a sign of a “seismic shift” in the body. Now Alabama is considering legislation that would end all future elections for that state’s utility regulator. A GOP-backed bill introduced in the Alabama House Transportation, Utilities, and Infrastructure Committee would end popular voting for the commissioners and instead authorize the governor, the Alabama House speaker, and the Alabama Senate president pro tempore to appoint members of the panel. The bill, according to AL.com, states that the current regulatory approach “was established over 100 years ago and is not the best model for ensuring that Alabamians are best-served and well-positioned for future challenges,” noting that “there are dozens of regulatory bodies and agencies in Alabama and none of them are elected.”
The Tennessee Valley Authority, meanwhile, announced plans to keep two coal-fired plants operating beyond their planned retirement dates. In a move that seems laser-targeted at the White House, the federally-owned utility’s board of directors — or at least those that are left after President Donald Trump fired most of them last year — voted Wednesday — voted Wednesday to keep the Kingston and Cumberland coal stations open for longer. “TVA is building America’s energy future while keeping the lights on today,” TVA CEO Don Moul said in a statement. “Taking steps to continue operations at Cumberland and Kingston and completing new generation under construction are essential to meet surging demand and power our region’s growing economy.”
Secretary of the Interior Doug Burgum said the Trump administration plans to appeal a series of court rulings that blocked federal efforts to halt construction on offshore wind farms. “Absolutely we are,” the agency chief said Wednesday on Bloomberg TV. “There will be further discussion on this.” The statement comes a week after Burgum suggested on Fox Business News that the Supreme Court would break offshore wind developers’ perfect winning streak and overturn federal judges’ decisions invalidating the Trump administration’s orders to stop work on turbines off the East Coast on hotly-contested national security, environmental, and public health grounds. It’s worth reviewing my colleague Jael Holzman’s explanation of how the administration lost its highest profile case against the Danish wind giant Orsted.
Thyssenkrupp Nucera’s sales of electrolyzers for green hydrogen projects halved in the first quarter of 2026 compared to the same period last year. It’s part of what Hydrogen Insight referred to as a “continued slowdown.” Several major projects to generate the zero-carbon fuel with renewable electricity went under last year in Europe, Australia, and the United States. The Trump administration emphasized the U.S. turn away from green hydrogen by canceling the two regional hubs on the West Coast that were supposed to establish nascent supply chains for producing and using green hydrogen — more on that from Heatmap’s Emily Pontecorvo. Another potential drag on the German manufacturer’s sales: China’s rise as the world’s preeminent manufacturer of electrolyzers.
Sign up to receive Heatmap AM in your inbox every morning:
The artificial intelligence giant Anthropic said Wednesday it would work with utilities to figure out how much its data centers were driving up electricity prices and pay a rate high enough to avoid passing the costs onto ratepayers. The announcement came as part of a multi-pronged energy strategy to ease public concerns over its data centers at a moment when the server farms’ effect on power prices and local water supplies is driving a political backlash. As part of the plan, Anthropic would cover 100% of the costs of upgrading the grid to bring data centers online, and said it would “work to bring net-new power generation online to match our data centers’ electricity needs.” Where that isn’t possible, the company said it would “work with utilities and external experts to estimate and cover demand-driven price effects from our data centers.” The maker of ChatGPT rival Claude also said it would establish demand response programs to power down its data centers when demand on the grid is high, and deploy other “grid optimization” tools.
“Of course, company-level action isn’t enough. Keeping electricity affordable also requires systemic change,” the company said in a blog post. “We support federal policies — including permitting reform and efforts to speed up transmission development and grid interconnection — that make it faster and cheaper to bring new energy online for everyone.”

Syria’s oil reserves are opening to business, and Western oil giants are in line for exploration contracts. In an interview with the Financial Times, the head of the state-owned Syrian Petroleum Company listed France’s TotalEnergies, Italy’s Eni, and the American Chevron and ConocoPhillips as oil majors poised to receive exploration licenses. “Maybe more than a quarter, or less than a third, has been explored,” said Youssef Qablawi, chief executive of the Syrian Petroleum Company. “There is a lot of land in the country that has not been touched yet. There are trillions of cubic meters of gas.” Chevron and Qatar’s Power International Holding inked a deal just last week to explore an offshore block in the Mediterranean. Work is expected to begin “within two months.”
At the same time, Indonesia is showing the world just how important it’s become for a key metal. Nickel prices surged to $17,900 per ton this week after Indonesia ordered steep cuts to protection at the world’s biggest mine, highlighting the fast-growing Southeast Asian nation’s grip over the global supply of a metal needed for making batteries, chemicals, and stainless steel. The spike followed Jakarta’s order to cut production in the world’s biggest nickel mine, Weda Bay, to 12 million metric tons this year from 42 million metric tons in 2025. The government slashed the nationwide quota by 100 million metric tons to between 260 million and 270 million metric tons this year from 376 million metric tons in 2025. The effect on the global price average showed how dominant Indonesia has become in the nickel trade over the past decade. According to another Financial Times story, the country now accounts for two-thirds of global output.
The small-scale solar industry is singing a Peter Tosh tune: Legalize it. Twenty-four states — funny enough, the same number that now allow the legal purchase of marijuana — are currently considering legislation that would allow people to hook up small solar systems on balconies, porches, and backyards. Stringent permitting rules already drive up the cost of rooftop solar in the U.S. But systems small enough for an apartment to generate some power from a balcony have largely been barred in key markets. Utah became the first state to vote unanimously last year to pass a law allowing residents to plug small solar systems straight into wall sockets, providing enough electricity to power a laptop or small refrigerator, according to The New York Times.