You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Most nonprofit boards can do whatever they want.
Surely you’ve heard by now. On Friday, the board of directors of OpenAI, the world-bestriding startup at the center of the new artificial intelligence boom, fired its chief executive, Sam Altman. He had not been “consistently candid” with the board, the company said, setting in motion a coup — and potential counter-coup — that has transfixed the tech, business, and media industries for the past 72 hours.
OpenAI is — was? — a strange organization. Until last week, it was both the country’s hottest new tech company and an independent nonprofit devoted to ensuring that a hypothetical, hyper-intelligent AI “benefits all of humanity.” The nonprofit board owned and controlled the for-profit startup, but it did not fund it entirely; the startup could and did accept outside investment, such as a $13 billion infusion from Microsoft.
This kind of dual nonprofit/for-profit structure isn’t uncommon in the tech industry. The encrypted messaging app Signal, for instance, is owned by a foundation, as is the company that makes the cheap, programmable microchip Raspberry Pi. The open-source browser Firefox is overseen by the Mozilla Foundation.
But OpenAI’s structure is unusually convoluted, with two nested holding companies and a growing split between who was providing the money (Microsoft) and who ostensibly controlled operations (the nonprofit board). That tension between the nonprofit board and the for-profit company is what ultimately ripped apart OpenAI, because when the people with control (the board) tried to fire Altman, the people with the money (Microsoft) said no. As I write this, Microsoft seems likely to win.
This may all seem remote from what we cover here at Heatmap. Other than the fact that ChatGPT devours electricity, OpenAI doesn’t obviously have anything to do with climate change, electric vehicles, or the energy transition. Sometimes I even have the sense that many climate advocates take a certain delight in high-profile AI setbacks, because they resent competing with it for existential-risk airtime.
Yet OpenAI’s schism is a warning for climate world. Strip back the money, the apocalypticism, the big ideas and Terminator references, and OpenAI is fundamentally a story about nonprofit governance. When a majority of the board decided to knock Altman from his perch, nobody could stop them. They alone decided to torch $80 billion in market value overnight and set their institution on fire. Whether that was the right or wrong choice, it illustrates how nonprofit organizations — especially those that, like OpenAI, are controlled solely by a board of directors — act with an unusual amount of arbitrary authority.
Why does that matter for the climate or environmental movement? Because the climate and energy world is absolutely teeming with nonprofit organizations — and many of them are just as unconstrained, just as willfully wacky, as OpenAI.
Get one great climate story in your inbox every day:
Let’s step back. Nonprofits can generally be governed in two ways. (Apologies to nonprofit lawyers in the audience: I’m about to vastly simplify your specialty.) The first is a chapter- or membership-driven structure, in which a mass membership elects leaders to serve on a board of directors. Many unions, social clubs, and business groups take this form: Every few years, the members elect a new president or board of directors, who lead the organization for the next few years.
The other way is a so-called “board-only” organization. In this structure, the nonprofit’s board of directors leads the organization and does not answer to a membership or chapter. (There is often no membership to answer to.) When a vacancy opens up on the board, its remaining members appoint a replacement, perpetuating itself over time.
OpenAI was just such a board-only organization. Even though Altman was CEO, OpenAI was led officially by its board of directors.
This is a stranger way of running an organization than it may seem. For a small, private foundation, it may work just fine: Such an organization has no staff and probably meets rarely. (Most U.S. nonprofits are just this sort of organization.) But when a board-only nonprofit gets big — when it fulfills a crucial public purpose or employs hundreds or thousands of people — it faces an unusual lack of institutional constraints.
Consider, for instance, what life is like for a decently sized business, a small government agency, and a medium-sized nonprofit. The decently sized business is constantly buffeted by external forcing factors. Its creditors need to be repaid; it is battling for market share and product position. It faces market discipline or at least some kind of profit motive. It has to remain focused, competitive, and at least theoretically efficient.
The government agency, meanwhile, is constrained by public scrutiny and political oversight. Its bureaucrats and public servants are managed by elected officials, who are themselves accountable to the public. When a particularly important agency is not doing its job, voters can demand a change or elect new leadership.
Nonprofits can have some of the same built-in checks and balances — but only when they are controlled by members, and not by a board. If a members association embarrasses itself, for instance, or if it doesn’t carry out its mission, then its membership can vote out the board and elect new directors to replace them. But stakeholders have no such recourse for a board-only nonprofit. Insulated from market pressure and public oversight, board-only nonprofits are free to wander off into wackadoodle land.
The problem is that board-only nonprofits are only becoming more powerful — in fact, many of the nonprofits you know best are probably controlled solely by their board. In 2002, the Harvard political scientist Theda Skocpol observed that American civic life had undergone a rapid transformation: where it had once been full of membership-driven federations, such as the Lions Club or the League of Women Voters, it was now dominated by issues-focused advocacy groups.
From the late 19th to the mid-20th century, she wrote, America “had a uniquely balanced civic life, in which markets expanded but could not subsume civil society, in which governments at multiple levels deliberately and indirectly encouraged federated voluntary associations.” But from the 1960s to the 1990s, that old network fell apart. It was “bypassed and shoved to the side by a gaggle of professionally dominated advocacy groups and nonprofit institutions rarely attached to memberships worthy of the name,” Skocpol wrote.
The sheer number of groups exploded. In 1958, the Encyclopedia of Associations listed approximately 6,500 associations, Skocpol writes. By 1990, that number had more than tripled to 23,000. Today, the American Society of Association Executives — which is, just so we’re clear here, literally an association for associations — counts almost 1.9 million associations, including 1.2 million nonprofits.
This new network includes some nonprofits that claim to have members but are not in fact governed by them, such as the AARP. It includes “public citizen” or legal-advocacy groups, which watchdog legislation or fight for important precedents in the courts, such as Earthjustice, the Center for Biological Diversity, or Public Citizen itself. And it includes independent, mission-driven, and board-controlled nonprofits — such as OpenAI.
There is nothing wrong with these new groups per se. Many of them are inspired by the advocacy and legal organizations that won some of the Civil Rights Movement’s biggest victories. But unlike the member federations and civic associations that they largely replaced, these new groups don’t force Americans to engage with what their neighbors are thinking and feeling. So they “compartmentalize” America, in Skocpol’s words. Instead of articulating the views of a deep, national membership network, these groups essentially speak for a centralized and professionalized leadership corps — invariably located in a major city — who are armed with modern marketing techniques. And instead of fundraising through dues, fees, or tithes, these new groups depend on direct-mail operations, massive ad campaigns, and foundation grants.
This is the organizational superstructure on which much of the modern climate movement rests. When you read a climate news story, someone quoted in it will probably work for such a nonprofit. Many climate and energy policy experts spend at least part of their careers at some kind of nonprofit. Most climate or environmental news outlets — although not this one — are funded in whole or part through donations and foundation grants. And most climate initiatives that earn mainstream attention receive grants from a handful of foundations.
There is nothing necessarily wrong with this setup — and, of course, an equivalent network devoted to stopping and delaying climate policy exists to rival it on the right. But the entire design places an enormous amount of faith in the leaders of these nonprofits and foundations, and in the social strata that they occupy. If a nonprofit messes up, then only public attention or press coverage can right the ship. And there is simply not enough of either resource to keep these things on track.
That leads to odd resource allocation decisions, business units that seem to have no purpose (alongside teams that seem perpetually overworked), and decisions that frame otherwise decent policies in politically unpalatable ways. It regularly burns out people involved in climate organizations. And it means that much of the climate movement’s strategy is controlled by foundation officials and nonprofit directors. Like any other group of executives, these people are capable of deluding themselves about what is happening in the world; unlike other types of leaders, however, they face neither an angry electorate nor a ruthless market that will force them to update their worldview. The risk exists, then, that they could blunder into disaster — and take the climate movement with them.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It would have delivered a gargantuan 6.2 gigawatts of power.
The Bureau of Land Management says the largest solar project in Nevada has been canceled amidst the Trump administration’s federal permitting freeze.
Esmeralda 7 was supposed to produce a gargantuan 6.2 gigawatts of power – equal to nearly all the power supplied to southern Nevada by the state’s primary public utility. It would do so with a sprawling web of solar panels and batteries across the western Nevada desert. Backed by NextEra Energy, Invenergy, ConnectGen and other renewables developers, the project was moving forward at a relatively smooth pace under the Biden administration, albeit with significant concerns raised by environmentalists about its impacts on wildlife and fauna. And Esmeralda 7 even received a rare procedural win in the early days of the Trump administration when the Bureau of Land Management released the draft environmental impact statement for the project.
When Esmeralda 7’s environmental review was released, BLM said the record of decision would arrive in July. But that never happened. Instead, Donald Trump issued an executive order as part of a deal with conservative hardliners in Congress to pass his tax megabill, which also effectively repealed the Inflation Reduction Act’s renewable electricity tax credits. This led to subsequent actions by Interior Secretary Doug Burgum to freeze all federal permitting decisions for solar energy.
Flash forward to today, when BLM quietly updated its website for Esmeralda 7 permitting to explicitly say the project’s status is “cancelled.” Normally when the agency says this, it means developers pulled the plug.
I’ve reached out to some of the companies behind Esmeralda 7 but was unable to reach them in time for publication. If I hear from them confirming the project is canceled – or that BLM is wrong in some way – I will let you know.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.