You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new report from the American Council for an Energy-Efficient Economy has some exciting data for anyone attempting to retrofit a multifamily building.
By now there’s plenty of evidence showing why heat pumps are such a promising solution for getting buildings off fossil fuels. But most of that research has focused on single-family homes. Larger apartment buildings with steam or hot water heating systems — i.e. most of the apartment buildings in the Northeast — are more difficult and expensive to retrofit.
A new report from the nonprofit American Council for an Energy-Efficient Economy, however, assesses a handful of new technologies designed to make that transition easier and finds they have the potential to significantly lower the cost of decarbonizing large buildings.
“Several new options make decarbonizing existing commercial and multifamily buildings much more feasible than a few years ago,” Steven Nadel, ACEEE’s executive director and one of the authors, told me. “The best option may vary from building to building, but there are some exciting new options.”
To date, big, multifamily buildings have generally had two flavors of heat pumps to consider. They can install a large central heat pump system that delivers heating and cooling throughout the structure, or they can go with a series of “mini-split” systems designed to serve each apartment individually. (Yes, there are geothermal heat pumps, too, but those are often even more expensive and complicated to install, especially in urban areas.)
While these options have proven to work, they often require a fair amount of construction work, including upgrading electrical systems, mounting equipment on interior and exterior walls, and running new refrigerant lines throughout the building. That means they cost a lot more than a simple boiler replacement, and that the retrofit process can be disruptive to residents.
In 2022, the New York City Housing Authority launched a contest to try and solve these problems by challenging manufacturers to develop heat pumps that can sit in a window just like an air conditioner. New designs from the two winners, Gradient Comfort and Midea, are just starting to come to market. But another emerging solution, central air-to-water heat pumps, also presents an appealing alternative. These systems avoid major construction because they can integrate with existing radiators or baseboard heaters in buildings that currently use hot water boilers. Instead of burning natural gas or oil to produce hot water, the heat pump warms the water using electricity.
The ACEEE report takes the cost and performance data for these emerging solutions and compares it to results from mini-splits, central heat pumps, geothermal heat pumps, packaged terminal heat pumps — all-in-one devices that sit inside a sleeve in the wall, commonly used in hotels — and traditional boilers fed by biogas or biodiesel.
While data on the newer technologies is limited, so far the results are extremely promising. The report found that window heat pumps are the most cost-effective of the bunch to fully decarbonize large apartment buildings, with an average installation cost of $9,300 per apartment. That’s significantly higher than the estimated $1,200 per apartment cost of a new boiler, but much lower than the $14,000 to $20,000 per apartment price tag of the other heat pump variations, although air-to-water heat pumps came in second. The report also found that window heat pumps could turn out to be the cheapest to operate, with a life cycle cost of about $14,500, compared to $22,000 to $30,000 for boilers using biodiesel or biogas or other heat pump options.
As someone who has followed this industry for several years with a keen interest in new solutions for boiler-heated buildings in the Northeast — where I grew up and currently reside — I was especially wowed by how well the new window heat pumps have performed. New York City installed units from both Midea and Gradient in 24 public housing apartments, placing one in each bedroom and living room, and monitored the results for a full heating season.
Preliminary data shows the units performed swimmingly on every metric.
On ease of installation: It took a total of eight days for maintenance workers to install the units in all 24 apartments, compared to about 10 days per apartment when the Housing Authority put split heat pump systems in another building.
On performance: During the winter, while other apartments in the building were baking in 90-degree Fahrenheit heat from the steam system, the window unit-heated apartments maintained a comfortable 75 to 80 degree range, even as outdoor temperatures dropped to as low as 20 degrees.
On energy and cost: The window unit-heated apartments used a whopping 87% less energy than the rest of the building’s steam-heated apartments did, cutting energy costs per household in half.
On customer satisfaction: A survey of 72 residents returned overwhelmingly positive feedback, with 93% reporting that the temperature was “just right” and 100% reporting they were either “neutral” or “satisfied” with the new units.
The Housing Authority found that the units also lowered energy used for cooling in peak summer since they were more efficient than the older window ACs residents had been using. Next, the agency plans to expand the pilot to two full buildings before deploying the units across its portfolio. The pilot was so successful that utilities in Massachusetts, Vermont, and elsewhere are purchasing units to do their own testing.
The ACEEE report looked at a handful of air-to-water heat pump projects in New York and Massachusetts, as well, only two of which have been completed. The average installation cost per apartment was around $13,500, with each of the buildings retaining a natural gas boiler as a backup, but none had published performance data yet.
Air-to-water heat pumps have only recently come to market in the U.S. after having taken off in Europe, and they don’t yet fit seamlessly into the housing stock here. Existing technology can only heat water to 130 to 140 degrees, which is hot enough for the more efficient hot water radiators common in Europe but too cold for the U.S. market, where hot water systems are designed to carry 160- to 180-degree water, or even steam.
These heat pumps can still work in U.S. buildings, but they require either new radiators to be installed or supplemental heat from a conventional boiler or electric resistance unit. The other downside to an air-to-water system is that it can’t provide cooling unless the building is already equipped with compatible air conditioning units.
One strength of these systems over the window units, however, is that they don’t push costs onto tenants in buildings where the landlord has historically paid for heat. They also may be cheaper to operate than more traditional heat pump options, although data is still extremely limited and depends on the use of supplemental heat.
It’s probably too soon to draw any major conclusions about air-to-water systems, anyway, because new, potentially more effective options are on the way. In 2023, New York State launched a contest challenging manufacturers to develop new decarbonized heating solutions for large buildings. Among the finalists announced last year, six companies were developing heat pumps that could generate higher-temperature hot water and/or steam. One of them is now installing its first demonstration system in an apartment building in Harlem, and two others have similar demonstrations in the works.
The ACEEE report also mentions a few other promising new heat pump formats, such as an all-in-one wall-mounted heat pump from Italian company Ephoca. It’s similar to the window heat pump in that it’s contained in a single device rather than split into an indoor and outdoor unit, so it doesn’t require mounting anything to the outside of the building or worrying about refrigerant lines, although it does require drilling two six-inch holes in the wall for vents. These may be a good option for those whose windows won’t accommodate a window heat pump or who don’t like the aesthetics. New York State is also funding product development for better packaged terminal heat pumps that could slot into wall cavities occupied by less-efficient packaged terminal air conditioners and heat pumps today.
Gradient and Midea are not yet selling their cold-climate window heat pumps directly to consumers. Gradient brought a version of its technology for more moderate climates to market in 2023, which was only suitable for heating at outdoor temperatures of 40 degrees and higher. But the company has discontinued that model and is focusing on an “all-weather” version designed for cold climates, which is the one that has been installed in the New York City apartments. Gradient told me it is currently selling that model in bulk to multi-family building owners, utilities, and schools. Midea did not respond to my inquiry.
One big takeaway is that even the new school heat pumps designed to be easier and cheaper to install have higher capital costs than buying a boiler and air conditioners — a stubborn facet of many climate solutions, even when they save money in the long run. Canary Media previously reported that the Gradient product would start at $3,800 per unit and the Midea at $3,000. Experts expect the cost to come down as adoption and demand pick up, but the ACEEE report recommends that states develop incentives and financing to help with up-front costs.
“These are not just going to happen on their own. We do need some policy support for them,” Nadel said. In addition to incentives and building decarbonization standards, Nadel raised the idea of discounted electric rates for heat pump users, an idea that has started to gain traction among climate advocates that a few utilities have piloted.
“To oversimplify,” Nadel said, “in many jurisdictions, heat pumps subsidize other customers, and that probably needs to change if this is going to be viable.”
Editor’s note: This story has been updated to include comment from Gradient.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Paradise, California, is snatching up high-risk properties to create a defensive perimeter and prevent the town from burning again.
The 2018 Camp Fire was the deadliest wildfire in California’s history, wiping out 90% of the structures in the mountain town of Paradise and killing at least 85 people in a matter of hours. Investigations afterward found that Paradise’s town planners had ignored warnings of the fire risk to its residents and forgone common-sense preparations that would have saved lives. In the years since, the Camp Fire has consequently become a cautionary tale for similar communities in high-risk wildfire areas — places like Chinese Camp, a small historic landmark in the Sierra Nevada foothills that dramatically burned to the ground last week as part of the nearly 14,000-acre TCU September Lightning Complex.
More recently, Paradise has also become a model for how a town can rebuild wisely after a wildfire. At least some of that is due to the work of Dan Efseaff, the director of the Paradise Recreation and Park District, who has launched a program to identify and acquire some of the highest-risk, hardest-to-access properties in the Camp Fire burn scar. Though he has a limited total operating budget of around $5.5 million and relies heavily on the charity of local property owners (he’s currently in the process of applying for a $15 million grant with a $5 million match for the program) Efseaff has nevertheless managed to build the beginning of a defensible buffer of managed parkland around Paradise that could potentially buy the town time in the case of a future wildfire.
In order to better understand how communities can build back smarter after — or, ideally, before — a catastrophic fire, I spoke with Efseaff about his work in Paradise and how other communities might be able to replicate it. Our conversation has been lightly edited and condensed for clarity.
Do you live in Paradise? Were you there during the Camp Fire?
I actually live in Chico. We’ve lived here since the mid-‘90s, but I have a long connection to Paradise; I’ve worked for the district since 2017. I’m also a sea kayak instructor and during the Camp Fire, I was in South Carolina for a training. I was away from the phone until I got back at the end of the day and saw it blowing up with everything.
I have triplet daughters who were attending Butte College at the time, and they needed to be evacuated. There was a lot of uncertainty that day. But it gave me some perspective, because I couldn’t get back for two days. It gave me a chance to think, “Okay, what’s our response going to be?” Looking two days out, it was like: That would have been payroll, let’s get people together, and then let’s figure out what we’re going to do two weeks and two months from now.
It also got my mind thinking about what we would have done going backwards. If you’d had two weeks to prepare, you would have gotten your go-bag together, you’d have come up with your evacuation route — that type of thing. But when you run the movie backwards on what you would have done differently if you had two years or two decades, it would include prepping the landscape, making some safer community defensible space. That’s what got me started.
Was it your idea to buy up the high-risk properties in the burn scar?
I would say I adapted it. Everyone wants to say it was their idea, but I’ll tell you where it came from: Pre-fire, the thinking was that it would make sense for the town to have a perimeter trail from a recreation standpoint. But I was also trying to pitch it as a good idea from a fuel standpoint, so that if there was a wildfire, you could respond to it. Certainly, the idea took on a whole other dimension after the Camp Fire.
I’m a restoration ecologist, so I’ve done a lot of river floodplain work. There are a lot of analogies there. The trend has been to give nature a little bit more room: You’re not going to stop a flood, but you can minimize damage to human infrastructure. Putting levees too close to the river makes them more prone to failing and puts people at risk — but if you can set the levee back a little bit, it gives the flood waters room to go through. That’s why I thought we need a little bit of a buffer in Paradise and some protection around the community. We need a transition between an area that is going to burn, and that we can let burn, but not in a way that is catastrophic.
How hard has it been to find willing sellers? Do most people in the area want to rebuild — or need to because of their mortgages?
Ironically, the biggest challenge for us is finding adequate funding. A lot of the property we have so far has been donated to us. It’s probably upwards of — oh, let’s see, at least half a dozen properties have been donated, probably close to 200 acres at this point.
We are applying for some federal grants right now, and we’ll see how that goes. What’s evolved quite a bit on this in recent years, though, is that — because we’ve done some modeling — instead of thinking of the buffer as areas that are managed uniformly around the community, we’re much more strategic. These fire events are wind-driven, and there are only a couple of directions where the wind blows sufficiently long enough and powerful enough for the other conditions to fall into play. That’s not to say other events couldn’t happen, but we’re going after the most likely events that would cause catastrophic fires, and that would be from the Diablo winds, or north winds, that come through our area. That was what happened in the Camp Fire scenario, and another one our models caught what sure looked a lot like the [2024] Park Fire.
One thing that I want to make clear is that some people think, “Oh, this is a fire break. It’s devoid of vegetation.” No, what we’re talking about is a well-managed habitat. These are shaded fuel breaks. You maintain the big trees, you get rid of the ladder fuels, and you get rid of the dead wood that’s on the ground. We have good examples with our partners, like the Butte Fire Safe Council, on how this works, and it looks like it helped protect the community of Cohasset during the Park Fire. They did some work on some strips there, and the fire essentially dropped to the ground before it came to Paradise Lake. You didn’t have an aerial tanker dropping retardant, you didn’t have a $2-million-per-day fire crew out there doing work. It was modest work done early and in the right place that actually changed the behavior of the fire.
Tell me a little more about the modeling you’ve been doing.
We looked at fire pathways with a group called XyloPlan out of the Bay Area. The concept is that you simulate a series of ignitions with certain wind conditions, terrain, and vegetation. The model looked very much like a Camp Fire scenario; it followed the same pathway, going towards the community in a little gulch that channeled high winds. You need to interrupt that pathway — and that doesn’t necessarily mean creating an area devoid of vegetation, but if you have these areas where the fire behavior changes and drops down to the ground, then it slows the travel. I found this hard to believe, but in the modeling results, in a scenario like the Camp Fire, it could buy you up to eight hours. With modern California firefighting, you could empty out the community in a systematic way in that time. You could have a vigorous fire response. You could have aircraft potentially ready. It’s a game-changing situation, rather than the 30 minutes Paradise had when the Camp Fire started.
How does this work when you’re dealing with private property owners, though? How do you convince them to move or donate their land?
We’re a Park and Recreation District so we don’t have regulatory authority. We are just trying to run with a good idea with the properties that we have so far — those from willing donors mostly, but there have been a couple of sales. If we’re unable to get federal funding or state support, though, I ultimately think this idea will still have to be here — whether it’s five, 10, 15, or 50 years from now. We have to manage this area in a comprehensive way.
Private property rights are very important, and we don’t want to impinge on that. And yet, what a person does on their property has a huge impact on the 30,000 people who may be downwind of them. It’s an unusual situation: In a hurricane, if you have a hurricane-rated roof and your neighbor doesn’t, and theirs blows off, you feel sorry for your neighbor but it’s probably not going to harm your property much. In a wildfire, what your neighbor has done with the wood, or how they treat vegetation, has a significant impact on your home and whether your family is going to survive. It’s a fundamentally different kind of event than some of the other disasters we look at.
Do you have any advice for community leaders who might want to consider creating buffer zones or something similar to what you’re doing in Paradise?
Start today. You have to think about these things with some urgency, but they’re not something people think about until it happens. Paradise, for many decades, did not have a single escaped wildfire make it into the community. Then, overnight, the community is essentially wiped out. But in so many places, these events are foreseeable; we’re just not wired to think about them or prepare for them.
Buffers around communities make a lot of sense, even from a road network standpoint. Even from a trash pickup standpoint. You don’t think about this, but if your community is really strung out, making it a little more thoughtfully laid out also makes it more economically viable to provide services to people. Some things we look for now are long roads that don’t have any connections — that were one-way in and no way out. I don’t think [the traffic jams and deaths in] Paradise would have happened with what we know now, but I kind of think [authorities] did know better beforehand. It just wasn’t economically viable at the time; they didn’t think it was a big deal, but they built the roads anyway. We can be doing a lot of things smarter.
A war of attrition is now turning in opponents’ favor.
A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.
Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”
But tucked in its press release was an admission from the company’s vice president of development Derek Moretz: this was also about the town, which had enacted a bylaw significantly restricting solar development that the company was until recently fighting vigorously in court.
“There are very few areas in the Commonwealth that are feasible to reach its clean energy goals,” Moretz stated. “We respect the Town’s conservation go als, but it is clear that systemic reforms are needed for Massachusetts to source its own energy.”
This stems from a story that probably sounds familiar: after proposing the projects, PureSky began reckoning with a burgeoning opposition campaign centered around nature conservation. Led by a fresh opposition group, Smart Solar Shutesbury, activists successfully pushed the town to drastically curtail development in 2023, pointing to the amount of forest acreage that would potentially be cleared in order to construct the projects. The town had previously not permitted facilities larger than 15 acres, but the fresh change went further, essentially banning battery storage and solar projects in most areas.
When this first happened, the state Attorney General’s office actually had PureSky’s back, challenging the legality of the bylaw that would block construction. And PureSky filed a lawsuit that was, until recently, ongoing with no signs of stopping. But last week, shortly after the Treasury Department unveiled its rules for implementing Trump’s new tax and spending law, which basically repealed the Inflation Reduction Act, PureSky settled with the town and dropped the lawsuit – and the projects went away along with the court fight.
What does this tell us? Well, things out in the country must be getting quite bleak for solar developers in areas with strident and locked-in opposition that could be costly to fight. Where before project developers might have been able to stomach the struggle, money talks – and the dollars are starting to tell executives to lay down their arms.
The picture gets worse on the macro level: On Monday, the Solar Energy Industries Association released a report declaring that federal policy changes brought about by phasing out federal tax incentives would put the U.S. at risk of losing upwards of 55 gigawatts of solar project development by 2030, representing a loss of more than 20 percent of the project pipeline.
But the trade group said most of that total – 44 gigawatts – was linked specifically to the Trump administration’s decision to halt federal permitting for renewable energy facilities, a decision that may impact generation out west but has little-to-know bearing on most large solar projects because those are almost always on private land.
Heatmap Pro can tell us how much is at stake here. To give you a sense of perspective, across the U.S., over 81 gigawatts worth of renewable energy projects are being contested right now, with non-Western states – the Northeast, South and Midwest – making up almost 60% of that potential capacity.
If historical trends hold, you’d expect a staggering 49% of those projects to be canceled. That would be on top of the totals SEIA suggests could be at risk from new Trump permitting policies.
I suspect the rate of cancellations in the face of project opposition will increase. And if this policy landscape is helping activists kill projects in blue states in desperate need of power, like Massachusetts, then the future may be more difficult to swallow than we can imagine at the moment.
And more on the week’s most important conflicts around renewables.
1. Wells County, Indiana – One of the nation’s most at-risk solar projects may now be prompting a full on moratorium.
2. Clark County, Ohio – Another Ohio county has significantly restricted renewable energy development, this time with big political implications.
3. Daviess County, Kentucky – NextEra’s having some problems getting past this county’s setbacks.
4. Columbia County, Georgia – Sometimes the wealthy will just say no to a solar farm.
5. Ottawa County, Michigan – A proposed battery storage facility in the Mitten State looks like it is about to test the state’s new permitting primacy law.