Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

The EV Charging Problem Is Getting Worse

It will get better, but until then, the dongles are killing me.

A tangled EV charger.
Heatmap Illustration/Getty Images

Last year, a great streamlining of electric vehicle charging infrastructure looked imminent. One by one, the major automakers committed to using the North American Charging Standard, or NACS, which was formerly Tesla’s proprietary plug. The moves would allow EV drivers of all stripes to use Tesla’s Supercharger network and would move the industry toward a single standard where things worked seamlessly. Earlier this month, GM joined the ranks of Ford and Rivian in having its vehicles officially able to visit nearly 18,000 Supercharger stations.

All of the GM vehicles built up to this point, however, carry the previous charging standard for non-Tesla EVs. You know what that means: dongles.

Drivers in combustion cars choose between regular, plus, and premium gas, but they don’t worry that they’ll pull into a station and the pump won’t fit their car. EVs, meanwhile, still have to deal with a mess of competing plug standards and confusing customer interfaces at charging stations. This situation is the inescapable result of a fast-moving, fledgling industry, yes. But the complexity is an annoyingly sticky barrier to EV adoption.

The adapter necessary to make a GM EV work with a Tesla plug, for instance, is available. But there’s a waiting list, and the piece costs $225 — effectively a $225 early adopter penalty for buying your EV back before everyone agreed on how to cooperate. When Ford transitioned to NACS earlier this year, it had difficulty extracting enough adapters from Tesla to meet the demand, dragging out the process for months for some of its EV drivers. GM had been slated to join the Supercharger network months earlier and could not because of the dongle delays.

Not all the eligible cars just work, either. After GM electric vehicles were welcomed to Tesla Superchargers, it turned out that lots of Chevrolet Bolts made in 2019 and 2020 (when they were the best-selling non-Tesla EVs) needed to visit the dealership for a software update before they could link up with a Tesla plug.

Software patches and dongles may be an annoyance, a kind of Band-Aid to make two systems that weren’t meant to work together play nice, but at least a quick fix is possible. A bigger issue for streamlining charging stations is that the locations of charging ports on EVs themselves are far from standardized.

All Tesla models have ports in the rear on the driver’s side; Supercharging stations are typically built for drivers to back in and then find the appropriate cord right next to their charging port. A Chevy Bolt’s port, however, is found on the driver’s side but on the front. A Hyundai Ioniq 5’s is in the back, but on the passenger side. When Rivian revealed the R2 and R3 designs, their ports were on the passenger side rear because the brand thought that location would fit into its existing network of chargers and make it easier to plug into street-side plugs. Then came an outcry from fans distraught at how difficult it would be to use a Tesla Supercharger if the port were on the wrong side and the cable had to wrap all the way around the back of the vehicle. Rivian changed its mind.

Thank goodness for that, because the situation at Superchargers is poised to get messy. I’ve been to ones where Tesla plugs were available, but I could not park my Model 3 within reach of one because other EVs parked incorrectly in order to plug in. Tesla’s lead engineer for the Cybertruck had to warn people not to use extension cords at Superchargers since that might lead to electrical shorts.

Some relief is on the way. In the coming years, most car companies will build the NACS standard into their electric vehicles, negating the need for expensive adapters and dongles. With so much emphasis on using the Supercharger network, it’s likely the brands will feel pressure to follow Rivian’s lead and just put the port where Tesla puts it.

But then there’s the last piece of the puzzle: the interface. Tesla beat the competition at charging not only by building a bigger and far more reliable network, but also by inventing a seamless way to pay for electricity: When you plug in, the system knows it’s your car and charges the credit card on file. Non-Tesla drivers are beginning to experience this convenience when they stop at the Supercharger.

Competing systems, though, rely on a variety of phone apps that may or may not work, especially in places with spotty cell coverage. Tech companies are trying to solve this problem with, you guessed it, AI. Revel, which used to offer rentable mopeds around New York City, has tried to reposition itself as an EV charging company. It just partnered with a computer vision company to announce a kind of facial recognition system for your car so that the charging station knows it’s you.

Of course, one could just copy Tesla’s idea and have the charging cord auto-identify each vehicle, or even simply install a camera to read the car’s license plate instead of overcomplicating the basic task of IDing a car. But those solutions don’t use the magic technology of the moment.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Climate Tech

There’s a Better Way to Mine Lithium — At Least in Theory

In practice, direct lithium extraction doesn’t quite make sense, but 2026 could its critical year.

A lithium worker.
Heatmap Illustration/Getty Images, Standard Lithium

Lithium isn’t like most minerals.

Unlike other battery metals such as nickel, cobalt, and manganese, which are mined from hard-rock ores using drills and explosives, the majority of the world’s lithium resources are found in underground reservoirs of extremely salty water, known as brine. And while hard-rock mining does play a major role in lithium extraction — the majority of the world’s actual production still comes from rocks — brine mining is usually significantly cheaper, and is thus highly attractive wherever it’s geographically feasible.

Keep reading...Show less
Green
Q&A

How Trump’s Renewable Freeze Is Chilling Climate Tech

A chat with CleanCapital founder Jon Powers.

Jon Powers.
Heatmap Illustration

This week’s conversation is with Jon Powers, founder of the investment firm CleanCapital. I reached out to Powers because I wanted to get a better understanding of how renewable energy investments were shifting one year into the Trump administration. What followed was a candid, detailed look inside the thinking of how the big money in cleantech actually views Trump’s war on renewable energy permitting.

The following conversation was lightly edited for clarity.

Keep reading...Show less
Yellow
Hotspots

Indiana Rejects One Data Center, Welcomes Another

Plus more on the week’s biggest renewables fights.

The United States.
Heatmap Illustration/Getty Images

Shelby County, Indiana – A large data center was rejected late Wednesday southeast of Indianapolis, as the takedown of a major Google campus last year continues to reverberate in the area.

  • Real estate firm Prologis was the loser at the end of a five-hour hearing last night before the planning commission in Shelbyville, a city whose municipal council earlier this week approved a nearly 500-acre land annexation for new data center construction. After hearing from countless Shelbyville residents, the planning commission gave the Prologis data center proposal an “unfavorable” recommendation, meaning it wants the city to ultimately reject the project. (Simpsons fans: maybe they could build the data center in Springfield instead.)
  • This is at least the third data center to be rejected by local officials in four months in Indiana. It comes after Indianapolis’ headline-grabbing decision to turn down a massive Google complex and commissioners in St. Joseph County – in the town of New Carlisle, outside of South Bend – also voted down a data center project.
  • Not all data centers are failing in Indiana, though. In the northwest border community of Hobart, just outside of Chicago, the mayor and city council unanimously approved an $11 billion Amazon data center complex in spite of a similar uproar against development. Hobart Mayor Josh Huddlestun defended the decision in a Facebook post, declaring the deal with Amazon “the largest publicly known upfront cash payment ever for a private development on private land” in the United States.
  • “This comes at a critical time,” Huddlestun wrote, pointing to future lost tax revenue due to a state law cutting property taxes. “Those cuts will significantly reduce revenue for cities across Indiana. We prepared early because we did not want to lay off employees or cut the services you depend on.”

Dane County, Wisconsin – Heading northwest, the QTS data center in DeForest we’ve been tracking is broiling into a major conflict, after activists uncovered controversial emails between the village’s president and the company.

Keep reading...Show less
Yellow