You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
From what it means for America’s climate goals to how it might make American cars smaller again

The Biden administration just kicked off the next phase of the electric-vehicle revolution.
The Environmental Protection Agency unveiled Wednesday some of the world’s most aggressive climate rules on the transportation sector, a sweeping effort that aims to ensure that two-thirds of new cars, SUVs, and pickups — and one-quarter of new heavy-duty trucks — sold in the United States in 2032 will be all electric.
The rules, which are the most ambitious attempt to regulate greenhouse-gas pollution in American history, would put the country at the forefront of the global transition to electric vehicles. If adopted and enforced as proposed, the new standards could eventually prevent 10 billion tons of carbon pollution, roughly double America’s total annual emissions last year, the EPA says.
The rules would roughly halve carbon pollution from America’s massive car and truck fleet, the world’s third largest, within a decade. Such a cut is in line with Biden’s Paris Agreement goal of cutting carbon pollution from across the economy in half by 2030.
Transportation generates more carbon pollution than any other part of the U.S. economy. America’s hundreds of millions of cars, SUVs, pickups, 18-wheelers, and other vehicles generated roughly 25% of total U.S. carbon emissions last year, a figure roughly equal to the entire power sector’s.
In short, the proposal is a big deal with many implications. Here are seven of them.

Heatmap Illustration/Getty Images
Every country around the world must cut its emissions in half by 2030 in order for the world to avoid 1.5 degrees Celsius of temperature rise, according to the Intergovernmental Panel on Climate Change. That goal, enshrined in the Paris Agreement, is a widely used benchmark for the arrival of climate change’s worst impacts — deadly heat waves, stronger storms, and a near total die-off of coral reefs.
The new proposal would bring America’s cars and trucks roughly in line with that requirement. According to an EPA estimate, the vehicle fleet’s net carbon emissions would be 46% lower in 2032 than they stand today.
That means that rules of this ambition and stringency are a necessary part of meeting America’s goals under the Paris Agreement. The United States has pledged to halve its carbon emissions, as compared to its all-time high, by 2020. The country is not on track to meet that goal today, but robust federal, state, and corporate action — including strict vehicle rules — could help it get there, a recent report from the Rhodium Group, an energy-research firm, found.

Heatmap Illustration/Getty Images
Until this week, California and the European Union had been leading the world’s transition to electric vehicles. Both jurisdictions have pledged to ban sales of new fossil-fuel-powered cars after 2035 and set aggressive targets to meet that goal — although Europe recently watered down its commitment by allowing some cars to burn synthetic fuels.
The United States hasn’t issued a similar ban. But under the new rules, its timeline for adopting EVs will come close to both jurisdictions — although it may slightly lag California’s. By 2030, EVs will make up about 58% of new vehicles sold in Europe, according to the think tank Transportation & Environment; that is roughly in line with the EPA’s goals.
California, meanwhile, expects two-thirds of new car sales to be EVs by the same year, putting it ahead of the EPA’s proposal. The difference between California’s targets and the EPA’s may come down to technical accounting differences, however. The Washington Post has reported that the new EPA rules are meant to harmonize the national standards with California’s.

Heatmap Illustration/Getty Images
With or without the rules, the United States was already likely to see far more EVs in the future. Ford has said that it would aim for half of its global sales to be electric by 2030, and Stellantis, which owns Chrysler and Jeep, announced that half of its American sales and all its European sales must be all-electric by that same date. General Motors has pledged to sell only EVs after 2035. In fact, the EPA expects that automakers are collectively on track for 44% of vehicle sales to be electric by 2030 without any changes to emissions rules.
But every manufacturer is on a different timeline, and some weren’t planning to move quite this quickly. John Bozella, the president of Alliance for Automotive Innovation, has struck a skeptical note about the proposal. “Remember this: A lot has to go right for this massive — and unprecedented — change in our automotive market and industrial base to succeed,” he told The New York Times.
The proposed rules would unify the industry and push it a bit further than current plans suggest.

Heatmap Illustration/Getty Images
The EPA’s proposal would see sales of all-electric heavy trucks grow beginning with model year 2027. The agency estimates that by 2032, some 50% of “vocational” vehicles sold — like delivery trucks, garbage trucks, and cement mixers — will be zero-emissions, as well as 35% of short-haul tractors and 25% of long-haul tractor trailers. This would save about 1.8 billion tons of CO2 through 2055 — roughly equivalent to one year’s worth of emissions from the transportation sector.
But the proposal falls short of where the market is already headed, some environmental groups pointed out. “It’s not driving manufacturers to do anything,” said Paul Cort, director of Earthjustice’s Right to Zero campaign. “It’s following what’s happening in the market in a very conservative way.”
Last year, California passed rules requiring 60% of vocational truck sales and 40% of tractors to be zero-emissions by 2032. Daimler, the world’s largest truck manufacturer, has said that zero emissions trucks would make up 60% of its truck sales by 2030 and 100% by 2039. Volvo Trucks, another major player, said it aims for 50% of its vehicle deliveries to be electric by 2030.

Heatmap Illustration/Getty Images
One of the more interesting aspects of the new rules is that they pick up on a controversy that has been running on and off for the past 13 years.
In 2010, the Obama administration issued the first-ever greenhouse-gas regulations for light-duty cars, SUVs, and trucks. In order to avoid a Supreme Court challenge to the rules, the White House did something unprecedented: It got every automaker to agree to meet the standards even before they became law.
This was a milestone in the history of American environmental law. Because the automakers agreed to the rules, they were in effect conceding that the EPA had the legal authority to regulate their greenhouse-gas pollution in the first place. That shored up the EPA’s legal authority to limit greenhouse gases from any part of the economy, allowing the agency to move on to limiting carbon pollution from power plants and factories.
But that acquiescence came at a cost. The Obama administration agreed to what are called “vehicle footprint” provisions, which put its rules on a sliding scale based on vehicle size. Essentially, these footprint provisions said that a larger vehicle — such as a three-row SUV or full-sized pickup — did not have to meet the same standards as a compact sedan. What’s more, an automaker only had to meet the standards that matched the footprint of the cars it actually sold. In other words, a company that sold only SUVs and pickups would face lower overall requirements than one that also sold sedans, coupes, and station wagons.
Some of this decision was out of Obama’s hands: Congress had required that the Department of Transportation, which issues a similar set of rules, consider vehicle footprint in laws that passed in 2007 and 1975. Those same laws also created the regulatory divide between cars and trucks.
But over the past decade, SUV and truck sales have boomed in the United States, while the market for old-fashioned cars has withered. In 2019, SUVs outsold cars two to one; big SUVs and trucks of every type now make up nearly half the new car market. In the past decade, too, the crossover — a new type of car-like vehicle that resembles a light-duty truck — has come to dominate the American road. This has had repercussions not just for emissions, but pedestrian fatalities as well.
Researchers have argued that the footprint rules may be at least partially to blame for this trend. In 2018, economists at the University of Chicago and UC Berkeley argued Japan’s tailpipe rules, which also include a footprint mechanism, pushed automakers to super-size their cars. Modeling studies have reached the same conclusion about the American rules.
For the first time, the EPA’s proposal seems to recognize this criticism and tries to address it. The new rules make the greenhouse-gas requirements for cars and trucks more similar than they have been in the past, so as to not “inadvertently provide an incentive for manufacturers to change the size or regulatory class of vehicles as a compliance strategy,” the EPA says in a regulatory filing.
The new rules also tighten requirements on big cars and trucks so that automakers can’t simply meet the rules by enlarging their vehicles.
These changes may not reverse the trend toward larger cars. It might even reveal how much cars’ recent growth is driven by consumer taste: SUVs’ share of the new car market has been growing almost without exception since the Ford Explorer debuted in 1991. But it marks the first admission by the agency that in trying to secure a climate win, it may have accidentally created a monster.

Heatmap Illustration/Buenavista Images via Getty Images
The EPA is trumpeting the energy security benefits of the proposal, in addition to its climate benefits.
While the U.S. is a net exporter of crude — and that’s not expected to change in the coming decades — U.S. refineries still rely on “significant imports of heavy crude which could be subject to supply disruptions,” the agency notes. This reliance ties the U.S. to authoritarian regimes around the world and also exposes American consumers to wilder swings in gas prices.
But the new greenhouse gas rules are expected to severely diminish the country’s dependence on foreign oil. Between cars and trucks, the rules would cut crude oil imports by 124 million barrels per year by 2030, and 1 billion barrels in 2050. For context, the United States imported about 2.2 billion barrels of crude oil in 2021.
This would also be a turning point for gas stations. Americans consumed about 135 billion gallons of gasoline in 2022. The rules would cut into gas sales by about 6.5 billion gallons by 2030, and by more than 50 billion gallons by 2050. Gas stations are going to have to adapt or fade away.

Heatmap Illustration/Getty Images
Although it may seem like these new electric vehicles could tax our aging, stressed electricity grid, the EPA claims these rules won’t change the status quo very much. The agency estimates the rules would require a small, 0.4% increase in electricity generation to meet new EV demand by 2030 compared to business as usual, with generation needs increasing by 4% by 2050. “The expected increase in electric power demand attributable to vehicle electrification is not expected to adversely affect grid reliability,” the EPA wrote.
Still, that’s compared to the trajectory we’re already on. With or without these rules, we’ll need a lot of investment in new power generation and reliability improvements in the coming years to handle an electrifying economy. “Standards or no standards, we have to have grid operators preparing for EVs,” said Samantha Houston, a senior vehicles analyst at the Union of Concerned Scientists.
The reduction in greenhouse gas emissions from replacing gas cars will also far outweigh any emissions related to increased power demands. The EPA estimates that between now and 2055, the rules could drive up power plant pollution by 710 million metric tons, but will cut emissions from cars by 8 billion tons.
This article was last updated on April 13 at 12:37 PM ET.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration has yet to publish formal documentation of its decision, leaving several big questions unanswered.
President Trump announced on Thursday that he was repealing the Environmental Protection Agency’s scientific determination that greenhouse gases are dangerous to human health and the natural world.
The signal move would hobble the EPA’s ability to limit heat-trapping pollution from cars, trucks, power plants, and other industrial facilities. It is the most aggressive attack on environmental regulation that the president and his officials have yet attempted.
The move, which was first proposed last summer, has major legal implications. But its importance is also symbolic: It brings the EPA’s official view of climate change much closer to President Trump’s false but long-held claim that anthropogenic global warming — which scientists have long affirmed as a major threat to public health and the environment — is in fact a “con job,” “a hoax,” and a “scam.”
While officials in the first Trump administration frequently sought to undermine climate regulation, arguing that the government’s climate rules were unnecessary or a waste of time and money, they did not formally try to undo the agency’s scientific determination that heat-trapping pollution was dangerous.
The move is only the most recent of a long list of attacks on environmental protections — including the partial rollback of the country’s first climate law, the Inflation Reduction Act, enacted last summer — that Trump and congressional Republicans have overseen since taking office last January.
The repeal has few near-term implications for utilities, clean energy companies, or automakers because the Trump administration has already suspended rules limiting air pollution from vehicles and the power sector. But it could shape the long-term direction of American climate and energy policy.
Several environmental and public health organizations, including the American Lung Association and the Environmental Defense Fund, have vowed to challenge the move in court.
If the Supreme Court eventually rules in favor of the Trump administration, then it would hamstring the ability of any future president — Republican or Democrat — to use the EPA to slow climate change or limit greenhouse gas pollution. The EPA has not yet published the legal documents formalizing the repeal.
Here is what we know — and don’t know — about the repeal for now:
Startups Airloom Energy and Radia looked at the same set of problems and came up with very different solutions.
You’d be forgiven for assuming that wind energy is a technologically stagnant field. After all, the sleek, three-blade turbine has defined the industry for nearly half a century. But even with over 1,000 gigawatts of wind generating capacity installed worldwide, there’s a group of innovators who still see substantial room for improvement.
The problems are myriad. There are places in the world where the conditions are too windy and too volatile for conventional turbines to handle. Wind farms must be sited near existing transportation networks, accessible to the trucks delivering the massive components, leaving vast areas with fantastic wind resources underdeveloped. Today’s turbines have around 1,500 unique parts, and the infrastructure needed to assemble and stand up a turbine’s multi-hundred-foot tower and blades is expensive— giant cranes don’t come cheap.
“We’ve only really ever tried one type of technology,” Neal Rickner, the CEO of the wind power startup Airloom Energy, told me. Now, he’s one of a few entrepreneurs trying a new approach.
Airloom’s system uses much-shorter vertical blades attached to an oval track that resembles a flat rollercoaster — no climbs or drops, just a horizontal loop composed of 58 unique parts. Wind propels the blades around the track, turning a vertical shaft that’s connected to an electricity-producing generator. That differs from conventional turbines, which spin on a vertical plane around a horizontal shaft, like a ferris wheel.
The system is significantly lower to the ground than today’s turbines and has the ability to capture wind from any direction, unlike conventional turbines, allowing for deployment in areas with shifting wind patterns. It promises to be mass manufacturable, cheap, and simple to transport and install, opening up the potential to build systems in a wider variety of geographies — everywhere from airports to remote or even mountainous regions.
Airloom’s CTO, Andrew Streett, brings a background in drone tech that Rickner said helped shape the architecture of Airloom’s blades. “It’s all known tech. And it’s not completely off the shelf, but Andrew’s done it on 17 other platforms,” he told me. Rickner himself spent years at GoogleX working on Makani, a now-defunct wind energy project that attempted to commercialize an airborne wind energy system. The concept involved attaching rotors to autonomous kites, which flew in high-altitude loops to capture wind energy.
That system ultimately proved too complicated, something Airloom’s founder Robert Lumley warned Rickner about a decade ago at an industry conference. As Rickner recalls, he essentially told him, “all of that flying stuff is too complicated. Put all that physics — which is great — put it on the ground, on a rail.” Rickner took the lesson to heart, and when Lumley recruited him to join Airloom’s team a few years ago, he said it felt like an ideal chance to apply all the knowledge he’d accumulated “around what it takes to bring a novel wind technology to a very stodgy market.”
Indeed, the industry has proven difficult to disrupt. While Airloom was founded in 2014, the startup is still in its early stages, though it’s attracted backing from some climate sector heavyweights. Lowercarbon Capital led its $7.5 million seed round in 2024, which also included participation from Breakthrough Energy Ventures. The company also secured $5 million in matching funds from the state of Wyoming, where it’s based, and a $1.25 million contract with the Department of Defense.
Things are moving now. In the coming months, Airloom is preparing to bring its pilot plant online in Wyoming, closely followed by a commercial demo. Rickner told me the plan is to begin construction on a commercial facility by July 4, the deadline for wind to receive federal tax credits.
“If you could just build wind without gigantic or heavy industrial infrastructure — cranes and the like —- you will open up huge parts of the world,” Rickner told me, citing both the Global South and vast stretches of rural America as places where the roads, bridges, cranes, and port infrastructure may be insufficient for transporting and assembling conventional turbines. While modern onshore installations can exceed 600 feet from the tower’s base to the blade’s tip, Airloom’s system is about a fifth that height. Its nimble assembly would also allow turbines to be sited farther from highways, potentially enabling a more “out of sight, out of mind” attitude among residents and passersby who might otherwise resist such developments.
The company expects some of its first installations to be co-located with — you guessed it — data centers, as tech giants are increasingly looking to circumvent lengthy grid interconnection queues by sourcing power directly from onsite renewables, an option Rickner said wasn’t seriously discussed until recently.
Even considering Trump’s cuts to federal incentives for wind, “I’d much rather be doing Airloom today than even a year ago,” Rickner told me. “Now, with behind-the-meter, you’ve got different financing options. You’ve got faster buildout timelines that actually meet a venture company, like Airloom. You can see it’s still a tough road, don’t get me wrong. But a year ago, if you said we’re just going to wait around seven years for the interconnection queue, no venture company is going to survive that.”
It’s certainly not the only company in the sector looking to benefit from the data center boom. But I was still surprised when Rickner pointed out that Airloom’s fundamental value proposition — enabling wind energy in more geographies — is similar to a company that at first glance appears to be in a different category altogether: Radia.
Valued at $1 billion, this startup plans to make a plane as long as a football field to carry blades roughly 30% to 40% longer than today’s largest onshore models. Because larger blades mean more power, Radia’s strategy could make wind energy feasible in low-wind regions or simply boost output where winds are strong. And while the company isn’t looking to become a wind developer itself, “if you look at their pitch, it is the Airloom pitch,” Rickner told me.
Will Athol, Radia’s director of business development, told me that by the time the company was founded in 2016, “it was becoming clear that ground-based infrastructure — bridges, tunnels, roads, that kind of thing — was increasingly limiting where you can deploy the best turbines,” echoing Airloom’s sentiments. So competitors in the wind industry teamed up, requesting logistics input from the aviation industry. Radia responded, and has since raised over $100 million as it works to achieve its first flight by 2030.
Hopefully by that point, the federal war on wind will be a thing of the past. “We see ourselves and wind energy as a longer term play,” Athol told me. Though he acknowledged that these have certainly been “eventful times for the wind industry” in the U.S., there’s also a global market eager for this tech. He sees potential in regions such as India and North Africa, where infrastructure challenges have made it tough to deploy large-scale turbines.
Neither Radia nor Airloom thinks its approach will render today’s turbines obsolete, or that other renewable resources will be completely displaced. “I think if you look at most utilities, they want a mix,” Rickner said. But he’s still pretty confident in Airloom’s potential to seriously alter an industry that’s long been considered mature and constrained to incremental gains.
“When Airloom is 100% successful,” he told me, “we will take a huge chunk of market share.”
On electrolyzers’ decline, Anthropic’s pledge, and Syria’s oil and gas
Current conditions: Warmer air from down south is pushing the cold front in Northeast back up to Canada • Tropical Cyclone Gezani has killed at least 31 in Madagascar • The U.S. Virgin Islands are poised for two days of intense thunderstorms that threaten its grid after a major outage just days ago.
Back in November, Democrats swept to victory in Georgia’s Public Service Commission races, ousting two Republican regulators in what one expert called a sign of a “seismic shift” in the body. Now Alabama is considering legislation that would end all future elections for that state’s utility regulator. A GOP-backed bill introduced in the Alabama House Transportation, Utilities, and Infrastructure Committee would end popular voting for the commissioners and instead authorize the governor, the Alabama House speaker, and the Alabama Senate president pro tempore to appoint members of the panel. The bill, according to AL.com, states that the current regulatory approach “was established over 100 years ago and is not the best model for ensuring that Alabamians are best-served and well-positioned for future challenges,” noting that “there are dozens of regulatory bodies and agencies in Alabama and none of them are elected.”
The Tennessee Valley Authority, meanwhile, announced plans to keep two coal-fired plants operating beyond their planned retirement dates. In a move that seems laser-targeted at the White House, the federally-owned utility’s board of directors — or at least those that are left after President Donald Trump fired most of them last year — voted Wednesday — voted Wednesday to keep the Kingston and Cumberland coal stations open for longer. “TVA is building America’s energy future while keeping the lights on today,” TVA CEO Don Moul said in a statement. “Taking steps to continue operations at Cumberland and Kingston and completing new generation under construction are essential to meet surging demand and power our region’s growing economy.”
Secretary of the Interior Doug Burgum said the Trump administration plans to appeal a series of court rulings that blocked federal efforts to halt construction on offshore wind farms. “Absolutely we are,” the agency chief said Wednesday on Bloomberg TV. “There will be further discussion on this.” The statement comes a week after Burgum suggested on Fox Business News that the Supreme Court would break offshore wind developers’ perfect winning streak and overturn federal judges’ decisions invalidating the Trump administration’s orders to stop work on turbines off the East Coast on hotly-contested national security, environmental, and public health grounds. It’s worth reviewing my colleague Jael Holzman’s explanation of how the administration lost its highest profile case against the Danish wind giant Orsted.
Thyssenkrupp Nucera’s sales of electrolyzers for green hydrogen projects halved in the first quarter of 2026 compared to the same period last year. It’s part of what Hydrogen Insight referred to as a “continued slowdown.” Several major projects to generate the zero-carbon fuel with renewable electricity went under last year in Europe, Australia, and the United States. The Trump administration emphasized the U.S. turn away from green hydrogen by canceling the two regional hubs on the West Coast that were supposed to establish nascent supply chains for producing and using green hydrogen — more on that from Heatmap’s Emily Pontecorvo. Another potential drag on the German manufacturer’s sales: China’s rise as the world’s preeminent manufacturer of electrolyzers.
Sign up to receive Heatmap AM in your inbox every morning:
The artificial intelligence giant Anthropic said Wednesday it would work with utilities to figure out how much its data centers were driving up electricity prices and pay a rate high enough to avoid passing the costs onto ratepayers. The announcement came as part of a multi-pronged energy strategy to ease public concerns over its data centers at a moment when the server farms’ effect on power prices and local water supplies is driving a political backlash. As part of the plan, Anthropic would cover 100% of the costs of upgrading the grid to bring data centers online, and said it would “work to bring net-new power generation online to match our data centers’ electricity needs.” Where that isn’t possible, the company said it would “work with utilities and external experts to estimate and cover demand-driven price effects from our data centers.” The maker of ChatGPT rival Claude also said it would establish demand response programs to power down its data centers when demand on the grid is high, and deploy other “grid optimization” tools.
“Of course, company-level action isn’t enough. Keeping electricity affordable also requires systemic change,” the company said in a blog post. “We support federal policies — including permitting reform and efforts to speed up transmission development and grid interconnection — that make it faster and cheaper to bring new energy online for everyone.”

Syria’s oil reserves are opening to business, and Western oil giants are in line for exploration contracts. In an interview with the Financial Times, the head of the state-owned Syrian Petroleum Company listed France’s TotalEnergies, Italy’s Eni, and the American Chevron and ConocoPhillips as oil majors poised to receive exploration licenses. “Maybe more than a quarter, or less than a third, has been explored,” said Youssef Qablawi, chief executive of the Syrian Petroleum Company. “There is a lot of land in the country that has not been touched yet. There are trillions of cubic meters of gas.” Chevron and Qatar’s Power International Holding inked a deal just last week to explore an offshore block in the Mediterranean. Work is expected to begin “within two months.”
At the same time, Indonesia is showing the world just how important it’s become for a key metal. Nickel prices surged to $17,900 per ton this week after Indonesia ordered steep cuts to protection at the world’s biggest mine, highlighting the fast-growing Southeast Asian nation’s grip over the global supply of a metal needed for making batteries, chemicals, and stainless steel. The spike followed Jakarta’s order to cut production in the world’s biggest nickel mine, Weda Bay, to 12 million metric tons this year from 42 million metric tons in 2025. The government slashed the nationwide quota by 100 million metric tons to between 260 million and 270 million metric tons this year from 376 million metric tons in 2025. The effect on the global price average showed how dominant Indonesia has become in the nickel trade over the past decade. According to another Financial Times story, the country now accounts for two-thirds of global output.
The small-scale solar industry is singing a Peter Tosh tune: Legalize it. Twenty-four states — funny enough, the same number that now allow the legal purchase of marijuana — are currently considering legislation that would allow people to hook up small solar systems on balconies, porches, and backyards. Stringent permitting rules already drive up the cost of rooftop solar in the U.S. But systems small enough for an apartment to generate some power from a balcony have largely been barred in key markets. Utah became the first state to vote unanimously last year to pass a law allowing residents to plug small solar systems straight into wall sockets, providing enough electricity to power a laptop or small refrigerator, according to The New York Times.