You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
If you want to decarbonize concrete, it helps to understand the incredible scale of the problem.

To say that concrete poses a decarbonization challenge would be an understatement. Cement production alone is responsible for somewhere between 5 and 10% of global CO2 emissions [0], roughly two to four times more than aviation, a fact that even the construction industry is finally coming to grips with.
And yet the real problem with decarbonizing concrete isn’t the scale of its emissions, it’s the scale of concrete itself. There is simply a preposterous amount of the stuff. Contemplating concrete is like contemplating the universe — awesome, in the old God-fearing definition of the word.
Before we get into the jaw-dropping amount of concrete we produce every year, it’s worth briefly discussing how the stuff is made, and thus where its emissions come from.
Concrete is formed by mixing together cement (mostly calcium silicates), aggregates (such as sand and gravel), and water into a liquid slurry. The cement reacts with the water, forming a paste that binds the mixture into a single solid mass. Beyond concrete’s high strength and low cost, it’s these liquid beginnings that make concrete so useful. It can easily be formed into any shape and leveled with the help of gravity so you can walk on it or park a car 10 stories up on it. Essentially all modern concrete is also reinforced with steel bars, which provide tensile strength and arrest cracks.
So what about the emissions? Roughly 70-90% of the embodied carbon in concrete comes from manufacturing just the cement [1]. Partly this is because making cement is an energy-intensive process — limestone and clay are put into a kiln and heated around 2500 degrees Fahrenheit. But it’s also because the chemical reaction that turns the limestone into cement (known as calcination) releases CO₂ as a byproduct. Roughly 50-60% of cement’s carbon emissions are due to calcination [2], and thus wouldn’t be addressed by moving to less carbon-intensive electricity sources, like green hydrogen.
Now for the good stuff. Again, the most important thing to understand about concrete is the scale of its production. The world produces somewhere around 4.25 billion metric tons of cement annually (though estimates vary) [3], which works out to about 30 billion tons of concrete produced each year [4].
How much are 30 billion tons?
One way of looking at it is we produce around 4 metric tons, or just under 60 cubic feet (roughly a cube 4 feet on a side), of concrete for each person on the planet each year.
Another way of looking at it is to consider the total amount of mass, full stop, that civilization ingests each year. Estimates here vary quite a bit, but it seems to be in the neighborhood of 100 billion tons [5]. So of the total volume of material that gets extracted and used each year — including all mining, all oil drilling, all agriculture and tree harvesting — around 30% of it by mass goes toward making concrete. The amount of concrete produced each year exceeds the weight of all the biomass we use annually, and all the fossil fuels we use annually.
Total civilization annual material extraction, via Krausmann et al 2018. This is up to 2015, and has now exceeded over 90 Gt/year, with another ~8 Gt/year of recycled material.
Another way of looking at it is that the total mass of all plants on Earth is around 900 billion metric tons. So at current rates of production, it would take about 30 years to produce enough concrete to exceed all the Earth’s plant (dry) biomass.
Because humans have been producing concrete for a while, and because concrete tends to last a long time, we seem to be on the cusp of this happening. Elhacham et al 2020 estimate that total human-created mass (roughly half of which is concrete) reached the total weight of all Earth’s biomass sometime in 2020. Eyeballing their graph, concrete alone will exceed the total weight of all biomass sometime around 2040.
Anthropogenic mass vs biomass during the 20th century, via Elhacham et al 2020
In a pure mass-flow sense, human civilization is basically a machine for producing concrete and gravel (and to a lesser extent bricks and asphalt).
So civilization uses a lot of concrete. Where is it all going?
China, mostly. In recent history, China has been responsible for roughly half the world’s cement production, and by implication, concrete use [6]. The U.S., by comparison, only uses 2%, with Europe using another 5%.
Cement production by region, via Sanjuan et al 2020. Since cement production roughly tracks consumption (see here and here), we can also use this as a rough guide toward where concrete is used. Note that this gives yet another value for total global cement production of 4.65 Gt
Here’s another view from around 2010, showing what this has looked like over time (data after 2010 is a projection).
Cement consumption by region, via Altwair 2010
This gets summarized in the oft-repeated statistic that China used more cement in three years than the U.S. did in the entire 20th century.
But since China has a much larger population than the U.S., we can get a more intuitive understanding of this by looking at cement consumption per capita. Here’s per capita consumption sometime around 2015:
Per capita cement consumption by country, via Globbulk
We see that the official numbers from China make it a huge outlier in cement consumption, using around eight times as much per capita as the U.S. However, in per capita terms, some Middle Eastern countries exceed it. Saudi Arabia is higher, and Qatar, which is somewhere over 2,000 kg/capita, is so high it doesn’t even show up on the graph. It’s the combination of China’s huge population and its huge per-capita consumption that make it such an outlier in concrete production.
The official Chinese numbers are so huge, in fact, that some analysts suspect that they’re inflated, either by manipulating the data or by producing construction projects that don’t have actual demand (or both). The graph above also includes a more “realistic” estimate (which is still 3x as high as U.S. per-capita use).
What does all this concrete construction mean in practical terms? Well, China has somewhere around 50-60% of the floor space per capita as the U.S. does, or roughly as much living space per capita as most European countries [7]. This is the result of a massive trend toward urbanization over the last quarter century. Urbanization rates went from around 25% in 1990 to 60% in 2017, a period in which China’s population also increased by 250 million. In other words, in less than 30 years over 550 million moved into Chinese cities, and they all needed somewhere to live. By building enormous numbers of concrete high rises, in under 20 years China quintupled its urban residential floor space and doubled its residential floor space overall.
Residential floor space in China over time, via Pan 2020
Beyond China, we see high per capita rates of cement use in the rest of Southeast Asia, as well as the Middle East [8].
One reason you see this volume of concrete use in lower-income, urbanizing countries is that concrete construction is comparatively labor-intensive to produce. The materials for concrete are extremely cheap, and much of its cost in high-cost labor countries (such as the U.S.) is from the labor to produce it — building and setting up the formwork, laying out the reinforcing, placing the embeds, etc. If you’re a country with a lot of low-cost labor, this is a pretty good trade-off.
In addition to the current largest users of concrete, one trend to keep an eye on long-term is India’s concrete use. If India ever proceeds on a path of mass urbanization similar to China (as some folks speculate it will), we could see a massive uptick in global concrete output — India’s urbanization rate of 34% is around where China was in the late 1990s. A shift in India toward a per capita cement consumption more consistent with the rest of Southeast Asia (say around 600 kg/capita) would increase worldwide cement consumption by about 13%, and it does seem as if India’s cement use is trending upward.
By contrast, one thing clear from this data is that the U.S. actually uses an unusually low amount of concrete. Per capita, it uses as little as any other Western country, and far, far less than some — like, surprisingly, Belgium.
So we’ve seen where it gets used in the world. Can we go deeper and look at specifically what concrete is being used for?
This will vary significantly depending on the region and the local construction tradition. In the U.S., we have roughly the following breakdown (via the Portland Cement Association):
Overall, roughly half of our concrete gets used in buildings — about 26% goes into residential buildings, 2% in public buildings, and 16% into commercial buildings. The other half gets used for infrastructure — streets and highways, water conveyance and treatment tanks, etc. Because most construction in the U.S. is just one- or two-story buildings (mostly wood for residential buildings and steel for commercial ones), concrete in buildings is probably mostly going into foundations, slabs on grade, and concrete over metal deck, though there’s probably a substantial amount going into concrete masonry units as well.
But the U.S. has a somewhat unusual construction tradition, where the vast majority of our residential construction, both single-family homes and multifamily apartments, is built from light-framed wood. In other places, it's much more common to use concrete. For instance, the U.K. uses closer to 80% of its concrete for buildings, with most of that going toward the superstructure, the concrete frame that holds the building up. China, which has urbanized on the back of huge numbers of concrete residential high rises, probably devotes an even larger share of its concrete to residential construction.
Understanding how much concrete the world uses, and where it’s being used, is important if you want to use less of it.
The scale of the industry is particularly important to keep in mind. For instance, you often see enthusiasm for the idea of replacing concrete buildings with mass timber ones. But assuming you could substitute all the world’s concrete for an equal volume of wood [9], you’d need to more than triple the total annual volume of global wood harvested [10], which puts a somewhat different spin on the issue.
Most other materials would have emissions as bad or worse than concrete if they were used on the same scale.
Consider, for instance, railway ties. In the U.S., these are still largely made out of wood, but in many places they have been replaced with concrete ties. And some places are considering changing from concrete ties to plastic composite rail ties instead. It’s hard to know the exact embodied emissions without a lot of specific details about the materials and supply chains used, but can we ballpark how much a plastic tie uses compared to a concrete one?
Per the Inventory of Carbon and Energy database, concrete varies between 150 and 400 kg of embodied CO2 per cubic meter, depending on the properties of the mix, with an “average” value of about 250. Plastics mostly have embodied emissions of about 3-4 kg of CO2 per kg of plastic, or about 3,500 kg per cubic meter (assuming a density of about 1,000 kg per cubic meter). So per unit volume, plastic has somewhere around 10 times the embodied emissions of concrete.
We can also do a more direct comparison. Consider a beam spanning around 20 feet and supporting a vertical load of 21,000 pounds per linear foot. The lightest U.S. standard steel section that will span this distance is a W16x26, which weighs about 236 kg and will have embodied carbon emissions of around 354 kg.
A concrete beam of the same depth, supporting the same load and spanning the same distance, will be 10.5 inches wide by 16 inches deep, with three #10 steel bars running along the bottom. This beam will have about 190 kg of embodied emissions from the concrete, and about another 230 kg of embodied emissions from the steel rebar. This is about 20% more than the steel beam, but in the same ballpark — and over half the “concrete” emissions are actually due to the embedded reinforcing steel.
This is arguably a nonrepresentative example (most concrete, such as in columns or slabs, will have a much lower ratio of steel), but the basic logic holds: Concrete is unusual in its total volume of use, not how emissions-heavy it is as a material. Most material substitutes that aren’t wood, recycled materials, or industrial byproducts that can be had for “free” won’t necessarily be much better when used at the same scale. In some ways, it’s surprising that the carbon emissions from concrete are as low as they are.
Of course, this calculus is likely to change over time — as electricity sources change over to lower carbon ones, you’re likely to see the embodied emissions of materials drop along with it. And since cement releases CO2 as part of the chemical process of producing it, concrete will look increasingly worse compared to other materials over time.
One potential option is to find ways of changing the cement production process to be less carbon-intensive. The easiest option is to just replace manufactured Portland Cement with some other cementitious material. Industrial byproducts such as blast furnace slag, silica fume, and fly ash, often have cementitious properties and don’t have a “carbon penalty” (since they’d be produced regardless.) Materials like these can potentially eliminate large volumes of cement in a concrete mix, and they’re a key part of current low-carbon concrete strategies — even “normal” concrete mixes tend to utilize these to some degree. But the total volume of these materials is limited by the extent of various industrial processes. And for things like fly ash (which is a byproduct from coal plants) and slag (which is a byproduct from CO2-emitting blast furnaces), we can expect production to decline over time.
Another option is to take advantage of the fact that concrete will naturally absorb CO2 over time, a process known as carbonation. Even normal concrete will absorb roughly 30% of the CO2 emitted during the production process over the course of its life. Companies like Carbicrete, Carboncure, Carbonbuilt, and Solida all offer methods of concrete production that allow the concrete to absorb CO₂ during the production process, substantially reducing embodied emissions. Interestingly, these producers mostly claim that their concrete is actually cheaper than conventional concretes, which would obviously be a massive tailwind for the technology’s adoption.
It’s not obvious what the best path forward is for addressing concrete carbon emissions (like with most things, I suspect it’ll end up being a mix of different solutions), but understanding the parameters of the problem is necessary for solving it.
Note: A version of this article originally appeared in the author’s newsletter, Construction Physics, and has been repurposed for Heatmap.
[0] - This figure varies depending on the source. Chatham House provides a frequently cited estimate of 8%. We can also ballpark it — roughly 0.93 pounds of CO₂ gets emitted for each pound of cement produced, around 4.25 billion tons of cement are produced annually, which gets ~3.95 billion tons of CO₂, and total annual CO₂ emissions are in the neighborhood of 46 billion tons, getting us a bit less than 9%.
[1] - Per Circular Ecology, ~70-90% of emissions are from the cement production process, depending on the type of concrete and what the rest of the supply chain looks like.
[2] - This seems to vary depending on where the cement is being made — in Myanmar, for instance, it’s around 46%.
[3] - Another number where the sources often don’t agree with each other, see here, here, and here for estimates on annual cement production.
[4] - Concrete is roughly 10-15% cement by weight, depending on the strength of the mix, what other cementitious materials are being used, etc. An average value of 12.5% yields 34 billion tons, which we’ll knock down to account for other uses of cement (masonry mortar, grout, gypsum overlay, etc.) This roughly tracks with estimates from PCA (“4 tons of concrete produced each year for every person on Earth”), and from the now-defunct Cement Sustainability Initiative, which estimated 25 billion tons of concrete against 3.125 billion tons of cement in 2015.
[5] - See here, here, and here for an estimate of total civilization mass flow. This doesn’t (I believe) include waste byproducts, which can be substantial — for instance, it doesn’t include the ~46 billion tons of CO₂ emitted each year, or the 16 billion tons of mine tailings, or the 140 billion tons of agriculture byproducts (though this last number is difficult to verify and seems high).
[6] - We see something similar with cement as we do with other bulky, low-value materials, in that it's made in lots of distributed manufacturing facilities relatively close to where it’s used. See here for a map of cement plants in the U.S. around 2001, for instance.
[7] - For China’s total floor space, see here (most sources seem to agree with these numbers). For U.S. floor space, see my Every Building In America article. For per-capita living space in Europe, see here.
[8] - The often high rates of cement use by middle-income countries have led some folks to develop a U-shaped cement consumption theory of industrial development — that countries start out using a small amount of cement, use more as they get richer and build up their physical infrastructure, and then eventually transition to using lower volumes of cement again. The Globbulk paper spends considerable time debunking this.
[9] - It’s not actually obvious to me what the substitution ratio would be. In strength-governed cases, you’d need proportionally more timber than concrete, but in other cases (such as replacing concrete walls with light-framed stud walls), you’d probably use less. Obviously, you can’t substitute all concrete for wood, but you can probably switch out more than you think — there’s no reason you couldn’t use wood foundations instead of concrete ones in many cases, for instance.
[10] - 30 billion tons of concrete is roughly 12.5 billion cubic meters, and total annual wood products produced is currently around 5.5 billion cubic meters.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
We knew the revived Chevrolet Bolt might have a limited run. Nobody knew it would be this limited.
General Motors began manufacturing the updated version of its small electric car late last year to begin deliveries this month. Already the news of its potential demise is here. GM says the Kansas factory that’s churning out Bolts will be repurposed to make combustion cars, including a Buick, of all things. Now, just as the arrival of the sub-$30,000 Bolt heralded a new age of more affordable electric cars, Chevy is dropping out of the race and putting its beloved little electric car on the backburner. Again.
The culprits in this case are clear. With the federal tax credit for buying EVs dead and gone, and with weakened emissions rules removing the incentive for car companies to pursue an aggressive electrification strategy, automakers are running back to the familiar embrace of fossil fuels. GM has already said it expects to lose billions as it adjusts its business strategy, curbing its EV push to meet the new reality under President Trump, where gas-burning cars remain much more profitable to build and sell.
The Bolt’s fate is the immediate fallout from that move. The Buick Envision, part of America’s army of indistinguishable gas-powered crossovers, had been built at a GM plant in China. Trump’s tariffs, however, incentivized the company to move production back to the U.S. The fact that GM repatriated the Envision at the expense of the Bolt tells you what you need to know about this moment in the U.S. auto market.
GM never promised that the Bolt would be back for good, and its return to limbo is par for the course when it comes to this plucky little car. The original Bolt EV had its problems, including a battery recall and glacial charging speeds by today’s standards. But the Bolt established GM’s place in the new EV age and found a flock of fans. At the time it was discontinued in 2023, it was the top-selling non-Tesla EV in America, selling more than 60,000 cars that year.
Fans clamored to get the car back. GM listened, and built a new version on the Ultium platform that forms the basis of its current generation of EVs. When I attended Chevy’s big reveal party for the new Bolt last year, it handed out merch reading “back by popular demand.” Yet GM always referred to the vehicle’s revival as a special run, as if not to get anyone’s hopes up that the Bolt would become a mainstay in the Chevy lineup.
Things could have been different, of course. GM has hinted at the possibility of expanding upon the Bolt with more models if the car succeeded in helping the company win the affordable EV race. Instead, the Kansas factory will turn back to combustion next year as Chevy builds some gas-powered Equinox SUVs there, moving production from Mexico after getting hammered by new tariffs. The Buick Envision, which GM has been making in China for nearly a decade, will begin Kansas production in 2028.
The Bolt’s second sudden death is a big blow to American EV lovers. Without a $7,500 tax break for buying an electric vehicle, Americans badly need more affordable options. Bolt, which starts around $29,000 in its most basic form, was set to lead a pack that would include other 2026 arrivals such as the customizable, Jeff Bezos-backed Slate truck and the reimagined third-generation Nissan Leaf. Now, you’d better act fast if you want to get behind the wheel of a Bolt.
Practically every week brings a flood of climate tech funding news and announcements — startups raising a new round, a venture capital firm closing a fresh fund, and big projects hitting (and missing) milestones. Going forward, I’ll close out each week with a roundup of some of the biggest stories that I didn’t get a chance to cover in full.
This week, we’ve got money for electric ships, next-gen geothermal, and residential electrification in Europe. Yay!
Many say battery-powered cargo ships will never make sense — that batteries are too heavy, too bulky, and would take up too much valuable space. FleetZero says it can make it work. Last Friday, the electric shipping startup raised a $43 million Series A round led by Obvious Ventures, with participation from other firms including Maersk Growth, the shipping giant’s corporate venture arm, and Breakthrough Energy Ventures. The funding will support production of the company’s hybrid and electric propulsion systems, as well as new manufacturing and R&D operations in Houston.
Ships’ bunker fuel is extremely polluting. It accounts for roughly 3% of global CO2 emissions and dirties the air with other pollutants such as sulfur and nitrogen oxides. Most players in the shipping decarbonization space want to shift to liquid fuels such as e-ammonia or e-methanol — a move that would require mulit-million-dollar engine overhauls and retrofits. FleetZero says that battery electrification will prove to be cheaper and simpler. The company is building batteries large enough to hybridize — and potentially one day fully electrify — large container ships.
As FleetZero’s CEO and co-founder Steven Henderson told my colleague Robinson Meyer on a 2024 episode of Heatmap’s Shift Key podcast, batteries are a relatively simple maritime decarbonization solution because “you can use existing infrastructure and build on it. You don’t need a new fundamental technology to do this.” And while the company has yet to provide any cost estimates for electrifying commercial shipping, as Henderson put it, “the numbers to do this are not outside the realm of possibility.”
The next-generation geothermal startup Sage Geosystems announced on Wednesday that it raised a $97 million Series B round, co-led by the renewable energy company Ormat Technologies and the growth equity firm Carbon Direct Capital. This came atop a hot week for geothermal overall. As I wrote already, the artificial intelligence-powered geothermal developer Zanskar announced a $115 million Series C round for its pursuit of AI-driven conventional geothermal, while Axios reported that the geothermal unicorn Fervo Energy has filed for an IPO.
Like Fervo, Sage uses drilling technology adapted from the oil and gas industry to create its own artificial reservoirs in hot, dry rock. The startup then pumps these fractures full of water, where it absorbs heat from the surrounding rocks before being brought to the surface as steam that’s used to generate electricity. Sage’s CEO, Cindy Taff — a former Shell executive — told Bloomberg that this latest investment will accelerate the company’s project timeline by a full year or two, allowing the company to put power on Nevada’s grid sometime in 2027.
This latest funding follows Sage’s strategic partnership with Ormat, announced last year, and could help the startup make good on its agreement with Meta to deliver up to 150 megawatts of clean electricity for the tech giant’s data centers starting in 2027.
Berlin-based startup Cloover — which helps Europeans finance home electrification upgrades — announced a $22 million Series A round on Wednesday, alongside a $1.2 billion debt facility from an unnamed “leading European bank” that it can draw on. The company, which describes itself as both the “operating system for energy independence” and the “Shopify of Energy,” aims to help homeowners ditch fossil fuels by facilitating loans to cover the upfront cost of, say, buying and installing heat pumps, rooftop solar, or home batteries — something traditional banks struggle to finance.
Cloover’s a fintech platform allows home energy installers to manage complex projects while offering loans for green upgrades to customers at the point of sale. The software’s AI-driven credit underwriting evaluates not just a customer’s credit score, but also the projected energy savings and performance of the upgrade itself, helping align the price and terms of borrowing with the anticipated economic value of the asset.
Forbes reports that Cloover has already financed roughly 2,500 home energy installations. The company says it’s profitable, generating nearly $100 million in sales last year. With this new funding, the startup plans to expand across Europe and is projecting $500 million in sales this year, anticipating an explosion in demand for distributed energy resources.
One of the oldest players in the race to commercialize fusion energy, General Fusion, has been candid about its recent funding struggles, laying off 25% of its staff last spring while publicly pleading for more cash. This Thursday, it announced a lifeline: a SPAC merger that will provide the company with up to $335 million, if all goes according to plan. Read more about the deal in our Heatmap AM newsletter.
Current conditions: The monster snow storm headed eastward could dump more than a foot of snow on New York City this weekend • An extreme heat wave in Australia is driving temperatures past 104 degrees Fahrenheit • In northwest India, Jammu and Kashmir are bracing for up to 8 inches of snow.
Last month, Fervo Energy raised another $462 million in a Series E round to finance construction of the next-generation geothermal startup’s first major power plant. Pretty soon, retail investors will be able to get in on the hype. On Thursday, Axios reported that the company had filed confidential papers with the Securities and Exchange Commission in preparation for an initial public offering. Fervo’s IPO will be a milestone for the geothermal industry. For years, the business of tapping the Earth’s molten heat for energy has remained relatively small, geographically isolated, and dominated by incumbent players such as Ormat Technologies. But Fervo set off a startup boom when it demonstrated that it could use fracking technology to access hot rocks in places that don’t have the underground reservoirs that conventional geothermal companies rely upon. In yesterday’s newsletter, I told you about how Zanskar, a startup using artificial intelligence to find more conventional resources, and Sage Geosystems, a rival next-generation company to Fervo, had raised a combined $212 million. But as my colleague Matthew Zeitlin wrote in December when Fervo raised its most recent financing round, it’s not yet clear whether the company’s “enhanced” geothermal approach is price competitive. With how quickly things are progressing, we will soon find out.
Fervo isn’t the only big IPO news. General Fusion, the Canadian fusion energy startup TechCrunch describes as “struggling,” announced plans for a $1 billion reverse merger deal to go public on the Nasdaq. The move comes almost exactly a month after President Donald Trump’s social media company, the parent firm of Truth Social, inked a deal to merge with the fusion startup TAE Technologies and create the first publicly-traded fusion company in the U.S. Analysts I spoke to about the deal called it “flabberghasting,” and warned that TAE’s technology represented a more complex and dubious approach to commercializing fusion than that taken by rival companies such as Commonwealth Fusion Systems. Still, the IPO deals highlight the growing excitement over progress on generating power from a technology long mocked as the energy source of tomorrow that always will be. As Heatmap’s Katie Brigham artfully put it in 2024, “it is finally, possibly, almost time for fusion.”
General Motors plans to move manufacturing of the next generation of its Buick Envision SUV from China to the U.S. in two years and end production of the all-electric Chevrolet Bolt. The Detroit auto giant makes just one of its four SUV models in the U.S., leaving the cars vulnerable to Trump’s tariffs. The worst hit was the Envision, which is currently built in China. Starting in 2028, the latest version of the Envision will be produced in Kansas, taking over the assembly line that is currently churning out the Bolt.
It's a blow to GM's electric vehicle line. Chevy just brought back the Bolt in response to high demand after initially canceling production in 2023, because as Andrew Moseman put it in Heatmap, it's “the cheap EV we've needed all along.” While Chevy had always framed the return as a limited run, it was not previously clear how limited that would be.
Get Heatmap AM directly in your inbox every morning:
The Department of Energy said Thursday its newly rebranded Office of Energy Dominance Finance, formerly the Loan Programs Office, is “restructuring, revising, or eliminating more than $83 billion in Green New Scam loans and conditional commitments.” The move comes after “an exhaustive first-year review” of the $104 billion in principal loan obligations the Biden administration shelled out, including $85 billion the Trump administration accused of being “rushed out the door in the final months after Election Day.” In a statement, Secretary of Energy Chris Wright said the changes are meant to “ensure the responsible investment of taxpayer dollars.” While it’s not yet clear which projects are affected, the agency said the EDF eliminated about $9.5 billion in support for wind and solar projects and redirected that funding to natural gas and nuclear energy. But as Heatmap’s Emily Pontecorvo noted last night, the Energy Department hasn’t yet said which loans are set to be canceled as part of the latest cuts. The announcement may include loans that have already been canceled or restructured.
Sign up to receive Heatmap AM in your inbox every morning:
If you know anything about surging electricity demand, you’re likely to finger a single culprit: data centers. But worldwide, air conditioning dwarfs data centers as a demand driver. And in California, electric vehicles are on pace to edge out data centers as a bigger driver of peak demand on the grid. That’s according to a new report from the California Energy Commission. Just look at this chart:

As the Golden State tries to get a grip on its electricity system, Representative Ro Khanna, the progressive Silicon Valley congressman often discussed as a potential 2028 presidential candidate, has doubled down on his calls to break up the state’s largest utility. On Thursday, Khanna posted on X that PG&E “should be broken up and owned by customers, not shareholders. They are ripping off Californians by buying off politicians in Sacramento.” The Democrat has been calling for PG&E’s demise since at least 2019, when the utility was on the hook for billions of dollars in damages from a wildfire sparked by its equipment. But the idea hasn’t exactly caught on.
New energy technologies such as batteries, solar panels, and wind turbines are driving demand for minerals and spurring a controversial push for new mines on virgin lands. But a new study by researchers at the University of Queensland’s Sustainable Minerals Institute found that a production boom is already underway at existing mines. The peer-reviewed paper, which is the first comprehensive global analysis of brownfield mining expansion, found that existing mines are growing in size and scale. Just because the mines are already there doesn’t mean the new production doesn’t come with some social cost. Nearly 78% of the 366 mines analyzed in the study “are located in areas facing multiple high-risk socioeconomic conditions, including weak governance, poor corruption control, and limited press freedom,” the study found.
The Department of the Interior has a new coal mascot. On Thursday, the agency posted an animated picture of a cartoonish, rosy-cheeked, chicken nugget-shaped lump of coal clad in a yellow hardhat and construction gear. His name? Coalie. The idea isn’t original. Australia’s coal-mining trade group rolled out an almost identical mascot a few years ago — same anthropomorphic lump of coal, same yellow attire. The only difference? His name was Hector, and he wore glasses.