You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
If you want to decarbonize concrete, it helps to understand the incredible scale of the problem.
To say that concrete poses a decarbonization challenge would be an understatement. Cement production alone is responsible for somewhere between 5 and 10% of global CO2 emissions [0], roughly two to four times more than aviation, a fact that even the construction industry is finally coming to grips with.
And yet the real problem with decarbonizing concrete isn’t the scale of its emissions, it’s the scale of concrete itself. There is simply a preposterous amount of the stuff. Contemplating concrete is like contemplating the universe — awesome, in the old God-fearing definition of the word.
Before we get into the jaw-dropping amount of concrete we produce every year, it’s worth briefly discussing how the stuff is made, and thus where its emissions come from.
Concrete is formed by mixing together cement (mostly calcium silicates), aggregates (such as sand and gravel), and water into a liquid slurry. The cement reacts with the water, forming a paste that binds the mixture into a single solid mass. Beyond concrete’s high strength and low cost, it’s these liquid beginnings that make concrete so useful. It can easily be formed into any shape and leveled with the help of gravity so you can walk on it or park a car 10 stories up on it. Essentially all modern concrete is also reinforced with steel bars, which provide tensile strength and arrest cracks.
So what about the emissions? Roughly 70-90% of the embodied carbon in concrete comes from manufacturing just the cement [1]. Partly this is because making cement is an energy-intensive process — limestone and clay are put into a kiln and heated around 2500 degrees Fahrenheit. But it’s also because the chemical reaction that turns the limestone into cement (known as calcination) releases CO₂ as a byproduct. Roughly 50-60% of cement’s carbon emissions are due to calcination [2], and thus wouldn’t be addressed by moving to less carbon-intensive electricity sources, like green hydrogen.
Now for the good stuff. Again, the most important thing to understand about concrete is the scale of its production. The world produces somewhere around 4.25 billion metric tons of cement annually (though estimates vary) [3], which works out to about 30 billion tons of concrete produced each year [4].
How much are 30 billion tons?
One way of looking at it is we produce around 4 metric tons, or just under 60 cubic feet (roughly a cube 4 feet on a side), of concrete for each person on the planet each year.
Another way of looking at it is to consider the total amount of mass, full stop, that civilization ingests each year. Estimates here vary quite a bit, but it seems to be in the neighborhood of 100 billion tons [5]. So of the total volume of material that gets extracted and used each year — including all mining, all oil drilling, all agriculture and tree harvesting — around 30% of it by mass goes toward making concrete. The amount of concrete produced each year exceeds the weight of all the biomass we use annually, and all the fossil fuels we use annually.
Total civilization annual material extraction, via Krausmann et al 2018. This is up to 2015, and has now exceeded over 90 Gt/year, with another ~8 Gt/year of recycled material.
Another way of looking at it is that the total mass of all plants on Earth is around 900 billion metric tons. So at current rates of production, it would take about 30 years to produce enough concrete to exceed all the Earth’s plant (dry) biomass.
Because humans have been producing concrete for a while, and because concrete tends to last a long time, we seem to be on the cusp of this happening. Elhacham et al 2020 estimate that total human-created mass (roughly half of which is concrete) reached the total weight of all Earth’s biomass sometime in 2020. Eyeballing their graph, concrete alone will exceed the total weight of all biomass sometime around 2040.
Anthropogenic mass vs biomass during the 20th century, via Elhacham et al 2020
In a pure mass-flow sense, human civilization is basically a machine for producing concrete and gravel (and to a lesser extent bricks and asphalt).
So civilization uses a lot of concrete. Where is it all going?
China, mostly. In recent history, China has been responsible for roughly half the world’s cement production, and by implication, concrete use [6]. The U.S., by comparison, only uses 2%, with Europe using another 5%.
Cement production by region, via Sanjuan et al 2020. Since cement production roughly tracks consumption (see here and here), we can also use this as a rough guide toward where concrete is used. Note that this gives yet another value for total global cement production of 4.65 Gt
Here’s another view from around 2010, showing what this has looked like over time (data after 2010 is a projection).
Cement consumption by region, via Altwair 2010
This gets summarized in the oft-repeated statistic that China used more cement in three years than the U.S. did in the entire 20th century.
But since China has a much larger population than the U.S., we can get a more intuitive understanding of this by looking at cement consumption per capita. Here’s per capita consumption sometime around 2015:
Per capita cement consumption by country, via Globbulk
We see that the official numbers from China make it a huge outlier in cement consumption, using around eight times as much per capita as the U.S. However, in per capita terms, some Middle Eastern countries exceed it. Saudi Arabia is higher, and Qatar, which is somewhere over 2,000 kg/capita, is so high it doesn’t even show up on the graph. It’s the combination of China’s huge population and its huge per-capita consumption that make it such an outlier in concrete production.
The official Chinese numbers are so huge, in fact, that some analysts suspect that they’re inflated, either by manipulating the data or by producing construction projects that don’t have actual demand (or both). The graph above also includes a more “realistic” estimate (which is still 3x as high as U.S. per-capita use).
What does all this concrete construction mean in practical terms? Well, China has somewhere around 50-60% of the floor space per capita as the U.S. does, or roughly as much living space per capita as most European countries [7]. This is the result of a massive trend toward urbanization over the last quarter century. Urbanization rates went from around 25% in 1990 to 60% in 2017, a period in which China’s population also increased by 250 million. In other words, in less than 30 years over 550 million moved into Chinese cities, and they all needed somewhere to live. By building enormous numbers of concrete high rises, in under 20 years China quintupled its urban residential floor space and doubled its residential floor space overall.
Residential floor space in China over time, via Pan 2020
Beyond China, we see high per capita rates of cement use in the rest of Southeast Asia, as well as the Middle East [8].
One reason you see this volume of concrete use in lower-income, urbanizing countries is that concrete construction is comparatively labor-intensive to produce. The materials for concrete are extremely cheap, and much of its cost in high-cost labor countries (such as the U.S.) is from the labor to produce it — building and setting up the formwork, laying out the reinforcing, placing the embeds, etc. If you’re a country with a lot of low-cost labor, this is a pretty good trade-off.
In addition to the current largest users of concrete, one trend to keep an eye on long-term is India’s concrete use. If India ever proceeds on a path of mass urbanization similar to China (as some folks speculate it will), we could see a massive uptick in global concrete output — India’s urbanization rate of 34% is around where China was in the late 1990s. A shift in India toward a per capita cement consumption more consistent with the rest of Southeast Asia (say around 600 kg/capita) would increase worldwide cement consumption by about 13%, and it does seem as if India’s cement use is trending upward.
By contrast, one thing clear from this data is that the U.S. actually uses an unusually low amount of concrete. Per capita, it uses as little as any other Western country, and far, far less than some — like, surprisingly, Belgium.
So we’ve seen where it gets used in the world. Can we go deeper and look at specifically what concrete is being used for?
This will vary significantly depending on the region and the local construction tradition. In the U.S., we have roughly the following breakdown (via the Portland Cement Association):
Overall, roughly half of our concrete gets used in buildings — about 26% goes into residential buildings, 2% in public buildings, and 16% into commercial buildings. The other half gets used for infrastructure — streets and highways, water conveyance and treatment tanks, etc. Because most construction in the U.S. is just one- or two-story buildings (mostly wood for residential buildings and steel for commercial ones), concrete in buildings is probably mostly going into foundations, slabs on grade, and concrete over metal deck, though there’s probably a substantial amount going into concrete masonry units as well.
But the U.S. has a somewhat unusual construction tradition, where the vast majority of our residential construction, both single-family homes and multifamily apartments, is built from light-framed wood. In other places, it's much more common to use concrete. For instance, the U.K. uses closer to 80% of its concrete for buildings, with most of that going toward the superstructure, the concrete frame that holds the building up. China, which has urbanized on the back of huge numbers of concrete residential high rises, probably devotes an even larger share of its concrete to residential construction.
Understanding how much concrete the world uses, and where it’s being used, is important if you want to use less of it.
The scale of the industry is particularly important to keep in mind. For instance, you often see enthusiasm for the idea of replacing concrete buildings with mass timber ones. But assuming you could substitute all the world’s concrete for an equal volume of wood [9], you’d need to more than triple the total annual volume of global wood harvested [10], which puts a somewhat different spin on the issue.
Most other materials would have emissions as bad or worse than concrete if they were used on the same scale.
Consider, for instance, railway ties. In the U.S., these are still largely made out of wood, but in many places they have been replaced with concrete ties. And some places are considering changing from concrete ties to plastic composite rail ties instead. It’s hard to know the exact embodied emissions without a lot of specific details about the materials and supply chains used, but can we ballpark how much a plastic tie uses compared to a concrete one?
Per the Inventory of Carbon and Energy database, concrete varies between 150 and 400 kg of embodied CO2 per cubic meter, depending on the properties of the mix, with an “average” value of about 250. Plastics mostly have embodied emissions of about 3-4 kg of CO2 per kg of plastic, or about 3,500 kg per cubic meter (assuming a density of about 1,000 kg per cubic meter). So per unit volume, plastic has somewhere around 10 times the embodied emissions of concrete.
We can also do a more direct comparison. Consider a beam spanning around 20 feet and supporting a vertical load of 21,000 pounds per linear foot. The lightest U.S. standard steel section that will span this distance is a W16x26, which weighs about 236 kg and will have embodied carbon emissions of around 354 kg.
A concrete beam of the same depth, supporting the same load and spanning the same distance, will be 10.5 inches wide by 16 inches deep, with three #10 steel bars running along the bottom. This beam will have about 190 kg of embodied emissions from the concrete, and about another 230 kg of embodied emissions from the steel rebar. This is about 20% more than the steel beam, but in the same ballpark — and over half the “concrete” emissions are actually due to the embedded reinforcing steel.
This is arguably a nonrepresentative example (most concrete, such as in columns or slabs, will have a much lower ratio of steel), but the basic logic holds: Concrete is unusual in its total volume of use, not how emissions-heavy it is as a material. Most material substitutes that aren’t wood, recycled materials, or industrial byproducts that can be had for “free” won’t necessarily be much better when used at the same scale. In some ways, it’s surprising that the carbon emissions from concrete are as low as they are.
Of course, this calculus is likely to change over time — as electricity sources change over to lower carbon ones, you’re likely to see the embodied emissions of materials drop along with it. And since cement releases CO2 as part of the chemical process of producing it, concrete will look increasingly worse compared to other materials over time.
One potential option is to find ways of changing the cement production process to be less carbon-intensive. The easiest option is to just replace manufactured Portland Cement with some other cementitious material. Industrial byproducts such as blast furnace slag, silica fume, and fly ash, often have cementitious properties and don’t have a “carbon penalty” (since they’d be produced regardless.) Materials like these can potentially eliminate large volumes of cement in a concrete mix, and they’re a key part of current low-carbon concrete strategies — even “normal” concrete mixes tend to utilize these to some degree. But the total volume of these materials is limited by the extent of various industrial processes. And for things like fly ash (which is a byproduct from coal plants) and slag (which is a byproduct from CO2-emitting blast furnaces), we can expect production to decline over time.
Another option is to take advantage of the fact that concrete will naturally absorb CO2 over time, a process known as carbonation. Even normal concrete will absorb roughly 30% of the CO2 emitted during the production process over the course of its life. Companies like Carbicrete, Carboncure, Carbonbuilt, and Solida all offer methods of concrete production that allow the concrete to absorb CO₂ during the production process, substantially reducing embodied emissions. Interestingly, these producers mostly claim that their concrete is actually cheaper than conventional concretes, which would obviously be a massive tailwind for the technology’s adoption.
It’s not obvious what the best path forward is for addressing concrete carbon emissions (like with most things, I suspect it’ll end up being a mix of different solutions), but understanding the parameters of the problem is necessary for solving it.
Note: A version of this article originally appeared in the author’s newsletter, Construction Physics, and has been repurposed for Heatmap.
[0] - This figure varies depending on the source. Chatham House provides a frequently cited estimate of 8%. We can also ballpark it — roughly 0.93 pounds of CO₂ gets emitted for each pound of cement produced, around 4.25 billion tons of cement are produced annually, which gets ~3.95 billion tons of CO₂, and total annual CO₂ emissions are in the neighborhood of 46 billion tons, getting us a bit less than 9%.
[1] - Per Circular Ecology, ~70-90% of emissions are from the cement production process, depending on the type of concrete and what the rest of the supply chain looks like.
[2] - This seems to vary depending on where the cement is being made — in Myanmar, for instance, it’s around 46%.
[3] - Another number where the sources often don’t agree with each other, see here, here, and here for estimates on annual cement production.
[4] - Concrete is roughly 10-15% cement by weight, depending on the strength of the mix, what other cementitious materials are being used, etc. An average value of 12.5% yields 34 billion tons, which we’ll knock down to account for other uses of cement (masonry mortar, grout, gypsum overlay, etc.) This roughly tracks with estimates from PCA (“4 tons of concrete produced each year for every person on Earth”), and from the now-defunct Cement Sustainability Initiative, which estimated 25 billion tons of concrete against 3.125 billion tons of cement in 2015.
[5] - See here, here, and here for an estimate of total civilization mass flow. This doesn’t (I believe) include waste byproducts, which can be substantial — for instance, it doesn’t include the ~46 billion tons of CO₂ emitted each year, or the 16 billion tons of mine tailings, or the 140 billion tons of agriculture byproducts (though this last number is difficult to verify and seems high).
[6] - We see something similar with cement as we do with other bulky, low-value materials, in that it's made in lots of distributed manufacturing facilities relatively close to where it’s used. See here for a map of cement plants in the U.S. around 2001, for instance.
[7] - For China’s total floor space, see here (most sources seem to agree with these numbers). For U.S. floor space, see my Every Building In America article. For per-capita living space in Europe, see here.
[8] - The often high rates of cement use by middle-income countries have led some folks to develop a U-shaped cement consumption theory of industrial development — that countries start out using a small amount of cement, use more as they get richer and build up their physical infrastructure, and then eventually transition to using lower volumes of cement again. The Globbulk paper spends considerable time debunking this.
[9] - It’s not actually obvious to me what the substitution ratio would be. In strength-governed cases, you’d need proportionally more timber than concrete, but in other cases (such as replacing concrete walls with light-framed stud walls), you’d probably use less. Obviously, you can’t substitute all concrete for wood, but you can probably switch out more than you think — there’s no reason you couldn’t use wood foundations instead of concrete ones in many cases, for instance.
[10] - 30 billion tons of concrete is roughly 12.5 billion cubic meters, and total annual wood products produced is currently around 5.5 billion cubic meters.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
What if, instead of maintaining old pipelines, gas utilities paid for homes to electrify?
California just hit a critical climate milestone: On September 1, Pacific Gas and Electric, the biggest utility in the state, raised natural gas rates by close to $6 due to shrinking gas demand.
I didn’t say it was a milestone worth celebrating. But experts have long warned that gas rates would go up as customers started to use less of the fossil fuel. PG&E is now forecasting enough of a drop in demand, whether because homeowners are making efficiency improvements or switching to electric appliances, that it needs to charge everyone a bit more to keep up with the cost of maintaining its pipelines.
Shortly after the rate increase went into effect, however, Governor Gavin Newsom signed a bill aimed at addressing this exact problem. The new law gives PG&E and other utilities permission to use money they would have spent to replace aging, leaky pipelines to pay for the electrification of the homes served by those pipes — as long as electrifying the homes is cheaper. Instead of investing millions of ratepayer dollars into the gas system, utilities can start to decommission parts of it, shrinking gas use and fixed costs in tandem.
PG&E actually already has the freedom to do this, and has even completed a fair number of projects. But the utility has had limited success, mainly because of an anti-discrimination law that gives building owners the right to stick with natural gas. It only takes one gas stalwart to thwart a whole neighborhood’s prospects for free electric appliances, since in order to keep delivering gas to that one household, the utility has to invest in the entire section of pipeline serving the area. A 2023 report showed that while PG&E had completed more than 100 projects, it hadn’t been able to convince clusters of customers larger than five at a time to convert.
The new law doesn’t fundamentally change the anti-discrimination rule, known as a utility’s “duty to serve,” but it does relieve PG&E and others of this duty if at least two-thirds of the homeowners served by a given section of pipeline consent to getting off gas. For now, the legislation limits utilities to executing 30 such projects. But for those 30, as long as two-thirds consent, the utility can now tell the holdouts that it is retiring the pipeline, and that they have no choice but to get on the electric bandwagon.
“If a supermajority wants it, it can move forward,” Matt Vespa, a senior attorney from Earthjustice who worked on the legislation, told me. “Which I think is probably a good place to start from. You want to have a place where there’s significant buy-in.”
This strategy, sometimes called “zonal decarbonization” or “targeted electrification,” is one that many climate groups are advocating for as a way to achieve an orderly and equitable transition off of natural gas. The approach most states have taken so far — providing subsidies that gently prod consumers into going electric — results in a random pattern of adoption that can benefit some homeowners while harming others. It also does nothing to deter gas utilities from investing hundreds of millions of dollars in maintaining, replacing, or building new pipelines each year — investments that are set up to be recouped from ratepayers over the course of decades.
California isn’t the first place in the world to experiment with targeted electrification. The Swiss city of Zurich began systematically shutting down sections of its gas system in 2021, giving affected users about a decade of warning and offering partial compensation for the cost of new equipment. In Massachusetts, the utility Eversource is piloting a unique neighborhood-scale electrification project. The company hooked up 32 residential buildings and a few commercial businesses in the city of Framingham to a new underground network of pipes that carry water rather than natural gas, which in turn connect to geothermal heat pumps that use the water to heat or cool the air inside. There are more than a dozen such “thermal energy network” pilot projects in various stages in Massachusetts, New York, Colorado, Washington, Vermont, Maryland, and Minnesota.
But the new California program is unique in its scale and approach. For one thing, it applies to all gas utilities in the state. Beginning next summer, they will each need to submit maps to the utility commission that identify potential pipeline replacement projects; then, in 2026, regulators will use those maps to designate priority areas, giving precedence to low-income communities and households that lack heating or cooling. By July of that year, the commission must establish the rules of the pilot program, including a methodology for utilities to determine when electrification is more cost-effective than pipeline replacement, and rules for how utilities can pay for the projects and recover costs.
PG&E supported the bill and worked closely with its authors on the language. The utility declined an interview, but emailed me a statement saying the legislation “enables cost-effective, targeted electrification projects which will help avoid more expensive gas pipeline replacements, reducing gas system operating costs, and support the state’s and PG&E’s decarbonization goals.”
Utilities will still be spending ratepayer money on the electrification projects, but far less than they would have spent on pipeline infrastructure. For the remaining gas customers, it’s still possible rates will go up, though by less than they would have otherwise. Mike Henchen, a principal in the carbon-free buildings program at RMI, told me these pilot projects alone are not going to pull so many customers away from the gas system that it will put upward pressure on rates. The law caps the program at no more than 1% of a utility’s customers.
Vespa, the Earthjustice attorney, told me he originally worked on a more ambitious version of the bill that would have required utilities to avoid any new investments in the gas system when electrification was a cheaper alternative. But it was pared back and made voluntary in order to get it through the legislature. “The hope is that we'll get projects off the ground, we’ll get proof-of-concept,” he said. “I think there was a need to demonstrate some successful stories and then hopefully expand from there.”
While these pilots make sense, economically, for a dual gas and electric company like PG&E, one big question is whether the state’s gas-only utilities like Southern California Gas will take the initiative. (SoCalGas did not respond to my inquiry prior to publication, but the company did support the legislation.)
Looking ahead, even if lawmakers do expand the program to authorize every cost-effective project, this model can’t transition the entire state away from gas. These projects are more likely to pencil out in places with lower housing density, where a given section of pipeline is serving only a handful of homes. A fact sheet about the bill published by its lead sponsor, state senator David Min, says that “zero emissions alternatives” to pipeline replacement are only technically feasible and cost effective for about 5% of PG&E’s territory. “Gas customers won't be able to pay for the decommissioning of the whole gas system, or even 50% of it,” said Henchen.
In the meantime, however, there’s lots of low-hanging fruit to pluck. Targeted electrification of just 3% to 4% of gas customers across the state could reduce gas utility spending by $15 billion to $26 billion through 2045, according to an analysis by Energy and Environmental Economics.
“It’s a modest step,” said Vespa of the new law. “But I do think it’s meaningful to start moving forward and developing the frameworks for this.”
Revoy is already hitching its power packs to semis in one of America’s busiest shipping corridors.
Battery swaps used to be the future. To solve the unsolvable problem of long recharging times for electric vehicles, some innovators at the dawn of this EV age imagined roadside stops where drivers would trade their depleted battery for a fully charged one in a matter of minutes, then be on their merry way.
That vision didn’t work out for passenger EVs — the industry chose DC fast charging instead. If the startup Revoy has its way, however, this kind of idea might be exactly the thing that helps the trucking industry surmount its huge hurdles to using electric power.
Revoy’s creation is, essentially, a bonus battery pack on wheels that turns an ordinary semi into an EV for as long as the battery lasts. The rolling module carries a 525 kilowatt-hour lithium iron phosphate battery pack attaches to the back of the truck; then, the trailer full of cargo attaches to the module. The pack offers a typical truck 250 miles of electric driving. Founder Ian Rust told me that’s just enough energy to reach the next Revoy station, where the trucker could swap their depleted module for a fresh one. And if the battery hits zero charge, that's no problem because the truck reverts to its diesel engine. It’s a little like a plug-in hybrid vehicle, if the PHEV towed its battery pack like an Airstream and could drop it off at will.
“If you run out of battery with us, there's basically no range anxiety,” Rust said. “And we do it intentionally on our routes, run it down to as close to zero as possible before we hit the next Revoy swapping station. That way you can get the maximum value of the battery without having to worry about range.”
To start, a trucker in a normal, everyday semi pulls up to a Revoy station and drops their trailer. A worker attaches a fully charged Revoy unit to the truck and trailer—all in five minutes or less, Revoy promises. Once in place, the unit interfaces seamlessly with the truck’s drivetrain and controls.
“It basically takes over as the cruise control on the vehicle,” he said. “So the driver gets it up to speed, takes their foot off the gas, and then we actually become the primary powertrain on the vehicle. You really only have to burn diesel for the little bit that is getting onto the highway and then getting off the highway, and you get really extreme MPGs with that.”
The Revoy model is going through its real-world paces as we speak. Rust’s startup has partnered with Ryder trucking, whose drivers are powering their semis with Revoy EVs at battery-swap stops along a stretch of Interstate 30 in Texas and Arkansas, a major highway for auto parts and other supplies coming from Mexico. Rust hopes the next Revoy corridor will go into Washington State, where the ample hydropower could help supply clean energy to all those swappable batteries. Happily, he said, Revoy can expand piecemeal like this because its approach negates the chicken-and-egg problem of needing a whole nation of EV chargers to make the vehicles themselves viable. Once a truck leaves a Revoy corridor, it’s just a diesel-powered truck again.
Early data from the Ryder pilot shows that the EV unit slashed how much diesel fuel a truck needs to make it down the designated corridor. “This is a way we can reduce a path to reduce the emissions of our fleet without having to buy anything — and without having to have to worry about how much utilization we're going to have to get,” Mike Plasencia, group director of New Product Strategy at Ryder, told me.
Trucking represents one of the biggest opportunities for cutting the carbon emissions of the transportation sector. It’s also one of the most challenging. Heatmap has covered the problem of oversized SUV and pickup truck EVs, which need larger, more expensive batteries to propel them. The trucking problem is that issue on steroids: A semi can tow up to 80,000 pounds down an American highway.
There are companies building true EV semi trucks despite this tall order — Tesla’s has been road-testing one while hauling Pepsi around, and trucking mainstays like Peterbilt are trying their hand as well. Although the EV model that works for everyday cars — a built-in battery that requires recharging after a couple hundred miles — can work for short-haul trucks that move freight around a city, it is a difficult fit for long-haul trucking where a driver must cover vast distances on a strict timetable. That’s exactly where Revoy is trying to break in.
"We are really focused on long haul,” he told me. “The reason for that is, it's the bigger market. One of the big misconceptions in trucking is that it's dominated by short haul. It's very much the opposite. And it's the bigger emission source, it's the bigger fuel user."
Rust has a background in robotics and devised the Revoy system as a potential solution to both the high cost of EV semis and to the huge chunks of time lost to fueling during long-distance driving. Another part of the pitch is that the Revoy unit is more than a battery. By employing the regenerative braking common in EVs, the Revoy provides a redundancy beyond air brakes for slowing a big semi—that way, if the air brakes fail, a trucker has a better option than the runaway truck lane. The setup also provides power and active steering to the Revoy’s axle, which Rust told me makes the big rig easier to maneuver.
Plasencia agrees. “The feedback from the drivers has been positive,” he said. “You get feedback messages like, it felt like I was driving a car, or like I wasn't carrying anything.”
As it tries to expand to more trucking corridors across the nation, Revoy may face an uphill battle in trying to sell truckers and trucking companies on an entirely new way to think about electrifying their fleets. But Rust has one ace up his sleeve: With Revoy, they get to keep their trucks — no need to buy new ones.
On the DOE’s transmission projects, Cybertruck recalls, and Antarctic greening
Current conditions: Hurricane Kirk, now a Category 4 storm, could bring life-threatening surf and rip currents to the East Coast this weekend • The New Zealand city of Dunedin is flooded after its rainiest day in more than 100 years • Parts of the U.S. may be able to see the Northern Lights this weekend after the sun released its biggest solar flare since 2017.
The Energy Department yesterday announced $1.5 billion in investments toward four grid transmission projects. The selected projects will “enable nearly 1,000 miles of new transmission development and 7,100 MW of new capacity throughout Louisiana, Maine, Mississippi, New Mexico, Oklahoma, and Texas, while creating nearly 9,000 good-paying jobs,” the DOE said in a statement. One of the projects, called Southern Spirit, will involve installing a 320-mile high-voltage direct current line across Texas, Louisiana, and Mississippi that connects Texas’ ERCOT grid to the larger U.S. grid for the first time. This “will enhance reliability and prevent outages during extreme weather events,” the DOE said. “This is a REALLY. BIG. DEAL,” wrote Michelle Lewis at Electrek.
The DOE also released a study examining grid demands through 2050 and concluded that the U.S. will need to double or even triple transmission capacity by 2050 compared to 2020 to meet growing electricity demand.
Duke Energy, one of the country’s largest utilities, appears to be walking back its commitment to ditch coal by 2035. In a new plan released yesterday, Duke said it would not shut down the second-largest coal-fired power plant in the U.S., Gibson Station in Indiana, in 2035 as previously planned, but would instead run it through 2038. The company plans to retrofit the plant to run on natural gas as well as coal, with similar natural-gas conversions planned for other coal plants. The company also slashed projects for expanding renewables. According toBloomberg, a Duke spokeswoman cited increasing power demand for the changes. Electricity demand has seen a recent surge in part due to a boom in data centers. Ben Inskeep, program director at the Citizens Action Coalition of Indiana, a consumer and environmental advocacy group, noted that Duke’s modeling has Indiana customers paying 4% more each year through 2030 “as Duke continues to cling to its coal plants and wastes hundreds of millions on gasifying coal.”
The Edison Electric Institute issued its latest electric vehicle forecast, anticipating EV trends through 2035. Some key projections from the trade group’s report:
Tesla issued another recall for the Cybertruck yesterday, the fifth recall for the electric pickup since its launch at the end of last year. The new recall has to do with the rearview camera, which apparently is too slow to display an image to the driver when shifting into reverse. It applies to about 27,000 trucks (which is pretty much all of them), but an over-the-air software update to fix the problem has already been released. There were no reports of injuries or accidents from the defect.
A new study published in Nature found that vegetation is expanding across Antarctica’s northernmost region, known as the Antarctic Peninsula. As the planet warms, plants like mosses and lichen are growing on rocks where snow and ice used to be, resulting in “greening.” Examining satellite data, the researchers from the universities of Exeter and Hertfordshire, and the British Antarctic Survey, were shocked to discover that the peninsula has seen a tenfold increase in vegetation cover since 1986. And the rate of greening has accelerated by over 30% since 2016. This greening is “creating an area suitable for more advanced plant life or invasive species to get a foothold,” co-author Olly Bartlett, a University of Hertfordshire researcher, told Inside Climate News. “These rates of change we’re seeing made us think that perhaps we’ve captured the start of a more dramatic transformation.”
Moss on Ardley Island in the Antarctic. Dan Charman/Nature
Japan has a vast underground concrete tunnel system that was built to take on overflow from excess rain water and prevent Tokyo from flooding. It’s 50 meters underground, and nearly 4 miles long.
Carl Court/Getty Images