You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
How Team Biden learned to stop worrying and love carbon removal.

What does the new American climate policy look like?
Last week, we got a better sense. On Friday, the Biden administration unveiled a massive investment — more than $1.2 billion — that aims to create a new industry in the United States out of whole cloth that will specialize in removing carbon from the atmosphere.
As President Joe Biden’s climate law hits its one-year anniversary, the investment shows the audacity, the potential, and — ultimately — the risks of his approach to climate and economic policy.
If successful, the investment will establish a new sector of the American economy and remake another one, while providing the world with an important tool to fight climate change. If unsuccessful, then the investment could set back an important climate technology and forever link it to the fossil-fuel industry.
The investment’s centerpiece is two large industrial facilities in Louisiana and Texas that will remove more than 1 million tons of carbon from the atmosphere every year. But the program is much broader than those hubs, encompassing more advanced and experimental approaches to carbon removal, or CDR, than the government has previously funded. The government has unleashed old industrial policy tools, such as advanced market guarantees, toward the nascent field.
Although Biden is implementing this policy, the approach will almost certainly outlive his administration. America’s support for carbon removal is strongly, perhaps surprisingly, bipartisan. The new hubs and the other policies announced last week were funded by the bipartisan infrastructure law or by other bipartisan legislation.
Given all that, it’s worth it to spend some time on these investments to better understand how they work and what they might mean for the future of the American economy.
Let’s start here: Yes, we will probably need carbon dioxide removal, or CDR, to meet the world’s and the country’s climate goals.
This wasn’t always clear. When I started as a climate reporter in 2015, carbon removal was taboo, something that only climate deniers and other folks who wanted to delay decarbonization brought up. An influential Princeton study from earlier in the decade had concluded that carbon removal — especially capturing carbon in the ambient air, a strategy called direct air capture, or DAC — would never pencil out financially and that it would always be cheaper to reduce fossil-fuel use rather than suck carbon out of the sky.
But in 2018, the Intergovernmental Panel on Climate Change made a startling announcement: So much carbon dioxide had accumulated in the atmosphere that it would be virtually impossible to keep global warming below 1.5 degrees Celsius without carbon removal.
The IPCC studied global energy models and found that even in optimistic scenarios, humanity would release too much carbon by the middle of the century to keep temperatures from briefly rising by more than 1.5 degrees Celsius. But if we began removing carbon from the atmosphere, then we could avoid locking in that spike in temperatures for the long term. That is, in order to hit the 1.5-degree goal by 2100, humanity must spend much of the 21st century removing carbon from the atmosphere and sequestering it for thousands of years.
We need carbon removal, in other words, not so we can keep burning fossil fuels, but to deal with the fossil-fuel pollution that is already in the atmosphere.
Get one great climate story in your inbox every day:
This change was only possible because CDR’s costs were falling. A few months earlier, a company called Carbon Engineering had announced that it would soon cut direct air capture’s cost to $230 a ton. (DAC was once thought to cost $600 a ton.) This suggested that in a handful of cases — a small handful — it might make financial sense to use DAC instead of decarbonizing a particular activity.
Even so, the numbers involved in this effort are mind-boggling. This year, several thousands tons of carbon will be removed from the atmosphere worldwide, at a cost of $200 to $2,000 a ton, according to one industry expert. Perhaps 100,000 tons of carbon have ever been removed from the atmosphere by a human-run process, according to CDR.fyi, a community-run database.
But by 2050, in order to hit the IPCC’s targets, humanity must remove about 5 billion tons a year at a cost of roughly $100 a ton.
For context, the global shipping industry moves about 11 billion tons of material each year.
In other words, in the next three decades, humanity must perfect the technology of CDR, find a way to pay for it, and massively scale it up to the degree that it captures roughly half of the amount of material that travels via oceanborne trade today. And it must do this while decarbonizing the rest of the energy system — because if we fail to bring fossil-fuel use nearly to zero during this period, then all of this will be for naught.
Q: Well, if we have to store all this carbon for a very long time, why don’t we plant a lot of trees?
A: For a few years in the mid 2010s, trees did seem like the cheapest way to pull carbon out of the atmosphere.
But the scale of the carbon problem exceeds what biology alone can fix. Since 1850, humanity has pumped 2.5 trillion tons of carbon dioxide into the atmosphere. This is nearly twice the total biomass of all life on Earth. Only geology can deal with such a massive (literally) problem. To truly undo climate change, we must put carbon back into geological storage. Plus, even if you sopped up a lot of carbon with trees, they might burn down. Then you’d be back where you started.
Yet CDR isn’t just a logistical problem.
Fossil fuel companies have long used the rhetoric of carbon removal — and its relative, carbon capture and storage, which sucks up climate pollution from a smokestack or industrial process — as an excuse to keep drilling for oil and gas. At the same time, they’ve resisted any federal regulation that would require them to actually capture carbon when they burn fossil fuels.
What’s more, the infrastructure and the expertise best-suited for carbon removal is largely in the same places that have fossil-fuel industries today. (Think of the Gulf Coast or North Dakota.) Some people who live in those places want to see decarbonization end the fossil-fuel industry forever — not transform it into something different, like a carbon management industry.
And although the technology to inject captured carbon dioxide into the ground is decades-old, concentrated CO2 can be dangerous if mishandled.
It’s not hard to imagine a world where the promise of CDR allows oil and gas companies to keep drilling and polluting, but where a lack of any binding regulation — and local pushback whenever a CDR facility is announced — means that very little carbon actually gets removed from the atmosphere. In that world, no matter how powerful CDR is technologically, the politics of CDR would make climate change worse.
Which brings us to the Biden administration’s strategy for scaling up the CDR industry. It has three components:
1. Build massive direct air capture facilities around the country.
2. A slew of new programs to boost alternative (and maybe less energy-intensive) approaches to CDR.
3. A new “Responsible Carbon Management” guideline.
In short, the administration is seeking to scale up the most straightforward carbon-removal technology, financially support other promising approaches, and then ensure it all happens in an above-board way.
The marquee announcement here are the carbon capture hubs, which were widely covered last week. The Energy Department will spend $1.2 billion on large-scale facilities in Louisiana and Texas that will use industrial processes to cleanse carbon from the ambient air. Each will remove about one million tons of carbon a year when complete.
Project Cypress, the Louisiana hub, will be run by the federal contractor Battelle in conjunction with Climeworks, a Swiss DAC company, and Heirloom, which stores carbon dioxide in concrete.
The boringly named South Texas DAC Hub will be run by Occidental Petroleum, an oil company, in conjunction with the DAC company Carbon Engineering and Worley, an engineering firm.
These are going to be the charismatic megaprojects of the CDR industry. They are meant to create clusters of expertise and infrastructure, concentrated in a geographic core, that will give rise to more innovation. You can think of them as little Silicon Valleys — or, more pointedly, little Shenzens — of carbon removal.
As goes these hubs, so goes CDR. If the hubs have an accident, or take too long to build, then the industry will struggle; if they succeed, it will have a running start. Therefore, the Energy Department has made a big fuss about how these projects should help local residents: When selecting these projects, it took the unusual step of ranking these projects’ “community benefits” as highly as their more technical aspects.
Last week, an Energy Department official was quick to point out to me that these projects have merely been selected and that neither has received any money yet. Next, the department and these hubs will negotiate binding contracts that will seek to lock in community benefits for locals. Only then will the funds flow.
What’s more interesting, though, is what’s not here. In the infrastructure law, Congress required that the Energy Department establish four DAC hubs. Only two have been announced. That’s because officials realized last year that fewer than four places nationwide had the expertise and understanding of DAC necessary to erect a massive million-ton facility on demand.
So the department set up a kind of starter DAC hub program — a series of grants that will allow cities, nonprofits, universities and companies to study the feasibility of establishing a DAC hub in their town. It gave out more than a dozen of these grants last week to companies and universities in Utah, California, Illinois, Kentucky, and more.
Officials clearly hope that these starter grants may produce more than two full-fledged DAC hub projects, which Congress can then fund at the same level as the Texas and Louisiana facilities.
Even those starter projects will specialize in DAC, though, which means that each approach will use industrial machinery to capture carbon from the ambient air and inject it underground.
But removing carbon doesn’t necessarily require DAC. It may be possible to remove carbon passively by using certain kinds of rock, for instance, or by growing lots and lots of algae. These approaches will probably use less energy than DAC, and they may even remove more carbon than DAC, but they will be harder to measure and verify, and there will be more uncertainty about exactly how much carbon you’re taking out of the atmosphere.
But federal policy has a strong pro-DAC bias. That’s not only because of the DAC hubs, but also because of the Inflation Reduction Act: Biden’s climate law pays companies $180 for each ton of carbon that they remove from the atmosphere, but it is written such that it can essentially only be used for DAC.
The department is trying to diversify away from DAC within the bounds that Congress has given. Last week, it announced that it would soon sponsor small pilot programs that use alternative technologies, including rock mineralization, biomass, and ocean-based processes. It will also fund efforts to measure and verify those techniques so as to make sure they remove a dependable amount of carbon from the atmosphere.
The Energy Department also announced that it will create a new pilot purchase program for carbon removal efforts, providing an “early market commitment” to carbon-removal companies in the same way that it provided one to COVID vaccine makers. This program, which will have an initial budget of $35 million, will use federal expertise to identify which CDR techniques are the most viable and promising, allowing a DOE purchase contract to function as a de facto stamp of approval. (Heatmap first covered the existence of this program earlier this month.)
Finally, the department will launch a separate prize for commercial DAC providers with the goal of cutting its costs down to $100 a ton.
These programs have the unfortunate name “Carbon Negative Shot,” which is meant to evoke a “moonshot” but sounds more like an overpriced product for deer hunters. We will not dwell on it any longer.
All these efforts will turn the Department of Energy into the world’s biggest public buyer and supporter of carbon removal. That lays the groundwork for the final aspect of its strategy that launched last week: a “Responsible Carbon Management Initiative.”
This is a nonbinding list of principles that any carbon-management project will have to follow: These include engaging respectfully with communities before setting up a project, consulting with local tribes, developing the local workforce and ensuring good jobs, and monitoring local air and water quality. (The department is seeking public comment on what, exactly, these principles should be.)
Eventually, the Energy Department hopes to use these principles to provide “technical assistance” to projects that meet the guidelines. It will also recognize developers that have demonstrated they meet the principles.
In other words, the initiative could, over time, become a kind of soft standards-setting body for the industry — a way to distinguish good carbon-removal projects from the bad (and hopefully eliminate the bad in the first place). It will help that the same department publishing these guidelines will also be where all the funding is coming from.
Will all this work? I don’t know. But the scale of the effort is meaningful in itself, because it shows how the Biden administration approaches the task of erecting an industry de novo. If there’s such a thing as Bidenomics, this is what it looks like: a place-based development strategy that admires industrial clustering, supports domestic supply and demand, and applies an optimistic approach to regulation.
You can also see the risk of Biden’s approach. Decarbonization requires technical expertise and real-world know-how; in America, most of that expertise resides in the private sector. Occidental, an oil company that describes itself (optimistically) as a carbon management company, will operate one of the DAC hubs. Although it is prohibited by law from doing anything really egregious — like using the carbon that it’s capturing to drill for more oil — the Biden team cannot ensure that its heart or actions will remain pure. Occidental will be a good carbon-removal team player only so long as it benefits its bottom line.
Yet I don’t want to overstate the importance of this investment either. The vast majority of the Biden administration’s climate investment is going to cutting emissions: If anything, the Biden administration is spending too little on carbon removal, not too much. By my estimate, these programs, including the DAC hubs, will amount for 2% of the roughly $173 billion that the bipartisan infrastructure law devotes to climate or environmental projects. And when you include the Inflation Reduction Act’s climate spending — which is where most federal climate spending is in the first place — the programs discussed here drop to perhaps one percent of total climate spending, although that will depend on how many facilities use the DAC tax credit.
That is a small price for a big prize. If this funding “works,” then these investments will represent the beginning of a new industry — a carbon management industry capable of pulling millions of tons of pollution out of the sky. But even if they fail, then we’ll have learned something too: that carbon removal — and especially DAC — may in fact be unworkable, and that we should not comfort ourselves in the years to come with the hope of cleaning up the atmosphere.
“Our responsibility is to do what we can, learn what we can, improve the solutions, and pass them on. It is our responsibility to leave the people of the future a free hand,” the physicist Richard Feynman once wrote. A couple billion seems a worthy price for learning if that hand is free or not.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration has yet to publish formal documentation of its decision, leaving several big questions unanswered.
President Trump announced on Thursday that he was repealing the Environmental Protection Agency’s scientific determination that greenhouse gases are dangerous to human health and the natural world.
The signal move would hobble the EPA’s ability to limit heat-trapping pollution from cars, trucks, power plants, and other industrial facilities. It is the most aggressive attack on environmental regulation that the president and his officials have yet attempted.
The move, which was first proposed last summer, has major legal implications. But its importance is also symbolic: It brings the EPA’s official view of climate change much closer to President Trump’s false but long-held claim that anthropogenic global warming — which scientists have long affirmed as a major threat to public health and the environment — is in fact a “con job,” “a hoax,” and a “scam.”
While officials in the first Trump administration frequently sought to undermine climate regulation, arguing that the government’s climate rules were unnecessary or a waste of time and money, they did not formally try to undo the agency’s scientific determination that heat-trapping pollution was dangerous.
The move is only the most recent of a long list of attacks on environmental protections — including the partial rollback of the country’s first climate law, the Inflation Reduction Act, enacted last summer — that Trump and congressional Republicans have overseen since taking office last January.
The repeal has few near-term implications for utilities, clean energy companies, or automakers because the Trump administration has already suspended rules limiting air pollution from vehicles and the power sector. But it could shape the long-term direction of American climate and energy policy.
Several environmental and public health organizations, including the American Lung Association and the Environmental Defense Fund, have vowed to challenge the move in court.
If the Supreme Court eventually rules in favor of the Trump administration, then it would hamstring the ability of any future president — Republican or Democrat — to use the EPA to slow climate change or limit greenhouse gas pollution. The EPA has not yet published the legal documents formalizing the repeal.
Here is what we know — and don’t know — about the repeal for now:
Startups Airloom Energy and Radia looked at the same set of problems and came up with very different solutions.
You’d be forgiven for assuming that wind energy is a technologically stagnant field. After all, the sleek, three-blade turbine has defined the industry for nearly half a century. But even with over 1,000 gigawatts of wind generating capacity installed worldwide, there’s a group of innovators who still see substantial room for improvement.
The problems are myriad. There are places in the world where the conditions are too windy and too volatile for conventional turbines to handle. Wind farms must be sited near existing transportation networks, accessible to the trucks delivering the massive components, leaving vast areas with fantastic wind resources underdeveloped. Today’s turbines have around 1,500 unique parts, and the infrastructure needed to assemble and stand up a turbine’s multi-hundred-foot tower and blades is expensive— giant cranes don’t come cheap.
“We’ve only really ever tried one type of technology,” Neal Rickner, the CEO of the wind power startup Airloom Energy, told me. Now, he’s one of a few entrepreneurs trying a new approach.
Airloom’s system uses much-shorter vertical blades attached to an oval track that resembles a flat rollercoaster — no climbs or drops, just a horizontal loop composed of 58 unique parts. Wind propels the blades around the track, turning a vertical shaft that’s connected to an electricity-producing generator. That differs from conventional turbines, which spin on a vertical plane around a horizontal shaft, like a ferris wheel.
The system is significantly lower to the ground than today’s turbines and has the ability to capture wind from any direction, unlike conventional turbines, allowing for deployment in areas with shifting wind patterns. It promises to be mass manufacturable, cheap, and simple to transport and install, opening up the potential to build systems in a wider variety of geographies — everywhere from airports to remote or even mountainous regions.
Airloom’s CTO, Andrew Streett, brings a background in drone tech that Rickner said helped shape the architecture of Airloom’s blades. “It’s all known tech. And it’s not completely off the shelf, but Andrew’s done it on 17 other platforms,” he told me. Rickner himself spent years at GoogleX working on Makani, a now-defunct wind energy project that attempted to commercialize an airborne wind energy system. The concept involved attaching rotors to autonomous kites, which flew in high-altitude loops to capture wind energy.
That system ultimately proved too complicated, something Airloom’s founder Robert Lumley warned Rickner about a decade ago at an industry conference. As Rickner recalls, he essentially told him, “all of that flying stuff is too complicated. Put all that physics — which is great — put it on the ground, on a rail.” Rickner took the lesson to heart, and when Lumley recruited him to join Airloom’s team a few years ago, he said it felt like an ideal chance to apply all the knowledge he’d accumulated “around what it takes to bring a novel wind technology to a very stodgy market.”
Indeed, the industry has proven difficult to disrupt. While Airloom was founded in 2014, the startup is still in its early stages, though it’s attracted backing from some climate sector heavyweights. Lowercarbon Capital led its $7.5 million seed round in 2024, which also included participation from Breakthrough Energy Ventures. The company also secured $5 million in matching funds from the state of Wyoming, where it’s based, and a $1.25 million contract with the Department of Defense.
Things are moving now. In the coming months, Airloom is preparing to bring its pilot plant online in Wyoming, closely followed by a commercial demo. Rickner told me the plan is to begin construction on a commercial facility by July 4, the deadline for wind to receive federal tax credits.
“If you could just build wind without gigantic or heavy industrial infrastructure — cranes and the like —- you will open up huge parts of the world,” Rickner told me, citing both the Global South and vast stretches of rural America as places where the roads, bridges, cranes, and port infrastructure may be insufficient for transporting and assembling conventional turbines. While modern onshore installations can exceed 600 feet from the tower’s base to the blade’s tip, Airloom’s system is about a fifth that height. Its nimble assembly would also allow turbines to be sited farther from highways, potentially enabling a more “out of sight, out of mind” attitude among residents and passersby who might otherwise resist such developments.
The company expects some of its first installations to be co-located with — you guessed it — data centers, as tech giants are increasingly looking to circumvent lengthy grid interconnection queues by sourcing power directly from onsite renewables, an option Rickner said wasn’t seriously discussed until recently.
Even considering Trump’s cuts to federal incentives for wind, “I’d much rather be doing Airloom today than even a year ago,” Rickner told me. “Now, with behind-the-meter, you’ve got different financing options. You’ve got faster buildout timelines that actually meet a venture company, like Airloom. You can see it’s still a tough road, don’t get me wrong. But a year ago, if you said we’re just going to wait around seven years for the interconnection queue, no venture company is going to survive that.”
It’s certainly not the only company in the sector looking to benefit from the data center boom. But I was still surprised when Rickner pointed out that Airloom’s fundamental value proposition — enabling wind energy in more geographies — is similar to a company that at first glance appears to be in a different category altogether: Radia.
Valued at $1 billion, this startup plans to make a plane as long as a football field to carry blades roughly 30% to 40% longer than today’s largest onshore models. Because larger blades mean more power, Radia’s strategy could make wind energy feasible in low-wind regions or simply boost output where winds are strong. And while the company isn’t looking to become a wind developer itself, “if you look at their pitch, it is the Airloom pitch,” Rickner told me.
Will Athol, Radia’s director of business development, told me that by the time the company was founded in 2016, “it was becoming clear that ground-based infrastructure — bridges, tunnels, roads, that kind of thing — was increasingly limiting where you can deploy the best turbines,” echoing Airloom’s sentiments. So competitors in the wind industry teamed up, requesting logistics input from the aviation industry. Radia responded, and has since raised over $100 million as it works to achieve its first flight by 2030.
Hopefully by that point, the federal war on wind will be a thing of the past. “We see ourselves and wind energy as a longer term play,” Athol told me. Though he acknowledged that these have certainly been “eventful times for the wind industry” in the U.S., there’s also a global market eager for this tech. He sees potential in regions such as India and North Africa, where infrastructure challenges have made it tough to deploy large-scale turbines.
Neither Radia nor Airloom thinks its approach will render today’s turbines obsolete, or that other renewable resources will be completely displaced. “I think if you look at most utilities, they want a mix,” Rickner said. But he’s still pretty confident in Airloom’s potential to seriously alter an industry that’s long been considered mature and constrained to incremental gains.
“When Airloom is 100% successful,” he told me, “we will take a huge chunk of market share.”
On electrolyzers’ decline, Anthropic’s pledge, and Syria’s oil and gas
Current conditions: Warmer air from down south is pushing the cold front in Northeast back up to Canada • Tropical Cyclone Gezani has killed at least 31 in Madagascar • The U.S. Virgin Islands are poised for two days of intense thunderstorms that threaten its grid after a major outage just days ago.
Back in November, Democrats swept to victory in Georgia’s Public Service Commission races, ousting two Republican regulators in what one expert called a sign of a “seismic shift” in the body. Now Alabama is considering legislation that would end all future elections for that state’s utility regulator. A GOP-backed bill introduced in the Alabama House Transportation, Utilities, and Infrastructure Committee would end popular voting for the commissioners and instead authorize the governor, the Alabama House speaker, and the Alabama Senate president pro tempore to appoint members of the panel. The bill, according to AL.com, states that the current regulatory approach “was established over 100 years ago and is not the best model for ensuring that Alabamians are best-served and well-positioned for future challenges,” noting that “there are dozens of regulatory bodies and agencies in Alabama and none of them are elected.”
The Tennessee Valley Authority, meanwhile, announced plans to keep two coal-fired plants operating beyond their planned retirement dates. In a move that seems laser-targeted at the White House, the federally-owned utility’s board of directors — or at least those that are left after President Donald Trump fired most of them last year — voted Wednesday — voted Wednesday to keep the Kingston and Cumberland coal stations open for longer. “TVA is building America’s energy future while keeping the lights on today,” TVA CEO Don Moul said in a statement. “Taking steps to continue operations at Cumberland and Kingston and completing new generation under construction are essential to meet surging demand and power our region’s growing economy.”
Secretary of the Interior Doug Burgum said the Trump administration plans to appeal a series of court rulings that blocked federal efforts to halt construction on offshore wind farms. “Absolutely we are,” the agency chief said Wednesday on Bloomberg TV. “There will be further discussion on this.” The statement comes a week after Burgum suggested on Fox Business News that the Supreme Court would break offshore wind developers’ perfect winning streak and overturn federal judges’ decisions invalidating the Trump administration’s orders to stop work on turbines off the East Coast on hotly-contested national security, environmental, and public health grounds. It’s worth reviewing my colleague Jael Holzman’s explanation of how the administration lost its highest profile case against the Danish wind giant Orsted.
Thyssenkrupp Nucera’s sales of electrolyzers for green hydrogen projects halved in the first quarter of 2026 compared to the same period last year. It’s part of what Hydrogen Insight referred to as a “continued slowdown.” Several major projects to generate the zero-carbon fuel with renewable electricity went under last year in Europe, Australia, and the United States. The Trump administration emphasized the U.S. turn away from green hydrogen by canceling the two regional hubs on the West Coast that were supposed to establish nascent supply chains for producing and using green hydrogen — more on that from Heatmap’s Emily Pontecorvo. Another potential drag on the German manufacturer’s sales: China’s rise as the world’s preeminent manufacturer of electrolyzers.
Sign up to receive Heatmap AM in your inbox every morning:
The artificial intelligence giant Anthropic said Wednesday it would work with utilities to figure out how much its data centers were driving up electricity prices and pay a rate high enough to avoid passing the costs onto ratepayers. The announcement came as part of a multi-pronged energy strategy to ease public concerns over its data centers at a moment when the server farms’ effect on power prices and local water supplies is driving a political backlash. As part of the plan, Anthropic would cover 100% of the costs of upgrading the grid to bring data centers online, and said it would “work to bring net-new power generation online to match our data centers’ electricity needs.” Where that isn’t possible, the company said it would “work with utilities and external experts to estimate and cover demand-driven price effects from our data centers.” The maker of ChatGPT rival Claude also said it would establish demand response programs to power down its data centers when demand on the grid is high, and deploy other “grid optimization” tools.
“Of course, company-level action isn’t enough. Keeping electricity affordable also requires systemic change,” the company said in a blog post. “We support federal policies — including permitting reform and efforts to speed up transmission development and grid interconnection — that make it faster and cheaper to bring new energy online for everyone.”

Syria’s oil reserves are opening to business, and Western oil giants are in line for exploration contracts. In an interview with the Financial Times, the head of the state-owned Syrian Petroleum Company listed France’s TotalEnergies, Italy’s Eni, and the American Chevron and ConocoPhillips as oil majors poised to receive exploration licenses. “Maybe more than a quarter, or less than a third, has been explored,” said Youssef Qablawi, chief executive of the Syrian Petroleum Company. “There is a lot of land in the country that has not been touched yet. There are trillions of cubic meters of gas.” Chevron and Qatar’s Power International Holding inked a deal just last week to explore an offshore block in the Mediterranean. Work is expected to begin “within two months.”
At the same time, Indonesia is showing the world just how important it’s become for a key metal. Nickel prices surged to $17,900 per ton this week after Indonesia ordered steep cuts to protection at the world’s biggest mine, highlighting the fast-growing Southeast Asian nation’s grip over the global supply of a metal needed for making batteries, chemicals, and stainless steel. The spike followed Jakarta’s order to cut production in the world’s biggest nickel mine, Weda Bay, to 12 million metric tons this year from 42 million metric tons in 2025. The government slashed the nationwide quota by 100 million metric tons to between 260 million and 270 million metric tons this year from 376 million metric tons in 2025. The effect on the global price average showed how dominant Indonesia has become in the nickel trade over the past decade. According to another Financial Times story, the country now accounts for two-thirds of global output.
The small-scale solar industry is singing a Peter Tosh tune: Legalize it. Twenty-four states — funny enough, the same number that now allow the legal purchase of marijuana — are currently considering legislation that would allow people to hook up small solar systems on balconies, porches, and backyards. Stringent permitting rules already drive up the cost of rooftop solar in the U.S. But systems small enough for an apartment to generate some power from a balcony have largely been barred in key markets. Utah became the first state to vote unanimously last year to pass a law allowing residents to plug small solar systems straight into wall sockets, providing enough electricity to power a laptop or small refrigerator, according to The New York Times.