You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new study found that majority Black neighborhoods faced higher solar costs.

Higher-income people are more likely to have solar panels on their roofs. This fact has underlined the nature of home solar adoption and is responsible for any number of state, local, and now federal programs to give lower-income people access to solar power, either through subsidizing their own solar panels or letting them “subscribe” to solar power generated elsewhere.
While this seems like an obviously sensible solution — the upfront cost of solar can be around $15,000 to $20,000, and you typically need to own a single family home to get it — it’s not quite as simple as those with more money are more likely to get solar. When the University of Texas economist Jackson Dorsey and Derek Wolfson looked at data provide by the solar marketplace EnergySage, they found that, yes, those with higher incomes are more likely to buy solar — but also that what solar installers offered them and what they paid for it varied depending on the demographics of the surrounding area.
“Econ 101, there’s usually two possible reasons why you might have lower quantities in a market. One would be demand is lower, and the other would be supply is lower,” Dorsey told me when I asked what had motivated his research. While the data about high-income demand for energy transition products like solar panels or electric vehicles is plentiful, there had been less attention paid to supply-side reasons for the disparities.
Dorsey and Wolfson looked at hundreds of thousands of bids for solar installation placed in EnergySage’s 15 largest markets, including much of urban California, New York City, Washington, D.C. and metro areas in Florida, where prospective solar buyers are able to pick among bids from installers. Unsurprisingly, lower-income buyers were less likely to purchase home solar, received fewer bids overall, and, because they were likely seeking smaller systems, paid more per watt than wealthier buyers. (The researchers were able to match data from EnergySage with census data to extract demographic information about potential customers along with their location.)
What did stand out, however, is that Black households in particular got fewer bids and paid notably higher prices, a disparity that could not be explained entirely by differences in income. Low-income households were more likely to be in an area with a lower cost of living, and therefore didn’t necessarily face higher overall project costs because prices for everything tended to be lower.
Black households, on the other hand, received fewer bids and then face higher prices. “If you look at Black vs. white households, Black households get about 8% higher prices,” Dorsey told me. “On a $20,000 system, that would be $1,600.”
The reason, he determined, is not so much that installers don’t want to serve people they know are Black. It’s that they don’t want to serve neighborhoods they know are majority Black.
Dorsey put the difference down to “some kind of perceived higher cost of doing business.” Part of it could be explained by installers setting up shop in areas where they think they’ll find higher demand for their services — high-income ones — and so Black neighborhoods, which are more likely to be low-income, may be literally farther away and more expensive to serve. According to the data Dorsey and Wolfson collected, there are three installers within 10 miles of white households on average, compared to two installers on average for Black households.
There could also, Dorsey said, “be some implicit preference that they don’t want to go to those neighborhoods.” In the paper, Dorsey and Wolfson write that “some sellers may prefer to serve certain households or neighborhoods either because of intolerant views, crime rates, or other variables correlated with household demographic characteristics.”
While the study didn’t get into remediation, fixing the income side of things should be fairly straightforward, Dorsey told me. “Just making prices lower or financing terms more comparable [to high income households] should be fairly effective,” he said.
The sociogeographic side of things will be trickier to address. “That might suggest a supply side policy might be effective,” Dorsey said, “like giving installers incentives to locate in or serve communities that are getting fewer bids and facing higher prices.”
Policymakers and solar advocates are very aware of the income and race disparities in solar adoptions and have come up with a slew of policies to try and narrow them. California, which has long been the epicenter of rooftop solar (with the most attendant controversy over how its incentives are designed), has a program that subsidizes low-income households that want to install solar and incentives for affordable multifamily buildings to install solar.
The Environmental Protection Agency’s $7 billion Solar For All program also supports states, tribes, and non-profits with programs to reach low-income households. “The program will help unlock new markets for residential solar in areas that have never seen this kind of investment before,” an EPA spokesperson told Heatmap in an emailed statement. “Much of the program will fund solar projects to benefit multi-family and affordable housing, as well as community solar projects, bringing the benefits of clean energy to households that may not have had access to it before.”
Another favored solution for getting solar access to those who wouldn’t otherwise have it is community solar, where households “subscribe” to small-scale solar installations and then get credits on their utility bill as if they had physically installed solar in their homes.
The share of community solar capacity that serves low-to-moderate income consumers has grown from 2% in 2022 to 12% this year, according to data from Wood Mackenzie and the Coalition for Community Solar Access, and they project it will continue to grow to 25% in 2025.
The Inflation Reduction Act also includes an “adder” for community solar projects that serve lower income consumers that boosts existing subsidies by 10 to 20 percentage points. These community solar projects are “already seeing impact and projects on the ground,” Molly Knoll, vice president of policy for CCSA, told me.
EnergySage’s chief executive, Charlie Hadlow, said in a statement that the company is “working diligently to ensure every eligible shopper gets three to seven quotes on our platform,” and that “we welcome more installers to sign up on our platform and are actively seeking them out, with a deliberate focus on underserved areas.” He said consumers typically save 20% using EnergySage compared to what they might get on their own, and that the company also has a marketplace for community solar.
All that said, Dorsey is skeptical that “installing panels at individual rooftop” is even the best way to decarbonize. "If you want to cost-effectively reduce emissions, it’s not clear to me rooftop solar is the way to do it as opposed to utility-scale or community solar,” he said.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The president of the Clean Economy Project calls for a new approach to advocacy — or as she calls it, a “third front.”
Roughly 50,000 people are in Brazil this week for COP30, the annual United Nations climate summit. If history is any guide, they will return home feeling disappointed. After 30 years of negotiations, we have yet to see these summits deliver the kind of global economic transformation we need. Instead, they’ve devolved into rituals of hand-wringing and half measures.
The United States has shown considerable inertia and episodic hostility through each decade of climate talks. The core problem isn’t politics. It’s perspective. America has been treating climate as a moral challenge when the real stakes are economic prosperity.
I’ve spent my career advancing the moral case from inside the environmental movement. Over the decades we succeeded at rallying the faithful, but we failed to deliver change at the scale and speed required. We passed regulations only to watch them be repealed. We pledged to cut emissions and missed the mark, again and again.
People think of climate change as a crisis to contain when it’s really a competition to win. We need to build what’s next, not stop what’s bad. And what’s at stake isn’t just emissions; it’s whether America leads or lags in the next era of global economic growth.
That calls for a new approach to climate action — a third front.
In the early 1900s, the first front focused on conservation — protecting forests, nature, and wildlife. The second front, in the 1960s and 70s, tackled pollution — cleaning up our air and water, regulating toxins, and safeguarding public health. Both were about “stopping” harm. They worked because they aimed at industries where slowing down made sense.
But energy doesn’t fit that mold. International pledges and national regulations to “stop” carbon emissions are destined to fail without affordable and accessible fossil-fuel replacements. Why? Because low-cost energy makes people’s lives better. Longer life expectancies, better health care, lower infant mortality, and higher literacy follow in its wake. Energy is foundational for prosperity, powering nearly every part of our modern lives.
No high-income country has low energy consumption. Prosperity depends on abundant energy. Global energy demand will keep rising, as poor countries install more refrigerators and air conditioning, and rich countries build more data centers and advanced manufacturing. Today, fossil fuels provide 80% of primary energy because they are cheap and easy to move around. That’s why the tools of “stopping harm” that we used to protect rivers and forests will not win the race. Innovation, not limits, leads to progress.
The third front is not about blocking fossil fuels; it’s about beating them. Stopping fossil fuels doesn’t fix the electric grid or reinvent steelmaking. By contrast, lowering the cost of clean technologies will spur economic growth, create jobs in rural counties, and lower electricity bills for working families.
Yet clean energy projects in the U.S. are routinely delayed by red tape, outdated rules, and policy whiplash. A transmission line often takes more than a decade to plan, permit, and construct. Meanwhile, China has added more than 8,000 miles of ultra‑high‑voltage transmission in just four years, compared with fewer than 400 miles here at home. American entrepreneurs are ready to build but our systems and rules haven’t caught up.
And the urgency to fix the problem is mounting. Electricity prices and energy demand are surging, while terawatts of clean energy projects pile up in the interconnection queue. We are struggling to build a 21st century economy on 20th century infrastructure.
The third front of climate action starts with building faster and smarter. That responsibility lies with policymakers at every level. In the U.S., Congress and federal agencies must treat energy infrastructure as economic competitiveness, not just environmental policy. State and local regulators must expedite permitting. Regional grid operators must speed up interconnection and integration of new technologies.
But government’s role is to clear the path, not dictate the outcome. The private sector — entrepreneurs pioneering technologies from long-duration storage to advanced geothermal to next-generation nuclear — is ready to build. What they need is for policymakers to remove the obstacles. We can use public policy not to command markets, but rather to unlock them, reward innovation, and create certainty that encourages investment.
The same logic applies globally. The multilateral climate system has focused on negotiating emission limits, but we need a renewed effort toward lowering the cost of clean energy so it can outcompete fossil fuels in every market, from the richest economies to the poorest. Whether through the UN, the G-20, or the Clean Energy Ministerial, the international community must play a role in that shift — not through collating new pledges, but by taking action on cost reduction, technology deployment, and removing barriers to scale. Through economic cooperation and competition, both, domestic policies around the world need to align toward making clean energy win on economics, backed by private capital and innovation.
It’s time to measure progress not only by tons of carbon avoided, but also by how much new energy capacity we add, how quickly clean projects come online, and how much private capital moves into clean industries.
There is a cure for the fatigue induced from 30 years of climate summits and setbacks. It’s a new playbook built on economic growth and shared prosperity. The goal is not only to reduce emissions. We must build a system where clean energy is so affordable, abundant, and reliable that it becomes the obvious choice. Not because people are told to use it, but because it is better.
On Trump's global gas up, a Garden State wind flub, and Colorado coal
Current conditions: From Cleveland to Syracuse, cities on the Great Lakes are bracing for heavy snowfall • Rainfall in Northern California could top 6 inches today • Thousands evacuated in the last few hours in Taiwan as Typhoon Fung-wong makes landfall.
The bill that would fund the government through the end of the year and end the nation’s longest federal shutdown eliminates support for the Department of Agriculture’s climate hubs. The proposed compromise to reopen the government would slash funding for USDA’s 10 climate hubs, which E&E News described as producing “regional research and data on extreme weather, natural disasters and droughts to help farmers make informed decisions.”
There were, however, some green shoots. A $730 million line item in the military’s budget could go to microgrids, renewables, or nuclear reactors. The bill also contains millions of dollars for the cleanup of so-called forever chemicals, which had stalled under the Trump administration. Still, the damage from the shutdown was severe. As Heatmap reported throughout the record-breaking funding lapse, the administration slashed funding for a backup energy storage system at a children’s hospital, major infrastructure projects in New York City, and droves of grants for clean energy.

Call it American exceptionalism. The effects of President Donald Trump’s One Big Beautiful Bill Act and America’s world-leading artificial intelligence development “have meaningfully altered” the International Energy Agency’s forecasts of global fossil fuel usage and emissions, Heatmap’s Matthew Zeitlin wrote this morning. The trajectory of global temperature rise may be, as I have written in this newsletter, so far largely unaffected by the new American administration’s policies. But multiple scenarios outlined in the Paris-based IEA’s 2025 World Energy Outlook predict “gas demand continues growing into the 2030s, due mainly to changes in U.S. policies and lower gas prices.”
That stands in contrast to China, a comparison that was inevitable this week as the world gathers for the United Nations climate summit in Belém, Brazil — the first that Washington is all but ignoring as the Trump administration moves to withdraw the U.S. from the Paris Agreement. As I wrote here yesterday, China's emissions remained flat in the last quarter, extending a streak that began in March 2024.
Sign up to receive Heatmap AM in your inbox every morning:
Heatmap’s Jael Holzman had a big scoop last night: Yet another offshore wind project on the East Coast is kaput. The lawyers representing the Leading Light Wind offshore project filed a letter on November 7 to the New Jersey Board of Public Utilities informing the regulator it “no longer sees any way to complete construction and wants to pull the plug,” Jael wrote. “The Board is well aware that the offshore wind industry has experienced economic and regulatory conditions that have made the development of new offshore wind projects extremely difficult,” counsel Colleen Foley wrote in the letter, a copy of which Jael got her hands on. The project was meant to be built 35 miles off New Jersey’s coast, and was expected to provide about 2.4 gigawatts of electricity to the power-starved state.
It’s the latest casualty of Trump’s “total war on wind,” and comes as other projects in Maryland and New England are fighting to retain permits amid the administration’s multi-agency onslaught.
Xcel Energy proposed extending the life of its Comanche 2 coal-fired power plant for 12 months past its shutdown date in December. The utility giant, backed by state officials and consumer advocates, told the Colorado Public Utilities Commission on Monday that maintaining power production from the 50-year-old unit was important as the power plant scrambled to maintain enough power generation following the breakdown of the coal plant's third unit. The 335-megawatt Comanche 2 generator in Pueblo is expected to get approval to keep running. “We need it for resource adequacy and reliability, underlining that need for reliability and resource adequacy are central issues,” Robert Kenney, CEO of Xcel Energy’s Colorado subsidiary, told The Colorado Sun. The move comes as Trump’s Department of Energy is ordering coal plants in states such as Michigan to keep operating months past closure deadlines at the cost of millions of dollars per month to ratepayers, as I have previously written.
Pennsylvania, meanwhile, may be preparing to withdraw from the Regional Greenhouse Gas Initiative, the cap-and-trade market in which much of the Northeast’s biggest states partake. A state budget deal described by Spotlight PA reporter Stephen Caruso on X would remove the commonwealth from the market.
Germany and Spain vowed to give $100 million to the World Bank’s Climate Investment Funds, a $13 billion multilateral financing pool to help poor countries deal with the effects of climate change. The funding, announced Monday at an event at the U.N.’s Cop30 summit in Brazil, is “an opportunity too large to ignore,” Tariye Gbadegesin, chief executive officer of Climate Investment Funds, said in a statement. While mitigation work has long held priority in international lending, adaptation work to give some relief to the countries that contributed the least to climate change but pay the highest tolls from extreme weather has often received scant support. In his controversial memo calling for a sober, new direction for global funding, billionaire philanthropist Bill Gates called on countries to take adaptation more seriously. For more on what he said, read the rundown Heatmap’s Robinson Meyer wrote.
Right in time for the region’s most iconic season, when even celebrants in farflung parts of this country think of the old Puritan lands during Halloween and Thanksgiving, I bring to you what might be the most New England story ever. A blade broke off a wind turbine near Plymouth, Massachusetts, last week and landed in — get ready for it — a cranberry bog. The roughly 90-foot blade left behind debris, but “no one was hurt, and the turbine automatically shut itself down as designed,” the local fire chief said.
Rob and Jesse unpack one of the key questions of the global fight against climate change with the Centre for Research on Energy and Clean Air’s Lauri Myllyvirta.
Robinson Meyer and Jesse Jenkins are off this week. Please enjoy this selection from the Shift Key archive.
China’s greenhouse gas emissions were essentially flat in 2024 — or they recorded a tiny increase, according to a November report from the Centre for Research on Energy and Clean Air, or CREA. A third of experts surveyed by the report believe that its coal emissions have peaked. Has the world’s No. 1 emitter of carbon pollution now turned a corner on climate change?
Lauri Myllyvirta is the co-founder and lead analyst at CREA, an independent research organization focused on air pollution and headquartered in Finland. Myllyvirta has worked on climate policy, pollution, and energy issues in Asia for the past decade, and he lived in Beijing from 2015 to 2019.
On this week’s episode of Shift Key, Rob and Jesse talk with Lauri about whether China’s emissions have peaked, why the country is still building so much coal power (along with gobs of solar and wind), and the energy-intensive shift that its economy has taken in the past five years. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: When we think about Chinese demand emissions going forward, it sounds like — somewhat to my surprise, perhaps — this is increasingly a power sector story, which is … is that wrong? Is it an industrial story? Is it a …
Lauri Myllyvirta: I want to emphasize the steel sector besides power. So if you simply look at what the China Steel Association is projecting, which is a gradual, gentle decline in total output and the increase in the availability of scrap. If you use that to replace coal-based with electricity-based steelmaking, you can achieve an about 40% reduction in steelmaking emissions over the next decade.
Of course, some of that is going to shift to electricity, so you need the clean electricity as well to realize it. But that’s at least as large an opportunity as there is on the power sector, so that’s what I’m telling everyone — that if you want to understand what China can accomplish over the next decade, it’s these two sectors, first and foremost.
Jesse Jenkins: Yeah. I mean, there’s some positive overall trends, right? If you look at the arc that we’re seeing in each sector, with renewables growth starting to outpace demand growth in electricity and eat into coal in absolute terms, not just market share, with the transition in the steel industry — which is sort of a story that we’ve seen in multiple countries as they move through different phases, right? As you’re building out your primary infrastructure, the first time you don’t have enough scrap, but as the infrastructure and rate of car recycling and things like that goes up, you now have a much larger supply. And that’s the case in the U.S., where the vast majority of our steel now comes from scrap.
And then, you know, the slowdown in the construction boom — China’s built an enormous amount of infrastructure and housing, and there’s only so much more that they need. And so the pace of that construction is likely to fall, as well. And then finally, the big shift to EVs in the transportation sector. So you’ve got your four largest-emitting sources on a very positive trajectory when it comes to greenhouse gas emissions.
Mentioned:
CREA’s reports on China’s emissions trajectory
Chinese EV companies beat their own targets in 2024
How China Created an EV Juggernaut
Jeremy Wallace: China Can’t Decide if It Wants to Be the World’s First ‘Electrostate’
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
Uplight is a clean energy technology company that helps energy providers unlock grid capacity by activating energy customers and their connected devices to generate, shift, and save energy. The Uplight Demand Stack — which integrates energy efficiency, electrification, rates, and flexibility programs — improves grid resilience, reduces costs, and accelerates decarbonization for energy providers and their customers. Learn more at uplight.com/heatmap.
Music for Shift Key is by Adam Kromelow.