You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
It will get better, but until then, the dongles are killing me.

Last year, a great streamlining of electric vehicle charging infrastructure looked imminent. One by one, the major automakers committed to using the North American Charging Standard, or NACS, which was formerly Tesla’s proprietary plug. The moves would allow EV drivers of all stripes to use Tesla’s Supercharger network and would move the industry toward a single standard where things worked seamlessly. Earlier this month, GM joined the ranks of Ford and Rivian in having its vehicles officially able to visit nearly 18,000 Supercharger stations.
All of the GM vehicles built up to this point, however, carry the previous charging standard for non-Tesla EVs. You know what that means: dongles.
Drivers in combustion cars choose between regular, plus, and premium gas, but they don’t worry that they’ll pull into a station and the pump won’t fit their car. EVs, meanwhile, still have to deal with a mess of competing plug standards and confusing customer interfaces at charging stations. This situation is the inescapable result of a fast-moving, fledgling industry, yes. But the complexity is an annoyingly sticky barrier to EV adoption.
The adapter necessary to make a GM EV work with a Tesla plug, for instance, is available. But there’s a waiting list, and the piece costs $225 — effectively a $225 early adopter penalty for buying your EV back before everyone agreed on how to cooperate. When Ford transitioned to NACS earlier this year, it had difficulty extracting enough adapters from Tesla to meet the demand, dragging out the process for months for some of its EV drivers. GM had been slated to join the Supercharger network months earlier and could not because of the dongle delays.
Not all the eligible cars just work, either. After GM electric vehicles were welcomed to Tesla Superchargers, it turned out that lots of Chevrolet Bolts made in 2019 and 2020 (when they were the best-selling non-Tesla EVs) needed to visit the dealership for a software update before they could link up with a Tesla plug.
Software patches and dongles may be an annoyance, a kind of Band-Aid to make two systems that weren’t meant to work together play nice, but at least a quick fix is possible. A bigger issue for streamlining charging stations is that the locations of charging ports on EVs themselves are far from standardized.
All Tesla models have ports in the rear on the driver’s side; Supercharging stations are typically built for drivers to back in and then find the appropriate cord right next to their charging port. A Chevy Bolt’s port, however, is found on the driver’s side but on the front. A Hyundai Ioniq 5’s is in the back, but on the passenger side. When Rivian revealed the R2 and R3 designs, their ports were on the passenger side rear because the brand thought that location would fit into its existing network of chargers and make it easier to plug into street-side plugs. Then came an outcry from fans distraught at how difficult it would be to use a Tesla Supercharger if the port were on the wrong side and the cable had to wrap all the way around the back of the vehicle. Rivian changed its mind.
Thank goodness for that, because the situation at Superchargers is poised to get messy. I’ve been to ones where Tesla plugs were available, but I could not park my Model 3 within reach of one because other EVs parked incorrectly in order to plug in. Tesla’s lead engineer for the Cybertruck had to warn people not to use extension cords at Superchargers since that might lead to electrical shorts.
Some relief is on the way. In the coming years, most car companies will build the NACS standard into their electric vehicles, negating the need for expensive adapters and dongles. With so much emphasis on using the Supercharger network, it’s likely the brands will feel pressure to follow Rivian’s lead and just put the port where Tesla puts it.
But then there’s the last piece of the puzzle: the interface. Tesla beat the competition at charging not only by building a bigger and far more reliable network, but also by inventing a seamless way to pay for electricity: When you plug in, the system knows it’s your car and charges the credit card on file. Non-Tesla drivers are beginning to experience this convenience when they stop at the Supercharger.
Competing systems, though, rely on a variety of phone apps that may or may not work, especially in places with spotty cell coverage. Tech companies are trying to solve this problem with, you guessed it, AI. Revel, which used to offer rentable mopeds around New York City, has tried to reposition itself as an EV charging company. It just partnered with a computer vision company to announce a kind of facial recognition system for your car so that the charging station knows it’s you.
Of course, one could just copy Tesla’s idea and have the charging cord auto-identify each vehicle, or even simply install a camera to read the car’s license plate instead of overcomplicating the basic task of IDing a car. But those solutions don’t use the magic technology of the moment.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Secretary of Energy announced the cuts and revisions on Thursday, though it’s unclear how many are new.
The Department of Energy announced on Thursday that it has eliminated nearly $30 billion in loans and conditional commitments for clean energy projects issued by the Biden administration. The agency is also in the process of “restructuring” or “revising” an additional $53 billion worth of loans projects, it said in a press release.
The agency did not include a list of affected projects and did not respond to an emailed request for clarification. However the announcement came in the context of a 2025 year-in-review, meaning these numbers likely include previously-announced cancellations, such as the $4.9 billion loan guarantee for the Grain Belt Express transmission line and the $3 billion partial loan guarantee to solar and storage developer Sunnova, which were terminated last year.
The only further detail included in the press release was that some $9.5 billion in funding for wind and solar projects had been eliminated and was being replaced with investments in natural gas and building up generating capacity in existing nuclear plants “that provide more affordable and reliable energy for the American people.”
A preliminary review of projects that may see their financial backing newly eliminated turned up four separate efforts to shore up Puerto Rico’s perennially battered grid with solar farms and battery storage by AES, Pattern Energy, Convergent Energy and Power, and Inifinigen. Those loan guarantees totalled about $2 billion. Another likely candidate is Sunwealth’s Project Polo, which closed a $289.7 million loan guarantee during the final days of Biden’s tenure to build solar and battery storage systems at commercial and industrial sites throughout the U.S. None of the companies responded to questions about whether their loans had been eliminated.
Moving forward, the Office of Energy Dominance Financing — previously known as the Loan Programs Office — says it has $259 billion in available loan authority, and that it plans to prioritize funding for nuclear, fossil fuel, critical mineral, geothermal energy, grid and transmission, and manufacturing and transportation projects.
Under Trump, the office has closed three loan guarantees totalling $4.1 billion to restart the Three Mile Island nuclear plant, upgrade 5,000 miles of transmission lines, and restart a coal plant in Indiana.
With a China-Canada import deal and Geely showing up at CES, these low-priced models are getting ever-closer to American roads.
Chinese EVs are at the gates.
Low-priced electric vehicles by the likes of Geely, BYD, and Zeekr have already sold enormous numbers in their home country and spearheaded EV growth around the world, from Southeast Asia to Latin America. Now they’re closing in on America’s borders. Canada just agreed to a new trade deal with Beijing that would kill the country’s 100% tariff on Chinese cars and, presumably, allow them to undercut the existing Canadian car market. In Mexico, EV sales surged by 29% in 2025 thanks to the arrival of Chinese models.
Though China’s EVs are still unavailable in the U.S., they feel ever-present already. Auto journalists (myself included) drive these vehicles abroad and rave about how capable they are, especially for the price. Social media influencer hype has fed an appetite for both entry-level and luxury Chinese models — and confused plenty of Americans wondering why they can’t buy them. Headlines speculate about how the Detroit auto giants could ever hope to compete once cheap BYD Dolphins start to populate American roads. Chinese giant Geely, which owns Volvo and Polestar, appeared at CES earlier this month, as if to signal that the arrival of Chinese electric vehicles is imminent.
But is it? The outlook remains rather murky.
The first thing to know is that Chinese cars are not outright banned from coming to America. Instead, it’s a constellation of economic and technological headaches that keeps Beijing at bay. A 100% tariff makes it difficult to compete on cost, even with America’s notoriously expensive EVs. America’s safety and emissions standards are difficult and expensive to meet. Because of national security concerns, connected cars (i.e. those that can hook into the internet) cannot use Chinese-made software, a ban that’s soon to expand to electronic hardware.
Those restrictions aren’t likely to change anytime soon. Sean Duffy, the U.S. transportation secretary, responded to Canada’s removal of its Chinese car tariff by saying our neighbor to the north would “surely regret it.” Members of Congress from both parties are largely opposed to allowing Chinese cars into America under the logic of protectionism for U.S. automakers.
Yet all that might not be enough to prevent the eventual arrival of Geelys and BYDs. The first variable is the unpredictability of President Trump, who has said before that he would like to see Chinese-made cars in America. I don’t expect the United States to eliminate its tariff entirely the way Canada has, but look, you just never know what the heck is going to happen these days.
In the meantime, Chinese automakers are strategizing how they might navigate the rules in place and sell cars here anyway. Crash safety, for example, isn’t the impediment it might appear to be. China’s carmakers have intentionally designed their models in such a way that they could be tweaked, rather than totally redesigned, to meet more stringent rules.
As for the rest, the global reach of these companies could help them get around rules that specifically target China. Geely, which has suggested it will reveal plans for an American invasion within two to three years, builds Volvos in South Carolina and could use those facilities to build Geely-branded EVs in the United States. Company representatives also hand-waved away the problem of Chinese-made software, arguing that as a global brand, it’s already accustomed to meeting the various data privacy regulations of different countries and regions.
In other words, Chinese car companies could skirt some American hurdles by making their cars a little less Chinese. The problem is that doing so might spoil their secret sauce. Part of the magic of Chinese EVs is their responsive, easy-to-understand touchscreen interface that’s obviously superior to what’s offered in otherwise-excellent electric vehicles by Chevy or Hyundai. There’s no guarantee Geely could easily secure a Western-made replacement of the same quality.
The key question, then, is: Will Americans want the versions of Chinese EVs that come to America? We’ve noted recently that drivers are finally showing signs that they are fed up with the cost of new cars spiraling out of control. The kind of cheap Chinese EVs now on sale around the world would be a godsend for money-stressed Americans who are dependent on the automobile. But tariffs and other aforementioned factors mean that the models we get likely won’t be $10,000 basic transportation machines that undercut the entire overpriced American car economy.
Instead, Geelys for America probably will be big, luxurious vehicles whose appeal is fundamentally about feeling techy, futuristic, and cool, much the way Tesla first won over U.S. drivers. To that end, the brand brought a couple of fancy plug-in hybrid SUVs to CES to show Americans what we’re missing. Five years hence, we might not be missing them at all.
Current conditions: The winter storm barreling from Texas to Delaware could drop up to 2 feet of snow on Appalachia • Severe floods in Mozambique’s province of Gaza have displaced nearly 330,000 people • Parts of northern Minnesota and North Dakota are facing wind chills of -55 degrees Fahrenheit.
President Donald Trump announced a “framework of a future deal” on Greenland on Wednesday and abandoned plans to slap new tariffs on key European Union allies. He offered sparse details of the agreement, though he hinted that at least one provision would allow for the establishment of a missile-defense system in Greenland akin to Israel’s Iron Dome, which Trump has called “The Golden Dome.” On the Arctic island in question, meanwhile, Greenlanders have been preparing for the worst. The newspaper Sermitsiaq reported that generators and water cans have sold out as panic buyers stocked up in anticipation of a possible American invasion.

Geothermal startups had a big day on Wednesday. Zanskar, a company that’s using artificial intelligence to find untapped conventional geothermal resources, raised $115 million in a Series C round. The Salt Lake City-based company — which experts in Heatmap's Insider Survey identified as one of the most promising climate tech startups operating today — is looking to build its first power plants. “With this funding, we have a six power plant execution plan ahead of us in the next three, four years,” Diego D’Sola, Zanskar’s head of finance, told Heatmap’s Katie Brigham. This, he estimates, will generate over $100 million of revenue by the end of the decade, and “unlock a multi-gigawatt pipeline behind that.”
Later on Tuesday, Sage Geosystems, a next-generation geothermal startup using fracking technology to harness the Earth’s heat for energy in places that don’t have conventional resources, announced it had raised $97 million in a Series B. The financing rounds highlight the growing excitement over geothermal energy. If you want a refresher on how it works, Heatmap’s Matthew Zeitlin has a sharp explainer here.
Stegra, the Swedish startup racing to build the world’s first large green steel mill near the Arctic Circle, has recently faced troubles as project costs and delays forced the company to raise over $1 billion in new financing. But last week, Stegra landed a major new customer, marking what Canary Media called “a step forward for the beleaguered project.” A subsidiary of the German industrial giant Thyssenkrupp agreed to buy a certain type of steel from Stegra’s plant, which is set to start operations next year. Thyssenkrupp Materials Services said it would buy tonnages in the “high-six-digit range” of “non-prime” steel, a version of the metal that doesn’t meet the high standards for certain uses but remains strong and durable enough for other industrial applications.
Sign up to receive Heatmap AM in your inbox every morning:
For years, Tesla’s mission statement has captured its focus on building electric vehicles, solar panels, and batteries: “Accelerating the world’s transition to sustainable energy.” Now, however, billionaire Elon Musk’s manufacturing giant has broadened its pitch. The company’s new mission statement, announced on X, reads: “Building a world of amazing abundance.” The change reflects a wider shift in the cultural discourse around the transition to new energy and transportation technologies. Even experts polled in our Insiders Survey want to ditch “climate change” as a term. The fatigue was striking coming from the very scientists, policymakers, and activists working to defend against the effects of human-caused temperature rise and decarbonize the global economy.That dynamic has fueled the push to refocus rhetoric on the promise of cheaper, more efficient, and more abundant technological luxuries — a concept Tesla appears to be tapping into now. It may be time for a change. As Matthew wrote in September, Tesla’s market share hit an all-time low last year.
In yesterday’s newsletter, I told you that the Tokyo Electric Power Company had delayed the restart of the Kashiwazaki Kariwa nuclear power station in western Japan over an alarm malfunction. It wasn’t immediately clear how quickly Japan’s state-owned utility would clear up the issue. It turns out, pretty quickly. The pause lasted just 24 hours before Tepco brought Unit 6 of the seven-reactor facility back online, NucNet reported.
Things are getting steamy in the frigid waters of Alaska’s Bristol Bay. New research from Florida Atlantic University’s Harbor Branch Oceanographic Institute found that a small population of beluga whales survive the long haul by mating with multiple partners over several years. It’s not just the males finding multiple female partners, as is the case with some other mammals. The study found that both males and females mated with multiple partners over several years. “What makes this study so thrilling is that it upends our long-standing assumptions about this Arctic species,” Greg O’Corry-Crowe, the research professor who authored the study, said in a press release. “It’s a striking reminder that female choice can be just as influential in shaping reproductive success as the often-highlighted battles of male-male competition. Such strategies highlight the subtle, yet powerful ways in which females exert control over the next generation, shaping the evolutionary trajectory of the species.”