You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
If you want to decarbonize concrete, it helps to understand the incredible scale of the problem.

To say that concrete poses a decarbonization challenge would be an understatement. Cement production alone is responsible for somewhere between 5 and 10% of global CO2 emissions [0], roughly two to four times more than aviation, a fact that even the construction industry is finally coming to grips with.
And yet the real problem with decarbonizing concrete isn’t the scale of its emissions, it’s the scale of concrete itself. There is simply a preposterous amount of the stuff. Contemplating concrete is like contemplating the universe — awesome, in the old God-fearing definition of the word.
Before we get into the jaw-dropping amount of concrete we produce every year, it’s worth briefly discussing how the stuff is made, and thus where its emissions come from.
Concrete is formed by mixing together cement (mostly calcium silicates), aggregates (such as sand and gravel), and water into a liquid slurry. The cement reacts with the water, forming a paste that binds the mixture into a single solid mass. Beyond concrete’s high strength and low cost, it’s these liquid beginnings that make concrete so useful. It can easily be formed into any shape and leveled with the help of gravity so you can walk on it or park a car 10 stories up on it. Essentially all modern concrete is also reinforced with steel bars, which provide tensile strength and arrest cracks.
So what about the emissions? Roughly 70-90% of the embodied carbon in concrete comes from manufacturing just the cement [1]. Partly this is because making cement is an energy-intensive process — limestone and clay are put into a kiln and heated around 2500 degrees Fahrenheit. But it’s also because the chemical reaction that turns the limestone into cement (known as calcination) releases CO₂ as a byproduct. Roughly 50-60% of cement’s carbon emissions are due to calcination [2], and thus wouldn’t be addressed by moving to less carbon-intensive electricity sources, like green hydrogen.
Now for the good stuff. Again, the most important thing to understand about concrete is the scale of its production. The world produces somewhere around 4.25 billion metric tons of cement annually (though estimates vary) [3], which works out to about 30 billion tons of concrete produced each year [4].
How much are 30 billion tons?
One way of looking at it is we produce around 4 metric tons, or just under 60 cubic feet (roughly a cube 4 feet on a side), of concrete for each person on the planet each year.
Another way of looking at it is to consider the total amount of mass, full stop, that civilization ingests each year. Estimates here vary quite a bit, but it seems to be in the neighborhood of 100 billion tons [5]. So of the total volume of material that gets extracted and used each year — including all mining, all oil drilling, all agriculture and tree harvesting — around 30% of it by mass goes toward making concrete. The amount of concrete produced each year exceeds the weight of all the biomass we use annually, and all the fossil fuels we use annually.
Total civilization annual material extraction, via Krausmann et al 2018. This is up to 2015, and has now exceeded over 90 Gt/year, with another ~8 Gt/year of recycled material.
Another way of looking at it is that the total mass of all plants on Earth is around 900 billion metric tons. So at current rates of production, it would take about 30 years to produce enough concrete to exceed all the Earth’s plant (dry) biomass.
Because humans have been producing concrete for a while, and because concrete tends to last a long time, we seem to be on the cusp of this happening. Elhacham et al 2020 estimate that total human-created mass (roughly half of which is concrete) reached the total weight of all Earth’s biomass sometime in 2020. Eyeballing their graph, concrete alone will exceed the total weight of all biomass sometime around 2040.
Anthropogenic mass vs biomass during the 20th century, via Elhacham et al 2020
In a pure mass-flow sense, human civilization is basically a machine for producing concrete and gravel (and to a lesser extent bricks and asphalt).
So civilization uses a lot of concrete. Where is it all going?
China, mostly. In recent history, China has been responsible for roughly half the world’s cement production, and by implication, concrete use [6]. The U.S., by comparison, only uses 2%, with Europe using another 5%.
Cement production by region, via Sanjuan et al 2020. Since cement production roughly tracks consumption (see here and here), we can also use this as a rough guide toward where concrete is used. Note that this gives yet another value for total global cement production of 4.65 Gt
Here’s another view from around 2010, showing what this has looked like over time (data after 2010 is a projection).
Cement consumption by region, via Altwair 2010
This gets summarized in the oft-repeated statistic that China used more cement in three years than the U.S. did in the entire 20th century.
But since China has a much larger population than the U.S., we can get a more intuitive understanding of this by looking at cement consumption per capita. Here’s per capita consumption sometime around 2015:
Per capita cement consumption by country, via Globbulk
We see that the official numbers from China make it a huge outlier in cement consumption, using around eight times as much per capita as the U.S. However, in per capita terms, some Middle Eastern countries exceed it. Saudi Arabia is higher, and Qatar, which is somewhere over 2,000 kg/capita, is so high it doesn’t even show up on the graph. It’s the combination of China’s huge population and its huge per-capita consumption that make it such an outlier in concrete production.
The official Chinese numbers are so huge, in fact, that some analysts suspect that they’re inflated, either by manipulating the data or by producing construction projects that don’t have actual demand (or both). The graph above also includes a more “realistic” estimate (which is still 3x as high as U.S. per-capita use).
What does all this concrete construction mean in practical terms? Well, China has somewhere around 50-60% of the floor space per capita as the U.S. does, or roughly as much living space per capita as most European countries [7]. This is the result of a massive trend toward urbanization over the last quarter century. Urbanization rates went from around 25% in 1990 to 60% in 2017, a period in which China’s population also increased by 250 million. In other words, in less than 30 years over 550 million moved into Chinese cities, and they all needed somewhere to live. By building enormous numbers of concrete high rises, in under 20 years China quintupled its urban residential floor space and doubled its residential floor space overall.
Residential floor space in China over time, via Pan 2020
Beyond China, we see high per capita rates of cement use in the rest of Southeast Asia, as well as the Middle East [8].
One reason you see this volume of concrete use in lower-income, urbanizing countries is that concrete construction is comparatively labor-intensive to produce. The materials for concrete are extremely cheap, and much of its cost in high-cost labor countries (such as the U.S.) is from the labor to produce it — building and setting up the formwork, laying out the reinforcing, placing the embeds, etc. If you’re a country with a lot of low-cost labor, this is a pretty good trade-off.
In addition to the current largest users of concrete, one trend to keep an eye on long-term is India’s concrete use. If India ever proceeds on a path of mass urbanization similar to China (as some folks speculate it will), we could see a massive uptick in global concrete output — India’s urbanization rate of 34% is around where China was in the late 1990s. A shift in India toward a per capita cement consumption more consistent with the rest of Southeast Asia (say around 600 kg/capita) would increase worldwide cement consumption by about 13%, and it does seem as if India’s cement use is trending upward.
By contrast, one thing clear from this data is that the U.S. actually uses an unusually low amount of concrete. Per capita, it uses as little as any other Western country, and far, far less than some — like, surprisingly, Belgium.
So we’ve seen where it gets used in the world. Can we go deeper and look at specifically what concrete is being used for?
This will vary significantly depending on the region and the local construction tradition. In the U.S., we have roughly the following breakdown (via the Portland Cement Association):
Overall, roughly half of our concrete gets used in buildings — about 26% goes into residential buildings, 2% in public buildings, and 16% into commercial buildings. The other half gets used for infrastructure — streets and highways, water conveyance and treatment tanks, etc. Because most construction in the U.S. is just one- or two-story buildings (mostly wood for residential buildings and steel for commercial ones), concrete in buildings is probably mostly going into foundations, slabs on grade, and concrete over metal deck, though there’s probably a substantial amount going into concrete masonry units as well.
But the U.S. has a somewhat unusual construction tradition, where the vast majority of our residential construction, both single-family homes and multifamily apartments, is built from light-framed wood. In other places, it's much more common to use concrete. For instance, the U.K. uses closer to 80% of its concrete for buildings, with most of that going toward the superstructure, the concrete frame that holds the building up. China, which has urbanized on the back of huge numbers of concrete residential high rises, probably devotes an even larger share of its concrete to residential construction.
Understanding how much concrete the world uses, and where it’s being used, is important if you want to use less of it.
The scale of the industry is particularly important to keep in mind. For instance, you often see enthusiasm for the idea of replacing concrete buildings with mass timber ones. But assuming you could substitute all the world’s concrete for an equal volume of wood [9], you’d need to more than triple the total annual volume of global wood harvested [10], which puts a somewhat different spin on the issue.
Most other materials would have emissions as bad or worse than concrete if they were used on the same scale.
Consider, for instance, railway ties. In the U.S., these are still largely made out of wood, but in many places they have been replaced with concrete ties. And some places are considering changing from concrete ties to plastic composite rail ties instead. It’s hard to know the exact embodied emissions without a lot of specific details about the materials and supply chains used, but can we ballpark how much a plastic tie uses compared to a concrete one?
Per the Inventory of Carbon and Energy database, concrete varies between 150 and 400 kg of embodied CO2 per cubic meter, depending on the properties of the mix, with an “average” value of about 250. Plastics mostly have embodied emissions of about 3-4 kg of CO2 per kg of plastic, or about 3,500 kg per cubic meter (assuming a density of about 1,000 kg per cubic meter). So per unit volume, plastic has somewhere around 10 times the embodied emissions of concrete.
We can also do a more direct comparison. Consider a beam spanning around 20 feet and supporting a vertical load of 21,000 pounds per linear foot. The lightest U.S. standard steel section that will span this distance is a W16x26, which weighs about 236 kg and will have embodied carbon emissions of around 354 kg.
A concrete beam of the same depth, supporting the same load and spanning the same distance, will be 10.5 inches wide by 16 inches deep, with three #10 steel bars running along the bottom. This beam will have about 190 kg of embodied emissions from the concrete, and about another 230 kg of embodied emissions from the steel rebar. This is about 20% more than the steel beam, but in the same ballpark — and over half the “concrete” emissions are actually due to the embedded reinforcing steel.
This is arguably a nonrepresentative example (most concrete, such as in columns or slabs, will have a much lower ratio of steel), but the basic logic holds: Concrete is unusual in its total volume of use, not how emissions-heavy it is as a material. Most material substitutes that aren’t wood, recycled materials, or industrial byproducts that can be had for “free” won’t necessarily be much better when used at the same scale. In some ways, it’s surprising that the carbon emissions from concrete are as low as they are.
Of course, this calculus is likely to change over time — as electricity sources change over to lower carbon ones, you’re likely to see the embodied emissions of materials drop along with it. And since cement releases CO2 as part of the chemical process of producing it, concrete will look increasingly worse compared to other materials over time.
One potential option is to find ways of changing the cement production process to be less carbon-intensive. The easiest option is to just replace manufactured Portland Cement with some other cementitious material. Industrial byproducts such as blast furnace slag, silica fume, and fly ash, often have cementitious properties and don’t have a “carbon penalty” (since they’d be produced regardless.) Materials like these can potentially eliminate large volumes of cement in a concrete mix, and they’re a key part of current low-carbon concrete strategies — even “normal” concrete mixes tend to utilize these to some degree. But the total volume of these materials is limited by the extent of various industrial processes. And for things like fly ash (which is a byproduct from coal plants) and slag (which is a byproduct from CO2-emitting blast furnaces), we can expect production to decline over time.
Another option is to take advantage of the fact that concrete will naturally absorb CO2 over time, a process known as carbonation. Even normal concrete will absorb roughly 30% of the CO2 emitted during the production process over the course of its life. Companies like Carbicrete, Carboncure, Carbonbuilt, and Solida all offer methods of concrete production that allow the concrete to absorb CO₂ during the production process, substantially reducing embodied emissions. Interestingly, these producers mostly claim that their concrete is actually cheaper than conventional concretes, which would obviously be a massive tailwind for the technology’s adoption.
It’s not obvious what the best path forward is for addressing concrete carbon emissions (like with most things, I suspect it’ll end up being a mix of different solutions), but understanding the parameters of the problem is necessary for solving it.
Note: A version of this article originally appeared in the author’s newsletter, Construction Physics, and has been repurposed for Heatmap.
[0] - This figure varies depending on the source. Chatham House provides a frequently cited estimate of 8%. We can also ballpark it — roughly 0.93 pounds of CO₂ gets emitted for each pound of cement produced, around 4.25 billion tons of cement are produced annually, which gets ~3.95 billion tons of CO₂, and total annual CO₂ emissions are in the neighborhood of 46 billion tons, getting us a bit less than 9%.
[1] - Per Circular Ecology, ~70-90% of emissions are from the cement production process, depending on the type of concrete and what the rest of the supply chain looks like.
[2] - This seems to vary depending on where the cement is being made — in Myanmar, for instance, it’s around 46%.
[3] - Another number where the sources often don’t agree with each other, see here, here, and here for estimates on annual cement production.
[4] - Concrete is roughly 10-15% cement by weight, depending on the strength of the mix, what other cementitious materials are being used, etc. An average value of 12.5% yields 34 billion tons, which we’ll knock down to account for other uses of cement (masonry mortar, grout, gypsum overlay, etc.) This roughly tracks with estimates from PCA (“4 tons of concrete produced each year for every person on Earth”), and from the now-defunct Cement Sustainability Initiative, which estimated 25 billion tons of concrete against 3.125 billion tons of cement in 2015.
[5] - See here, here, and here for an estimate of total civilization mass flow. This doesn’t (I believe) include waste byproducts, which can be substantial — for instance, it doesn’t include the ~46 billion tons of CO₂ emitted each year, or the 16 billion tons of mine tailings, or the 140 billion tons of agriculture byproducts (though this last number is difficult to verify and seems high).
[6] - We see something similar with cement as we do with other bulky, low-value materials, in that it's made in lots of distributed manufacturing facilities relatively close to where it’s used. See here for a map of cement plants in the U.S. around 2001, for instance.
[7] - For China’s total floor space, see here (most sources seem to agree with these numbers). For U.S. floor space, see my Every Building In America article. For per-capita living space in Europe, see here.
[8] - The often high rates of cement use by middle-income countries have led some folks to develop a U-shaped cement consumption theory of industrial development — that countries start out using a small amount of cement, use more as they get richer and build up their physical infrastructure, and then eventually transition to using lower volumes of cement again. The Globbulk paper spends considerable time debunking this.
[9] - It’s not actually obvious to me what the substitution ratio would be. In strength-governed cases, you’d need proportionally more timber than concrete, but in other cases (such as replacing concrete walls with light-framed stud walls), you’d probably use less. Obviously, you can’t substitute all concrete for wood, but you can probably switch out more than you think — there’s no reason you couldn’t use wood foundations instead of concrete ones in many cases, for instance.
[10] - 30 billion tons of concrete is roughly 12.5 billion cubic meters, and total annual wood products produced is currently around 5.5 billion cubic meters.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
CarbonPlan has a new tool to measure climate risk that comes with full transparency.
On a warming planet, knowing whether the home you’re about to invest your life savings in is at risk of being wiped out by a wildfire or drowned in a flood becomes paramount. And yet public data is almost nonexistent. While private companies offer property-level climate risk assessments — usually for a fee — it’s hard to know which to trust or how they should be used. Companies feed different datasets into their models and make different assumptions, and often don’t share all the details. The models have been shown to predict disparate outcomes for the same locations.
For a measure of the gap between where climate risk models are and where consumers want them to be, look no further than Zillow. The real estate website added a “climate risk” section to its property listings in 2024 in response to customer demand — only to axe the feature a year later at the behest of an industry group that questioned the accuracy of its risk ratings.
Now, however, a new tool that assesses wildfire risk for every building in the United States aims to advance the field through total transparency. The nonprofit research group CarbonPlan launched the free, user-friendly app called Open Climate Risk on Tuesday. It allows anyone to enter an address and view a wildfire risk score, on a scale of zero to 10, along with an explanation of how it was calculated. The underlying methodology, data, and code are all public. It’s the first fully open platform of its kind, according to CarbonPlan.
“Right now, the way science works in the climate risk space is that every model is independently developed at different companies, and we essentially have no idea what’s happening in them. We have no idea if they’re any good,” Oriana Chegwidden, a research scientist at CarbonPlan who led the creation of the tool, told me. “Our hope is that by opening this up, people will be able to start contributing, to help us learn how we can do it better.” That might mean critiquing CarbonPlan’s methods or code, for example, or re-running the model with additional data.
The score itself doesn’t tell you much other than the relative risk between one building and another. But the platform also breaks out the two inputs behind it: burn probability, or the likelihood a building will catch fire in a given year, and “conditional risk,” an estimate of how much of the building’s value would be lost if it does burn, based on projected fire intensity.
The projections are largely based on a U.S. Forest Service dataset that models fire frequency on wildlands throughout the country. CarbonPlan uses additional data on wind speed and direction to predict how a given fire might spread into an urban area.
Users can toggle between risk under the “current” climate and a “future” climate, which jumps about 20 years out. They can also see the distribution of buildings across the spectrum of risk scores at various geographic scales — by state, county, census tract, or census block.
One of CarbonPlan’s hopes is to help people become more informed consumers of climate risk data by helping them understand how it’s put together and what questions they might want to ask. While its model is more crude than others on the market, the tool is explicit about the factors that are not accounted for in the results. The loss estimates are based on a generic building, for example, and do not recognize specific traits like fire-resistant construction materials or landscaping that could make a home more fire resistant. They also don’t consider building-to-building spread. The underlying U.S. Forest Service data is also limited in that it maps vegetation across the country as it existed at the end of 2020 — any changes since then that could have reduced fire-igniting fuels, such as prescribed burns, are not incorporated.
Right now, there’s no industry standard for calculating or communicating climate risk. The Global Association of Risk Professionals recently asked 13 climate risk companies for data on floods, tropical storms, wildfires, and heat at 100 addresses to compare the outputs. The authors found there were “significant disparities,” between estimates of vulnerability and damages at the same locations. When it came to wildfires, specifically, they were unable to even compare the data, because the companies all conveyed the risk using different benchmarks.
The implications of having so many diverging methods and results extend beyond individual homebuying decisions. Insurance companies use climate risk data to set rates; publicly-traded companies use it to make disclosures to investors; policymakers use it to guide community planning and investments in adaptation. Some products might be better suited to one task or another.
Katherine Mach, an environmental science and policy professor at the University of Miami, told me the next step for the field is to have more systematic reporting requirements that help people understand how accurate the data are and what types of decisions they can be used for.
“It’s almost like we need the equivalent of industry standards,” she said. “You’re going to release a climate product? Here’s what you need to clearly communicate.”
CarbonPlan collected feedback from various likely users of the tool throughout the development process, including municipal planners, climate scientists, and consumer advocates. The group also hopes to foster an “iterative cycle of community-driven model development,” spurring other researchers to inspect the data, critique it, add to it, and spin out new versions. This is common practice in other areas of climate science, like Earth system modeling and economic modeling, and has been instrumental in advancing those fields. “There’s nothing like that for climate risk right now,” Chegwidden said.
The first step will be raising more money to support further work, but the goal is to partner with outside researchers on comparative analyses and case studies. Tracy Aquino Anderson, CarbonPlan’s interim executive director, told me they have already heard from one researcher who has a fire risk dataset that could be added to the platform. The group has also been invited to present the platform to two academic climate research groups later this Spring.
The problem of black box models exists not just because the field is full of private companies that don’t want to share their code. A study published earlier this month found that only 4% of the most-cited peer-reviewed climate risk studies have made their data and code public, despite journal standards that require transparency.
“When you’re working with climate data, you’re dealing with all of these uncertainties,” Adam Pollack, an assistant professor at the University of Iowa who researches flood risk and the lead author of the paper, told me. “Researchers don’t always understand all of the assumptions that are implicit in choices that they make. That’s fine — we have methods for dealing with that. We do model intercomparisons, we do these synthesis studies as a field. The foundation of that is openness and reusability.”
Though he was not involved in the CarbonPlan project, he said it was exactly what his paper was calling for. For example, CarbonPlan’s “future” calculations are based on an extreme warming scenario that has become controversial among climate scientists. CarbonPlan didn’t choose this scenario — it’s what the Forest Service’s dataset used, and that was the only off-the-shelf data available for the entire United States. But because the underlying code is open-source, critics are free to swap it out for other data they may have access to.
“That’s what’s so great about this,” Pollack said. “People who have different values, assumptions, and expertise, can get new estimates and build a shared understanding.”
On BYD’s lawsuit, Fervo’s hottest well, and China’s geologic hydrogen
Current conditions: A midweek clipper storm is poised to bring as much as six more inches of snow to parts of the Great Lakes and Northeast • American Samoa is halfway through three days of fierce thunderstorms and temperatures above 80 degrees Fahrenheit • Northern Portugal is bracing for up to four inches more of rain after three deadly storms in just two weeks.

The Environmental Protection Agency is preparing this week to repeal the Obama-era scientific finding that provides the legal basis for virtually all federal regulations of planet-heating emissions, marking what The Wall Street Journal called “the most far-reaching rollback of U.S. climate policy to date.” The 2009 “endangerment finding” concluded that greenhouse gases pose a threat to public health and welfare, calling for cuts to emissions from power plants and vehicle tailpipes. EPA Administrator Lee Zeldin told the newspaper the move “amounts to the largest act of deregulation in the history of the United States.” In an interview with my colleague Emily Pontecorvo last year, Harvard Law School’s Jody Freeman said rescinding the endangerment finding would do “more serious and more long term damage” and “could knock out a future administration from trying to” bring back climate policy. But that, Freeman said, would depend on the Supreme Court backing the administration. “I don’t think that’s likely, but it’s possible,” she said.
At issue is the 2007 case Massachusetts v. EPA, which determined that greenhouse gases qualified as pollutants under the Clean Air Act. As Emily wrote last week, “the agency claims that its previous read of Massachusetts v. EPA was wrong, especially in light of subsequent Supreme Court decisions, such as West Virginia v. EPA and Loper Bright v. Raimondo. The former limited the EPA's toolbox for regulating power plants, and the latter ended a requirement that courts to defer to agency expertise in cases where the law is vague.” An earlier report in The Washington Post questioned whether the agency would proceed with the repeal at all, fearing these arguments would pass muster in the nation’s highest court.
BYD has sued the United States government over the 100% tariff on Chinese electrics that serves as an effective ban on Beijing’s booming auto exports. Four U.S.-based subsidiaries of the world’s largest manufacturer of electric vehicles filed a lawsuit in the U.S. Court of International Trade challenging the legality of the Trump administration’s trade levies. The litigation marks what the state-backed tabloid Global Times called “the first instance of a Chinese automaker directly and actively challenging U.S. tariffs, setting a precedent and carrying significance for Chinese enterprises to protect their legitimate rights and interests through legal means.”
Outside the U.S., BYD is booming. China’s cheap electric cars are popular all over the world, as Heatmap’s Shift Key podcast covered in December. Canadian Prime Minister Mark Carney’s deal to increase trade with China will bring the battery-powered vehicles to North American roads. And the Chinese edition of the trade publication Automotive News just reported that BYD is planning a factory expansion in Europe and Canada.
Hot off last month’s news that it plans to go public, Fervo Energy has drilled its highest-temperature well yet. The drilling results confirm that the next-generation geothermal startup tapped into a resource with temperatures above 555 degrees Fahrenheit at approximately 11,200 feet deep. The company announced the findings Monday of an independent assessment using appraisal data from the drilling. The analysis found that the Project Blanford site in Millard County, Utah, has multiple gigawatts of heat that can be harnessed. Its completion will be a breakthrough for enhanced geothermal systems, one of two leading approaches to the next-generation geothermal sector that Heatmap’s Matthew Zeitlin outlined here. “This latest ultra-high temperature discovery highlights our team’s ability to detect and develop EGS sweet spots using AI-enhanced geophysical techniques,” Jack Norbeck, Fervo’s co-founder and chief technology officer, said in a statement.
Sign up to receive Heatmap AM in your inbox every morning:
Chinese scientists have for the first time discovered natural hydrogen sealed in microscopic inclusions near Tibet. The finding, which the Xinhua news agency called “groundbreaking,” fills what the China Hydrogen Bulletin called “a major domestic research gap and points to a new geological pathway for identifying China’s next generation of clean energy resources.” Natural, or geological, hydrogen could provide a cheap source of the zero-carbon fuel and give oil and gas drillers a natural foothold in a new, clean industry. In the color spectrum associated with hydrogen, the rare, naturally formed stuff is called white hydrogen. But as Heatmap’s Katie Brigham wrote in December, a new color has joined the rainbow. Orange hydrogen refers to a family of technologies that naturally spur production of the gas, as the startup Vema is now attempting to do.
China’s coal-fired power generation decreased 1.9% last year, marking what the consultancy Wood Mackenzie called “a historic shift driven by new non-fossil generation that has finally outpaced demand growth.” Power demand surged 5% in China last year, but for the first time in a decade that wasn’t propelled by coal plants. Instead, that new demand was supplied by renewables, nuclear, and hydro, all of which Beijing has rapidly deployed. Over that time, the levelized cost of energy — a widely used though, as Matthew wrote last year, far-from-perfect metric — fell 77% for utility-scale solar and 73% for onshore wind. “At the heart of this transformation is the unprecedented expansion of renewable energy capacity,” Sharon Feng, a senior research analyst for Wood Mackenzie, said in a statement. “China’s wind and solar capacity had risen more than ten-fold to 1,842 gigawatts over the past decade.”
Gone are the days when the oil industry seemed to be on track for a lucrative decline. Demand for crude will take longer to peak than previously estimated as governments prioritize growth and energy security over efforts to curb consumption. That’s according to a report issued Sunday by Vitol Group, the world’s largest independent oil trader. “Over the past year, decarbonisation policies have become a less decisive driver of efforts to curb oil consumption and reduce carbon dioxide emissions,” the report stated, according to Bloomberg. “Policy priorities have increasingly been reframed around economic competitiveness and geopolitical strategy.”
The race for a long-duration energy storage solution has a new competitor. The Dutch startup Ore Energy has deployed its iron-air storage technology successfully on the grid for a technical pilot of its system that can store for 100 hours of power. The pilot, the first of its kind in Europe, demonstrated that the company’s technology can store and discharge energy for up to four days. “This pilot allowed us to evaluate iron-air performance under European operating profiles and real-world grid conditions,” Aytaç Yilmaz, co-founder and CEO of Ore Energy, said in a statement.
Wildfires are moving east.
There were 77,850 wildfires in the United States in 2025, and nearly half of those — 49% — ignited east of the Mississippi River, according to statistics released last week by the National Interagency Fire Center. That might come as a surprise to some in the West, who tend to believe they hold the monopoly on conflagrations (along with earthquakes, tsunamis, and megalomaniac tech billionaires).
But if you lump the Central Plains and Midwest states of Minnesota, Iowa, Missouri, Arkansas, Oklahoma, and Texas along with everything to their east — the swath of the nation collectively designated as the Eastern and Southern Regions by the U.S. Forest Service — the wildfires in the area made up more than two-thirds of total ignitions last year.

Like fires in the West, wildfires in the eastern and southeastern U.S. are increasing. Over the past 40 years, the region has seen a 10-fold jump in the frequency of large burns. (Many risk factors contribute to wildfires, including but not limited to climate change.)
What’s exciting to wildfire researchers and managers, though, is the idea that they could catch changes to the Eastern fire regime early, before the situation spirals into a feedback loop or results in a major tragedy. “We have the opportunity to get ahead of the wildfire problem in the East and to learn some of the lessons that we see in the West,” Donovan said.
Now that effort has an organizing body: the Eastern Fire Network. Headed by Erica Smithwick, a professor in Penn State’s geography department, the research group formed late last year with the help of a $1.7 million, three-year grant from the Gordon and Betty Moore Foundation, a partner with the U.S. National Science Foundation, with the goal of creating an informed research agenda for studying fire in the East. “It was a very easy thing to have people buy into because the research questions are still wide open here,” Smithwick told me.
Though the Eastern U.S. is finally exiting a three-week block of sub-freezing temperatures, the hot, dry days of summer are still far from most people’s minds. But the wildland-urban interface — that is, the high-fire-risk communities that abut tracts of undeveloped land — is more extensive in the East than in the West, with up to 72% of the land in some states qualifying as WUI. The region is also much more densely populated, meaning practically every wildfire that ignites has the potential to threaten human property and life.
It’s this density combined with the prevalent WUI that most significantly distinguishes Eastern fires from those in the comparatively rural West. One fire manager warned Smithwick that a worst-case-scenario wildfire could run across the entirety of New Jersey, the most populous state in the nation, in just 48 hours.
Generally speaking, though, wildfires in the East are much smaller than those in the West. The last megafire in the Forest Service’s Southern Region was as far west in its boundaries as you can get: the 2024 Smokehouse Creek fire in Texas and Oklahoma, which burned more than a million acres. The Eastern Region hasn’t had a megafire exceeding 100,000 acres in the modern era. For research purposes, a “large” wildfire in the East is typically defined as being 200 hectares or more in size, the equivalent of about 280 football fields; in the West, a “large” wildfire is twice that, 400 hectares or more.
But what the eastern half of the country lacks in total acres burned (for that statistic, Alaska edges out the Southern Region), it makes up for in the total number of reported ignitions. In 2025, for example, the state of Maine alone recorded 250 fires in August, more than doubling its previous record of just over 100 fires. “The East is highly fragmented,” Donovan, who is contributing to the Eastern Fire Network’s research, told me. “We have a lot of development here compared to the West, and so it’s much more challenging for fires to spread.”
Fires in the West tend to be long-duration events, burning for weeks or even months; fires in the East are often contained within 48 hours. In New Jersey, for example, “smaller, fragmented forests, which are broken up by numerous roads and the built environment, [allow] firefighters to move ahead of a wildfire to improve firebreaks and begin backfiring operations to help slow the forward progression,” a spokesperson for the New Jersey Forest Fire Service told me.
The parcelized nature of the eastern states is also reflected in who is responding to the fires. It is more common for state agencies and local departments — including many volunteer firefighting departments — to be the ones on the scene, Debbie Miley, the executive director of the National Wildfire Suppression Association, a trade group representing private wildland fire service contractors, told me by email. On the one hand, the local response makes sense; smaller fires require smaller teams to fight them. But the lack of a joint effort, even within a single state, means broader takeaways about mitigation and adaptation can be lost.
“Many eastern states have strong state forestry agencies and local departments that handle wildfire as part of an ‘all hazards’ portfolio,” Miley said. “In the West, there’s often a deeper bench of personnel and systems oriented around long-duration wildfire campaigns (though that varies by state).”
All of this feeds into why Smithwick believes the Eastern Fire Network is necessary: because of this “intermingling, at a very fine scale, of different jurisdictional boundaries,” conversations about fire management and the changing regimes in the region happen in parallel, rather than with meaningful coordination. Even within a single state, fire management might be divided between different agencies — such as the Game Commission and the Bureau of Forestry, which share fire management responsibilities in Pennsylvania. Fighting fires also often involves working with private landowners in the East; in the West, on the other hand, roughly two-thirds of wildfires burn on public land, which a single agency — e.g. the Bureau of Land Management, Forest Service, or Park Service — manages.
But “wildfire risk is going to be different than in the West, and maybe more variable,” Smithwick told me. Identifying the appropriate research questions about that risk is one of the most important objectives of the Eastern Fire Network.
Bad wildfires are the result of fuel and weather conditions aligning. “We generally know what the fuels are [in the East] and how well they burn,” Smithwick said. But weather conditions and their variability are a greater question mark.
Nationally, fire and emergency managers rely on indices to predict fire-weather risk based on humidity, temperature, and wind. But while those indices are dialed in for the Western states, they’re less well understood in the East. “We hope to look at case studies of recent fires that have occurred in the 2024 and 2025 window to look at the antecedent conditions and to use those as case studies for better understanding the mechanisms that led to that wildfire,” Smithwick said.
Learning more about the climatological mechanisms driving dry spells in the region is another explicit goal. Knowing how dry spells evolve, and where, will help researchers and eventually policymakers to identify mitigation strategies for locations most at risk. Smithwick also expects to learn that some areas might not be at high risk: “We can tell you that this is not something your community needs to invest in right now,” she told me.
Different management practices, jurisdictions, terrains, and fuel types mean solutions in the East will look different from those in the West, too. As Donovan’s research has found, the unmanaged regrowth of forests in the northeast in particular after centuries of deforestation has led to an increase in trees and shrubs that are prone to wildfires. Due to the smaller forest tracts in the area, mechanical thinning is a more realistic solution in eastern forests than on large, sprawling, remote western lands.
Prescribed burns tend to be more common and more readily accepted practices in the East, too. Florida leads the nation in preventative fires, and the New Jersey Forest Fire Service aims to treat 25,000 acres of forest, grasslands, and marshlands with prescribed fire annually.
The winter storms that swept across the Eastern and Southern regions of the United States last month have the potential to queue up a bad fire season once the land starts to thaw and eventually dry out. Though the picture in the Eastern Region is still coming into focus depending on what happens this spring, in the Southern region the storms have created “potential compaction of the abundant grasses across the Plains, in addition to ice damage in pine-dominant areas farther east,” the National Interagency Fire Center wrote in last Monday’s update to its nationwide fire outlook. (The nearly million-acre Pinelands of New Jersey are similarly a fire-adapted ecosystem and are “comparable in volatility to the chaparral shrublands found in California and southern Oregon,” the spokesperson told me.)
The compaction of grasses is significant because, although they will take longer to dry and become a fuel source, it will ultimately leave the Southern region covered with a dense, flammable fuel when summer is in full swing. Beyond the Plains, in the Southeast’s pine forests, the winter-damaged trees could cast “abundant” pine needles and “other fine debris” that could dry out and become flammable as soon as a few weeks from now. “Increased debris burning will also amplify ignitions and potential escapes, enhancing significant fire potential during warmer and drier weather that will return in short order,” NIFC goes on to warn.
Though the historically wet Northeast and humid Southeast seem like unlikely places to worry about large wildfires, as conditions change, nothing is certain. “If we learned anything from fire science over the past few decades, it’s that anywhere can burn under the right conditions,” Smithwick said. “We are burning in the tundra; we are burning in Canada; we are burning in all of these places that may not have been used to extreme wildfire situations.”
“These fires could have a large economic and social cost,” Smithwick added, “and we have not prepared for them.”