Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Energy

There Is a Stupidly Easy Way to Make Heat Pumps More Affordable

Turns out, when you reduce electricity rates for heat pump owners, more people buy heat pumps.

A heat pump and money.
Heatmap Illustration/Getty Images

One of the most significant actions a person can take to fight climate change is to swap out their fossil fuel-fired furnace or boiler for electric heat pumps. But while rebates and other subsidies can help defray the up-front cost of the switch, the price of electricity relative to natural gas is still a major deterrent in many places. Lower emissions for higher monthly bills is not much of a tradeoff.

Could the solution be as simple as utilities giving heat pump users a discounted rate in the winter?

There’s a growing consensus among climate and clean energy experts that this is a crucial and urgent step toward decarbonizing, at least in the near term. A number of recent reports make the case not just that discounted rates for heat pump users will help spur adoption of the technology, but also that these customers are currently being overcharged.

The reason why is that today, most utilities operate in “summer peaking” systems, where electricity demand is highest on the hottest days of the year. Utilities spend lots of money on infrastructure like power plants, substations, transformers, and wires to make sure they can deliver power reliably on those days. But in the winter, a lot of that stuff sits unused. So it doesn’t increase overall system costs for people to use more electricity in the winter.

In fact, “it’s less expensive to offer electricity in the winter in summer peaking systems,” Matthew Malinowski, who directs the buildings program at the nonprofit American Council for an Energy-Efficient Economy, told me. And yet a lot of utilities charge customers a flat rate, no matter the time of year. “It seems only fair to charge people less for the electricity they use in the winter,” Malinowski said.

Some utilities are already starting to do this. Malinowski and his colleagues published a study on Tuesday that used real utility rates to examine the current cost of operating heat pumps in four cold-weather states. Their modeling illustrates how heat pump-specific rates can make the technology much more attractive compared to natural gas-fired heating. (Households switching from fuel oil or propane heating to heat pumps will almost always save money.)

The first state they looked at, Maine, has famously had a lot of success getting residents to switch to heat pumps. It turns out favorable rates may have been a big part of that. The cost of electricity there is not much higher than natural gas, so when a household there switches to heat pumps, its annual bills remain roughly the same. Additionally, Maine’s biggest utility recently ran a pilot program where it offered customers the option to sign up for a “heat pump rate,” giving them discounted electricity in the winter and slightly higher than normal electricity in the summer. The study estimated that an average household in Maine using this rate would save just over $200 per year compared to one that heats with natural gas.

Just 6% of households in Maine used heat pumps a decade ago, before the state began offering incentives. As of last year, that number had grown to 26%, although many homes still use natural gas boilers and furnaces as back-up systems.

The other three states the study focuses on — Minnesota, Colorado, and Connecticut — have much higher electricity rates relative to natural gas, and simply switching to a heat pump would not be economic. But Minnesota has a winter pricing program similar to Maine’s. The utility Xcel offers a deeply discounted rate to customers who heat their homes with electricity through the colder months, whether they use heat pumps or less efficient electric resistance systems. The report estimates that heat pump users who opt-in to this rate will save about $400 per year compared to if they heated their homes with natural gas.

Xcel is also the largest utility in Colorado, where it does not yet offer a winter discount rate. There, the authors calculate that heat pumps currently cost about $500 more per year than natural gas heating. But a new law in Colorado requires utilities to submit new heat pump-specific electric rates to regulators for approval by 2027. If Xcel offered the same discount as it does in Minnesota, that would bring heat pump operating costs roughly on par with gas heating.

Colorado isn’t the only state actively pursuing heat pump-specific rates to spur adoption. In Massachusetts, which the study did not look at, a small utility called Unitil began offering a discounted heat pump rate on March 1 of this year, and regulators are requiring National Grid, which serves about 15% of the state, to offer one beginning next winter.

Meanwhile, in Connecticut, electricity prices are so much higher than gas prices that the authors conclude that “rate interventions are ultimately not enough” to make heat pumps competitive. “The state needs deep investment in making electric power more affordable to its residents,” they write, such as “taking on some costs of grid maintenance and upgrades, putting a price on carbon, or implementing clean heat standards.”

One caveat to the study is that it uses electric rates in 2024 but meteorological data from 2018. Since the world was notably warmer last year than in 2018, the authors’ cost estimates are likely conservative. In reality, heat pumps may already be more affordable than the study makes them seem.

Another is that heat pump-specific rates are only really a solution for the next five to 10 years. As more households adopt heat pumps, the electric grid will begin to shift toward a winter-peaking system, and there won’t really be a case to charge heat pump users less. Massachusetts regulators have acknowledged they will need to monitor this and re-evaluate heat pump rates regularly as the situation evolves.

“We’re just responding to the situation today,” Malinowski told me. “Heat pump penetration is very small, and those users are overpaying based on the service they're demanding of the grid, and what they're providing to the grid, which is revenue during off-peak times when electricity is cheaper to provide.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

The EPA’s Backdoor Move to Hobble the Carbon Capture Industry

Why killing a government climate database could essentially gut a tax credit

Lee Zeldin.
Heatmap Illustration/Getty Images

The Trump administration’s bid to end an Environmental Protection Agency program may essentially block any company — even an oil firm — from accessing federal subsidies for capturing carbon or producing hydrogen fuel.

On Friday, the Environmental Protection Agency proposed that it would stop collecting and publishing greenhouse gas emissions data from thousands of refineries, power plants, and factories across the country.

Keep reading...Show less
Blue
Adaptation

The ‘Buffer’ That Can Protect a Town from Wildfires

Paradise, California, is snatching up high-risk properties to create a defensive perimeter and prevent the town from burning again.

Homes as a wildfire buffer.
Heatmap Illustration/Getty Images

The 2018 Camp Fire was the deadliest wildfire in California’s history, wiping out 90% of the structures in the mountain town of Paradise and killing at least 85 people in a matter of hours. Investigations afterward found that Paradise’s town planners had ignored warnings of the fire risk to its residents and forgone common-sense preparations that would have saved lives. In the years since, the Camp Fire has consequently become a cautionary tale for similar communities in high-risk wildfire areas — places like Chinese Camp, a small historic landmark in the Sierra Nevada foothills that dramatically burned to the ground last week as part of the nearly 14,000-acre TCU September Lightning Complex.

More recently, Paradise has also become a model for how a town can rebuild wisely after a wildfire. At least some of that is due to the work of Dan Efseaff, the director of the Paradise Recreation and Park District, who has launched a program to identify and acquire some of the highest-risk, hardest-to-access properties in the Camp Fire burn scar. Though he has a limited total operating budget of around $5.5 million and relies heavily on the charity of local property owners (he’s currently in the process of applying for a $15 million grant with a $5 million match for the program) Efseaff has nevertheless managed to build the beginning of a defensible buffer of managed parkland around Paradise that could potentially buy the town time in the case of a future wildfire.

Keep reading...Show less
Spotlight

How the Tax Bill Is Empowering Anti-Renewables Activists

A war of attrition is now turning in opponents’ favor.

Massachusetts and solar panels.
Heatmap Illustration/Library of Congress, Getty Images

A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.

Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”

Keep reading...Show less
Yellow