Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Energy

There Is a Stupidly Easy Way to Make Heat Pumps More Affordable

Turns out, when you reduce electricity rates for heat pump owners, more people buy heat pumps.

A heat pump and money.
Heatmap Illustration/Getty Images

One of the most significant actions a person can take to fight climate change is to swap out their fossil fuel-fired furnace or boiler for electric heat pumps. But while rebates and other subsidies can help defray the up-front cost of the switch, the price of electricity relative to natural gas is still a major deterrent in many places. Lower emissions for higher monthly bills is not much of a tradeoff.

Could the solution be as simple as utilities giving heat pump users a discounted rate in the winter?

There’s a growing consensus among climate and clean energy experts that this is a crucial and urgent step toward decarbonizing, at least in the near term. A number of recent reports make the case not just that discounted rates for heat pump users will help spur adoption of the technology, but also that these customers are currently being overcharged.

The reason why is that today, most utilities operate in “summer peaking” systems, where electricity demand is highest on the hottest days of the year. Utilities spend lots of money on infrastructure like power plants, substations, transformers, and wires to make sure they can deliver power reliably on those days. But in the winter, a lot of that stuff sits unused. So it doesn’t increase overall system costs for people to use more electricity in the winter.

In fact, “it’s less expensive to offer electricity in the winter in summer peaking systems,” Matthew Malinowski, who directs the buildings program at the nonprofit American Council for an Energy-Efficient Economy, told me. And yet a lot of utilities charge customers a flat rate, no matter the time of year. “It seems only fair to charge people less for the electricity they use in the winter,” Malinowski said.

Some utilities are already starting to do this. Malinowski and his colleagues published a study on Tuesday that used real utility rates to examine the current cost of operating heat pumps in four cold-weather states. Their modeling illustrates how heat pump-specific rates can make the technology much more attractive compared to natural gas-fired heating. (Households switching from fuel oil or propane heating to heat pumps will almost always save money.)

The first state they looked at, Maine, has famously had a lot of success getting residents to switch to heat pumps. It turns out favorable rates may have been a big part of that. The cost of electricity there is not much higher than natural gas, so when a household there switches to heat pumps, its annual bills remain roughly the same. Additionally, Maine’s biggest utility recently ran a pilot program where it offered customers the option to sign up for a “heat pump rate,” giving them discounted electricity in the winter and slightly higher than normal electricity in the summer. The study estimated that an average household in Maine using this rate would save just over $200 per year compared to one that heats with natural gas.

Just 6% of households in Maine used heat pumps a decade ago, before the state began offering incentives. As of last year, that number had grown to 26%, although many homes still use natural gas boilers and furnaces as back-up systems.

The other three states the study focuses on — Minnesota, Colorado, and Connecticut — have much higher electricity rates relative to natural gas, and simply switching to a heat pump would not be economic. But Minnesota has a winter pricing program similar to Maine’s. The utility Xcel offers a deeply discounted rate to customers who heat their homes with electricity through the colder months, whether they use heat pumps or less efficient electric resistance systems. The report estimates that heat pump users who opt-in to this rate will save about $400 per year compared to if they heated their homes with natural gas.

Xcel is also the largest utility in Colorado, where it does not yet offer a winter discount rate. There, the authors calculate that heat pumps currently cost about $500 more per year than natural gas heating. But a new law in Colorado requires utilities to submit new heat pump-specific electric rates to regulators for approval by 2027. If Xcel offered the same discount as it does in Minnesota, that would bring heat pump operating costs roughly on par with gas heating.

Colorado isn’t the only state actively pursuing heat pump-specific rates to spur adoption. In Massachusetts, which the study did not look at, a small utility called Unitil began offering a discounted heat pump rate on March 1 of this year, and regulators are requiring National Grid, which serves about 15% of the state, to offer one beginning next winter.

Meanwhile, in Connecticut, electricity prices are so much higher than gas prices that the authors conclude that “rate interventions are ultimately not enough” to make heat pumps competitive. “The state needs deep investment in making electric power more affordable to its residents,” they write, such as “taking on some costs of grid maintenance and upgrades, putting a price on carbon, or implementing clean heat standards.”

One caveat to the study is that it uses electric rates in 2024 but meteorological data from 2018. Since the world was notably warmer last year than in 2018, the authors’ cost estimates are likely conservative. In reality, heat pumps may already be more affordable than the study makes them seem.

Another is that heat pump-specific rates are only really a solution for the next five to 10 years. As more households adopt heat pumps, the electric grid will begin to shift toward a winter-peaking system, and there won’t really be a case to charge heat pump users less. Massachusetts regulators have acknowledged they will need to monitor this and re-evaluate heat pump rates regularly as the situation evolves.

“We’re just responding to the situation today,” Malinowski told me. “Heat pump penetration is very small, and those users are overpaying based on the service they're demanding of the grid, and what they're providing to the grid, which is revenue during off-peak times when electricity is cheaper to provide.”

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Energy

Exclusive: Japan’s Tiny Nuclear Reactors Are Headed to Texas

The fourth-generation gas-cooled reactor company ZettaJoule is setting up shop at an unnamed university.

A Texas sign at a ZettaJoule facility.
Heatmap Illustration/Getty Images, ZettaJoule

The appeal of next-generation nuclear technology is simple. Unlike the vast majority of existing reactors that use water, so-called fourth-generation units use coolants such as molten salt, liquid metal, or gases that can withstand intense heat such as helium. That allows the machines to reach and maintain the high temperatures necessary to decarbonize industrial processes, which currently only fossil fuels are able to reach.

But the execution requirements of these advanced reactors are complex, making skepticism easy to understand. While the U.S., Germany, and other countries experimented with fourth-generation reactors in earlier decades, there is only one commercial unit in operation today. That’s in China, arguably the leader in advanced nuclear, which hooked up a demonstration model of a high-temperature gas-cooled reactor to its grid two years ago, and just approved building another project in September.

Keep reading...Show less
Blue
Spotlight

The 5 Fights to Watch in 2026

Spoiler: A lot of them are about data centers.

Data centers and clean energy.
Heatmap Illustration/Getty Images

It’s now clear that 2026 will be big for American energy, but it’s going to be incredibly tense.

Over the past 365 days, we at The Fight have closely monitored numerous conflicts over siting and permitting for renewable energy and battery storage projects. As we’ve done so, the data center boom has come into full view, igniting a tinderbox of resentment over land use, local governance and, well, lots more. The future of the U.S. economy and the energy grid may well ride on the outcomes of the very same city council and board of commissioners meetings I’ve been reporting on every day. It’s a scary yet exciting prospect.

Keep reading...Show less
Yellow
Hotspots

A Texas Data Center Dispute Turns Tawdry

Plus a resolution for Vineyard Wind and more of the week’s big renewables fights.

The United States.
Heatmap Illustration/Getty Images

1. Hopkins County, Texas – A Dallas-area data center fight pitting developer Vistra against Texas attorney general Ken Paxton has exploded into a full-blown political controversy as the power company now argues the project’s developer had an improper romance with a city official for the host community.

  • For those who weren’t around for the first go, here’s the low-down: The Dallas ex-urb of Sulphur Springs is welcoming a data center project proposed by a relatively new firm, MSB Global. But the land – a former coal plant site – is held by Vistra, which acquired the property in a deal intended for remediating the site. After the city approved the project, Vistra refused to allow construction on the land, so Sulphur Springs sued, and in its bid to win the case, the city received support from Texas attorney general Ken Paxton, whose office then opened an antitrust investigation into the power company’s land holdings.
  • Since we first reported this news, the lawsuit has escalated. Vistra’s attorneys have requested Sulphur Springs’ attorney be removed from the court proceedings because, according to screenshots of lengthy social media posts submitted to the court, the city itself has confirmed that the attorney dated a senior executive for MSB Global as recently as the winter of 2024.
  • In a letter dated December 10, posted online by activists fighting the data center, Vistra’s attorneys now argue the relationship is what led to the data center coming to the city in the first place, and that the attorney cannot argue on behalf of the city because they’ll be a fact witness who may need to provide testimony in the case: “These allegations make awareness of negotiations surrounding the deed and the City’s subsequent conduct post-transaction, including any purported ‘reliance’ on Vistra Parties’ actions and omissions, relevant.”
  • I have not heard back from MSB Global or Sulphur Springs about this case, but if I do, you’ll be hearing about it.

2. La Plata County, Colorado – This county has just voted to extend its moratorium on battery energy storage facilities over fire fears.

Keep reading...Show less
Yellow