Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

Maybe Wooden Skyscrapers Aren’t As Climate-Friendly As We Think

New research casts doubt on a popular climate solution.

Timber smokestacks.
Heatmap Illustration/Getty Images

A lengthy report from the nonprofit World Resources Institute released Thursday warns of a “growing land squeeze” where increasing demand for food, housing, and wood is threatening the world’s prospects for tackling climate change. Adding to the competition, the authors argue, is something that’s been broadly advertised as a climate solution — the use of mass timber.

Architects and sustainable building advocates have been spreading the gospel about mass timber for at least a decade. The idea is that replacing carbon-intensive materials like concrete and steel with wood can reduce the climate impact of building stuff. Forests suck up carbon from the atmosphere, and using that timber in the built environment is one way to lock it away more permanently.

Countless articles and photo essays and magazine stories featuring sanctuary-like skyscrapers made of wood have painted it as a no-brainer for sustainability. The concept has also been backed up by academic research published in peer-reviewed journals.

But according to Timothy Searchinger, a senior research scholar at Princeton University and the lead author of the land squeeze report, they’ve been looking at the carbon footprint of timber the wrong way. “What they’re really doing is treating land and plant growth as free,” Searchinger told me.

Mass timber advocates often emphasize that the wood must be “carbon neutral” and come from sustainably managed forests. The idea is that as long as the amount of wood removed from a forest for construction matches the forest’s growth that year, there’s no net impact on the climate. “What that misses,” said Searchinger, “is that if you didn’t harvest it, the forest would grow and absorb carbon. You’re keeping that added growth from happening.”

This is often called the “opportunity cost,” i.e. “the loss of potential gain from other alternatives when one alternative is chosen,” as the Oxford dictionary puts it. Not all researchers agree that it’s always appropriate to account for this kind of what-if scenario. Some told me that you can't assume forests have the ability to perpetually accumulate more carbon — mature forests reach a sort of stasis.

But Searchinger and his co-authors highlight another frequent accounting error with mass timber. Only a small portion of the wood harvested makes it into the final product. Some of it is lost to roots and bark and other debris left behind in the forest or burned, and some of it goes into shorter-lived products like wood chips and paper that decompose and release carbon in a matter of years. “So only a small amount actually gets into the building. All that other carbon is emitted. That is what they’re ignoring,” said Searchinger.

The authors analyzed a number of different scenarios with different types of wood sourced from different types of forests, with greater and greater amounts diverted to construction, searching for any conditions that would make mass timber pencil out as a net benefit for the climate compared with concrete and steel. Few did.

There were more or less two conditions that had to be met to see significant carbon savings. At least 70% of the wood harvested had to make it into the construction product, and the wood needed to be sourced from a fast-growing tree farm. The problem with that, Searchinger told me, is that all of our existing tree plantations are meeting existing demand for other wood products. “So there’s no free lunch out there.”

The calculus could shift if we’re able to reduce demand for other wood products, he said, but by then we may have figured out how to affordably cut emissions from the production of steel and concrete.

I sent the paper to several outside experts who were critical of its findings. One issue they raised was that some forests, when they are not managed, become more susceptible to severe wildfires, disease, and other disturbances, and can thus turn into net sources of carbon emissions as trees burn or rot. Austin Himes, an ecologist at Mississippi State University, told me that in the western U.S., for example, there's good evidence that removing timber and excess fuel can make the remaining forest more resilient and enable it to suck up more carbon.

Himes also stressed that this kind of analysis is complex, and the results are sensitive to tons of assumptions about location, transportation, manufacturing, and what happens to any material that doesn’t make it into the final product. But most of the literature he’s seen strongly suggests that using wood in construction to meet growing demand in our cities is going to have long term benefits.

“There’s uncertainty around that conclusion and this report highlights some of that, and so there’s obviously need for continually assessing a lot of those assumptions,” he said, “but this is one report based on one model and one set of assumptions.”

I also spoke with Beverly Law, a forest ecologist at the Oregon State University, whose research is cited extensively in the report and who praised its findings. She echoed Himes' statement that there is a lot of uncertainty about how to accurately account for the emissions benefits of substituting wood for concrete or steel, but she agrees with the new report that those benefits have been widely overestimated. “Substitution gets really hard,” Law said. “It’s a number that people can fiddle with.”

She pointed me to a 2019 paper by ecologist Mark Harmon which questioned common assumptions made when calculating the emissions benefits of substituting wood for concrete or steel, including not accounting for the fact that the energy used to produce concrete and steel is getting cleaner as coal is replaced with natural gas and renewables on the grid. Innovations in concrete also have the potential to turn the material into a carbon sink.

The bigger picture painted by the land squeeze report should give any mass timber advocate pause, even putting the carbon analysis aside. Demand for wood is expected to rise dramatically between now and 2050, without a growing mass timber industry. The authors estimate that an area roughly the size of the continental United States could be harvested for wood by then, releasing 3.5 to 4.2 billion tons of carbon dioxide per year, or more than 10% of recent annual global emissions.

Searchinger’s team does offer recommendations to shrink those numbers, including expanded recycling of wood products, reduced use of packing materials, the adoption of more efficient wood-burning stoves, and aid to developing countries to move away from wood-based heating systems. There's also potential to increase yields from existing tree farms.

Beyond wood products, the report also raises big, difficult questions about how we might use land more efficiently to feed and house a growing population on a finite planet, especially as tackling climate change requires preserving and restoring natural habitats to store more carbon.

As Searchinger and his co-authors wrote in a blog post about the report, “Given this squeeze, it is dangerous to adopt policies that encourage yet more human demands for land and its outputs.”

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Spotlight

How a Giant Solar Farm Flopped in Rural Texas

Amarillo-area residents successfully beat back a $600 million project from Xcel Energy that would have provided useful tax revenue.

Texas and solar panels.
Heatmap Illustration/Getty Images

Power giant Xcel Energy just suffered a major public relations flap in the Texas Panhandle, scrubbing plans for a solar project amidst harsh backlash from local residents.

On Friday, Xcel Energy withdrew plans to build a $600 million solar project right outside of Rolling Hills, a small, relatively isolated residential neighborhood just north of the city of Amarillo, Texas. The project was part of several solar farms it had proposed to the Texas Public Utilities Commission to meet the load growth created by the state’s AI data center boom. As we’ve covered in The Fight, Texas should’ve been an easier place to do this, and there were few if any legal obstacles standing in the way of the project, dubbed Oneida 2. It was sited on private lands, and Texas counties lack the sort of authority to veto projects you’re used to seeing in, say, Ohio or California.

Keep reading...Show less
Yellow
Hotspots

A Data Center Is Dead, Long Live a Solar Farm

And more of the most important news about renewable projects fighting it out this week.

The United States.
Heatmap Illustration/Getty Images

1. Racine County, Wisconsin – Microsoft is scrapping plans for a data center after fierce opposition from a host community in Wisconsin.

  • The town of Caledonia was teed up to approve land rezoning for the facility, which would’ve been Microsoft’s third data center in the state. Dubbed “Project Nova,” the data center would have sat near an existing We Energies natural gas power plant.
  • After considerable pushback at community meetings, the tech giant announced Friday that it would either give up on the project or relocate it elsewhere to avoid more fervent opposition.
  • “While we have decided not to proceed with this particular site, we remain fully committed to investing in Southeast Wisconsin. We view this as a healthy step toward building a project that aligns with community priorities and supports shared goals,” Microsoft said in a statement published to its website, adding that it will attempt to “identify a site that supports both community priorities and our long-term development objectives.”
  • A review of the project opponents’ PR materials shows their campaign centered on three key themes: the risk of higher electricity bills, environmental impacts of construction and traffic, and a lack of clarity around how data centers could be a public good. Activists also frequently compared Project Nova to a now-infamous failed project in Wisconsin from the Chinese tech manufacturer Foxconn.

2. Rockingham County, Virginia – Another day, another chokepoint in Dominion Energy’s effort to build more solar energy to power surging load growth in the state, this time in the quaint town of Timberville.

Keep reading...Show less
Yellow
Q&A

How the AI Boom Could Come Back Around for Natural Gas

A conversation with Enchanted Rock’s Joel Yu.

The Fight Q & A subject.
Heatmap Illustration

This week’s chat was with Joel Yu, senior vice president for policy and external affairs at the data center micro-grid services company Enchanted Rock. Now, Enchanted Rock does work I usually don’t elevate in The Fight – gas-power tracking – but I wanted to talk to him about how conflicts over renewable energy are affecting his business, too. You see, when you talk to solar or wind developers about the potential downsides in this difficult economic environment, they’re willing to be candid … but only to a certain extent. As I expected, someone like Yu who is separated enough from the heartburn that is the Trump administration’s anti-renewables agenda was able to give me a sober truth: Land use and conflicts over siting are going to advantage fossil fuels in at least some cases.

The following conversation was lightly edited for clarity.

Keep reading...Show less
Yellow