You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new report from the American Council for an Energy-Efficient Economy has some exciting data for anyone attempting to retrofit a multifamily building.

By now there’s plenty of evidence showing why heat pumps are such a promising solution for getting buildings off fossil fuels. But most of that research has focused on single-family homes. Larger apartment buildings with steam or hot water heating systems — i.e. most of the apartment buildings in the Northeast — are more difficult and expensive to retrofit.
A new report from the nonprofit American Council for an Energy-Efficient Economy, however, assesses a handful of new technologies designed to make that transition easier and finds they have the potential to significantly lower the cost of decarbonizing large buildings.
“Several new options make decarbonizing existing commercial and multifamily buildings much more feasible than a few years ago,” Steven Nadel, ACEEE’s executive director and one of the authors, told me. “The best option may vary from building to building, but there are some exciting new options.”
To date, big, multifamily buildings have generally had two flavors of heat pumps to consider. They can install a large central heat pump system that delivers heating and cooling throughout the structure, or they can go with a series of “mini-split” systems designed to serve each apartment individually. (Yes, there are geothermal heat pumps, too, but those are often even more expensive and complicated to install, especially in urban areas.)
While these options have proven to work, they often require a fair amount of construction work, including upgrading electrical systems, mounting equipment on interior and exterior walls, and running new refrigerant lines throughout the building. That means they cost a lot more than a simple boiler replacement, and that the retrofit process can be disruptive to residents.
In 2022, the New York City Housing Authority launched a contest to try and solve these problems by challenging manufacturers to develop heat pumps that can sit in a window just like an air conditioner. New designs from the two winners, Gradient Comfort and Midea, are just starting to come to market. But another emerging solution, central air-to-water heat pumps, also presents an appealing alternative. These systems avoid major construction because they can integrate with existing radiators or baseboard heaters in buildings that currently use hot water boilers. Instead of burning natural gas or oil to produce hot water, the heat pump warms the water using electricity.
The ACEEE report takes the cost and performance data for these emerging solutions and compares it to results from mini-splits, central heat pumps, geothermal heat pumps, packaged terminal heat pumps — all-in-one devices that sit inside a sleeve in the wall, commonly used in hotels — and traditional boilers fed by biogas or biodiesel.
While data on the newer technologies is limited, so far the results are extremely promising. The report found that window heat pumps are the most cost-effective of the bunch to fully decarbonize large apartment buildings, with an average installation cost of $9,300 per apartment. That’s significantly higher than the estimated $1,200 per apartment cost of a new boiler, but much lower than the $14,000 to $20,000 per apartment price tag of the other heat pump variations, although air-to-water heat pumps came in second. The report also found that window heat pumps could turn out to be the cheapest to operate, with a life cycle cost of about $14,500, compared to $22,000 to $30,000 for boilers using biodiesel or biogas or other heat pump options.
As someone who has followed this industry for several years with a keen interest in new solutions for boiler-heated buildings in the Northeast — where I grew up and currently reside — I was especially wowed by how well the new window heat pumps have performed. New York City installed units from both Midea and Gradient in 24 public housing apartments, placing one in each bedroom and living room, and monitored the results for a full heating season.
Preliminary data shows the units performed swimmingly on every metric.
On ease of installation: It took a total of eight days for maintenance workers to install the units in all 24 apartments, compared to about 10 days per apartment when the Housing Authority put split heat pump systems in another building.
On performance: During the winter, while other apartments in the building were baking in 90-degree Fahrenheit heat from the steam system, the window unit-heated apartments maintained a comfortable 75 to 80 degree range, even as outdoor temperatures dropped to as low as 20 degrees.
On energy and cost: The window unit-heated apartments used a whopping 87% less energy than the rest of the building’s steam-heated apartments did, cutting energy costs per household in half.
On customer satisfaction: A survey of 72 residents returned overwhelmingly positive feedback, with 93% reporting that the temperature was “just right” and 100% reporting they were either “neutral” or “satisfied” with the new units.
The Housing Authority found that the units also lowered energy used for cooling in peak summer since they were more efficient than the older window ACs residents had been using. Next, the agency plans to expand the pilot to two full buildings before deploying the units across its portfolio. The pilot was so successful that utilities in Massachusetts, Vermont, and elsewhere are purchasing units to do their own testing.
The ACEEE report looked at a handful of air-to-water heat pump projects in New York and Massachusetts, as well, only two of which have been completed. The average installation cost per apartment was around $13,500, with each of the buildings retaining a natural gas boiler as a backup, but none had published performance data yet.
Air-to-water heat pumps have only recently come to market in the U.S. after having taken off in Europe, and they don’t yet fit seamlessly into the housing stock here. Existing technology can only heat water to 130 to 140 degrees, which is hot enough for the more efficient hot water radiators common in Europe but too cold for the U.S. market, where hot water systems are designed to carry 160- to 180-degree water, or even steam.
These heat pumps can still work in U.S. buildings, but they require either new radiators to be installed or supplemental heat from a conventional boiler or electric resistance unit. The other downside to an air-to-water system is that it can’t provide cooling unless the building is already equipped with compatible air conditioning units.
One strength of these systems over the window units, however, is that they don’t push costs onto tenants in buildings where the landlord has historically paid for heat. They also may be cheaper to operate than more traditional heat pump options, although data is still extremely limited and depends on the use of supplemental heat.
It’s probably too soon to draw any major conclusions about air-to-water systems, anyway, because new, potentially more effective options are on the way. In 2023, New York State launched a contest challenging manufacturers to develop new decarbonized heating solutions for large buildings. Among the finalists announced last year, six companies were developing heat pumps that could generate higher-temperature hot water and/or steam. One of them is now installing its first demonstration system in an apartment building in Harlem, and two others have similar demonstrations in the works.
The ACEEE report also mentions a few other promising new heat pump formats, such as an all-in-one wall-mounted heat pump from Italian company Ephoca. It’s similar to the window heat pump in that it’s contained in a single device rather than split into an indoor and outdoor unit, so it doesn’t require mounting anything to the outside of the building or worrying about refrigerant lines, although it does require drilling two six-inch holes in the wall for vents. These may be a good option for those whose windows won’t accommodate a window heat pump or who don’t like the aesthetics. New York State is also funding product development for better packaged terminal heat pumps that could slot into wall cavities occupied by less-efficient packaged terminal air conditioners and heat pumps today.
Gradient and Midea are not yet selling their cold-climate window heat pumps directly to consumers. Gradient brought a version of its technology for more moderate climates to market in 2023, which was only suitable for heating at outdoor temperatures of 40 degrees and higher. But the company has discontinued that model and is focusing on an “all-weather” version designed for cold climates, which is the one that has been installed in the New York City apartments. Gradient told me it is currently selling that model in bulk to multi-family building owners, utilities, and schools. Midea did not respond to my inquiry.
One big takeaway is that even the new school heat pumps designed to be easier and cheaper to install have higher capital costs than buying a boiler and air conditioners — a stubborn facet of many climate solutions, even when they save money in the long run. Canary Media previously reported that the Gradient product would start at $3,800 per unit and the Midea at $3,000. Experts expect the cost to come down as adoption and demand pick up, but the ACEEE report recommends that states develop incentives and financing to help with up-front costs.
“These are not just going to happen on their own. We do need some policy support for them,” Nadel said. In addition to incentives and building decarbonization standards, Nadel raised the idea of discounted electric rates for heat pump users, an idea that has started to gain traction among climate advocates that a few utilities have piloted.
“To oversimplify,” Nadel said, “in many jurisdictions, heat pumps subsidize other customers, and that probably needs to change if this is going to be viable.”
Editor’s note: This story has been updated to include comment from Gradient.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
According to a new analysis shared exclusively with Heatmap, coal’s equipment-related outage rate is about twice as high as wind’s.
The Trump administration wants “beautiful clean coal” to return to its place of pride on the electric grid because, it says, wind and solar are just too unreliable. “If we want to keep the lights on and prevent blackouts from happening, then we need to keep our coal plants running. Affordable, reliable and secure energy sources are common sense,” Chris Wright said on X in July, in what has become a steady drumbeat from the administration that has sought to subsidize coal and put a regulatory straitjacket around solar and (especially) wind.
This has meant real money spent in support of existing coal plants. The administration’s emergency order to keep Michigan’s J.H. Campbell coal plant open (“to secure grid reliability”), for example, has cost ratepayers served by Michigan utility Consumers Energy some $80 million all on its own.
But … how reliable is coal, actually? According to an analysis by the Environmental Defense Fund of data from the North American Electric Reliability Corporation, a nonprofit that oversees reliability standards for the grid, coal has the highest “equipment-related outage rate” — essentially, the percentage of time a generator isn’t working because of some kind of mechanical or other issue related to its physical structure — among coal, hydropower, natural gas, nuclear, and wind. Coal’s outage rate was over 12%. Wind’s was about 6.6%.
“When EDF’s team isolated just equipment-related outages, wind energy proved far more reliable than coal, which had the highest outage rate of any source NERC tracks,” EDF told me in an emailed statement.
Coal’s reliability has, in fact, been decreasing, Oliver Chapman, a research analyst at EDF, told me.
NERC has attributed this falling reliability to the changing role of coal in the energy system. Reliability “negatively correlates most strongly to capacity factor,” or how often the plant is running compared to its peak capacity. The data also “aligns with industry statements indicating that reduced investment in maintenance and abnormal cycling that are being adopted primarily in response to rapid changes in the resource mix are negatively impacting baseload coal unit performance.” In other words, coal is struggling to keep up with its changing role in the energy system. That’s due not just to the growth of solar and wind energy, which are inherently (but predictably) variable, but also to natural gas’s increasing prominence on the grid.
“When coal plants are having to be a bit more varied in their generation, we're seeing that wear and tear of those plants is increasing,” Chapman said. “The assumption is that that's only going to go up in future years.”
The issue for any plan to revitalize the coal industry, Chapman told me, is that the forces driving coal into this secondary role — namely the economics of running aging plants compared to natural gas and renewables — do not seem likely to reverse themselves any time soon.
Coal has been “sort of continuously pushed a bit more to the sidelines by renewables and natural gas being cheaper sources for utilities to generate their power. This increased marginalization is going to continue to lead to greater wear and tear on these plants,” Chapman said.
But with electricity demand increasing across the country, coal is being forced into a role that it might not be able to easily — or affordably — play, all while leading to more emissions of sulfur dioxide, nitrogen oxide, particulate matter, mercury, and, of course, carbon dioxide.
The coal system has been beset by a number of high-profile outages recently, including at the largest new coal plant in the country, Sandy Creek in Texas, which could be offline until early 2027, according to the Texas energy market ERCOT and the Institute for Energy Economics and Financial Analysis.
In at least one case, coal’s reliability issues were cited as a reason to keep another coal generating unit open past its planned retirement date.
Last month, Colorado Representative Will Hurd wrote a letter to the Department of Energy asking for emergency action to keep Unit 2 of the Comanche coal plant in Pueblo, Colorado open past its scheduled retirement at the end of his year. Hurd cited “mechanical and regulatory constraints” for the larger Unit 3 as a justification for keeping Unit 2 open, to fill in the generation gap left by the larger unit. In a filing by Xcel and several Colorado state energy officials also requesting delaying the retirement of Unit 2, they disclosed that the larger Unit 3 “experienced an unplanned outage and is offline through at least June 2026.”
Reliability issues aside, high electricity demand may turn into short-term profits at all levels of the coal industry, from the miners to the power plants.
At the same time the Trump administration is pushing coal plants to stay open past their scheduled retirement, the Energy Information Administration is forecasting that natural gas prices will continue to rise, which could lead to increased use of coal for electricity generation. The EIA forecasts that the 2025 average price of natural gas for power plants will rise 37% from 2024 levels.
Analysts at S&P Global Commodity Insights project “a continued rebound in thermal coal consumption throughout 2026 as thermal coal prices remain competitive with short-term natural gas prices encouraging gas-to-coal switching,” S&P coal analyst Wendy Schallom told me in an email.
“Stronger power demand, rising natural gas prices, delayed coal retirements, stockpiles trending lower, and strong thermal coal exports are vital to U.S. coal revival in 2025 and 2026.”
And we’re all going to be paying the price.
Rural Marylanders have asked for the president’s help to oppose the data center-related development — but so far they haven’t gotten it.
A transmission line in Maryland is pitting rural conservatives against Big Tech in a way that highlights the growing political sensitivities of the data center backlash. Opponents of the project want President Trump to intervene, but they’re worried he’ll ignore them — or even side with the data center developers.
The Piedmont Reliability Project would connect the Peach Bottom nuclear plant in southern Pennsylvania to electricity customers in northern Virginia, i.e.data centers, most likely. To get from A to B, the power line would have to criss-cross agricultural lands between Baltimore, Maryland and the Washington D.C. area.
As we chronicle time and time again in The Fight, residents in farming communities are fighting back aggressively – protesting, petitioning, suing and yelling loudly. Things have gotten so tense that some are refusing to let representatives for Piedmont’s developer, PSEG, onto their properties, and a court battle is currently underway over giving the company federal marshal protection amid threats from landowners.
Exacerbating the situation is a quirk we don’t often deal with in The Fight. Unlike energy generation projects, which are usually subject to local review, transmission sits entirely under the purview of Maryland’s Public Service Commission, a five-member board consisting entirely of Democrats appointed by current Governor Wes Moore – a rumored candidate for the 2028 Democratic presidential nomination. It’s going to be months before the PSC formally considers the Piedmont project, and it likely won’t issue a decision until 2027 – a date convenient for Moore, as it’s right after he’s up for re-election. Moore last month expressed “concerns” about the project’s development process, but has brushed aside calls to take a personal position on whether it should ultimately be built.
Enter a potential Trump card that could force Moore’s hand. In early October, commissioners and state legislators representing Carroll County – one of the farm-heavy counties in Piedmont’s path – sent Trump a letter requesting that he intervene in the case before the commission. The letter followed previous examples of Trump coming in to kill planned projects, including the Grain Belt Express transmission line and a Tennessee Valley Authority gas plant in Tennessee that was relocated after lobbying from a country rock musician.
One of the letter’s lead signatories was Kenneth Kiler, president of the Carroll County Board of Commissioners, who told me this lobbying effort will soon expand beyond Trump to the Agriculture and Energy Departments. He’s hoping regulators weigh in before PJM, the regional grid operator overseeing Mid-Atlantic states. “We’re hoping they go to PJM and say, ‘You’re supposed to be managing the grid, and if you were properly managing the grid you wouldn’t need to build a transmission line through a state you’re not giving power to.’”
Part of the reason why these efforts are expanding, though, is that it’s been more than a month since they sent their letter, and they’ve heard nothing but radio silence from the White House.
“My worry is that I think President Trump likes and sees the need for data centers. They take a lot of water and a lot of electric [power],” Kiler, a Republican, told me in an interview. “He’s conservative, he values property rights, but I’m not sure that he’s not wanting data centers so badly that he feels this request is justified.”
Kiler told me the plan to kill the transmission line centers hinges on delaying development long enough that interest rates, inflation and rising demand for electricity make it too painful and inconvenient to build it through his resentful community. It’s easy to believe the federal government flexing its muscle here would help with that, either by drawing out the decision-making or employing some other as yet unforeseen stall tactic. “That’s why we’re doing this second letter to the Secretary of Agriculture and Secretary of Energy asking them for help. I think they may be more sympathetic than the president,” Kiler said.
At the moment, Kiler thinks the odds of Piedmont’s construction come down to a coin flip – 50-50. “They’re running straight through us for data centers. We want this project stopped, and we’ll fight as well as we can, but it just seems like ultimately they’re going to do it,” he confessed to me.
Thus is the predicament of the rural Marylander. On the one hand, Kiler’s situation represents a great opportunity for a GOP president to come in and stand with his base against a would-be presidential candidate. On the other, data center development and artificial intelligence represent one of the president’s few economic bright spots, and he has dedicated copious policy attention to expanding growth in this precise avenue of the tech sector. It’s hard to imagine something less “energy dominance” than killing a transmission line.
The White House did not respond to a request for comment.
Plus more of the week’s most important fights around renewable energy.
1. Wayne County, Nebraska – The Trump administration fined Orsted during the government shutdown for allegedly killing bald eagles at two of its wind projects, the first indications of financial penalties for energy companies under Trump’s wind industry crackdown.
2. Ocean County, New Jersey – Speaking of wind, I broke news earlier this week that one of the nation’s largest renewable energy projects is now deceased: the Leading Light offshore wind project.
3. Dane County, Wisconsin – The fight over a ginormous data center development out here is turning into perhaps one of the nation’s most important local conflicts over AI and land use.
4. Hardeman County, Texas – It’s not all bad news today for renewable energy – because it never really is.