You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
For now, at least, the math simply doesn’t work. Enter the EREV.
American EVs are caught in a size conundrum.
Over the past three decades, U.S. drivers decided they want tall, roomy crossovers and pickup trucks rather than coupes and sedans. These popular big vehicles looked like the obvious place to electrify as the car companies made their uneasy first moves away from combustion. But hefty vehicles and batteries don’t mix: It takes much, much larger batteries to push long, heavy, aerodynamically unfriendly SUVs and trucks down the road, which can make the prices of the EV versions spiral out of control.
Now, as the car industry confronts a confusing new era under Trump, signals of change are afoot. Although a typical EV that uses only a rechargeable battery for its power makes sense for smaller, more efficient cars with lower energy demands, that might not be the way the industry tries to electrify its biggest models anymore.
The predicament at Ford is particularly telling. The Detroit giant was an early EV adopter compared to its rivals, rolling out the Mustang Mach-E at the end of 2020 and the Ford F-150 Lightning, an electrified version of the best-selling vehicle in America, in 2022. These vehicles sell: Mustang Mach-E was the No. 3 EV in the United States in 2024, trailing only Tesla’s big two. The Lightning pickup came in No. 6.
Yet Ford is in an EV crisis. The 33,510 Lightning trucks it sold last year amount to less than 5% of the 730,000-plus tally for the ordinary F-150. With those sales stacked up against enormous costs needed to invest in EV and battery manufacturing, the brand’s EV division has been losing billions of dollars per year. Amid this struggle, Ford continues to shift its EV plans and hasn’t introduced a new EV to the market in three years. During this time, rival GM has begun to crank out Blazer and Equinox EVs, and now says its EV group is profitable, at least on a heavily qualified basis.
As CEO Jim Farley admitted during an earnings call on Wednesday, Ford simply can’t make the math work out when it comes to big EVs. The F-150 Lightning starts at $63,000 thanks in large part to the enormous battery it requires. Even then, the base version gets just 230 miles of range — a figure that, like with all EVs, drops quickly in extreme weather, when going uphill, or when towing. Combine those technical problems and high prices with the cultural resistance to EVs among many pickup drivers and the result is the continually rough state of the EV truck market.
It sounds like Ford no longer believes pure electric is the answer for its biggest vehicles. Instead, Farley announced a plan to pivot to extended-range electric vehicle (or EREV) versions of its pickup trucks and large SUVs later in the decade.
EREVs are having a moment. These vehicles use a large battery to power the electric motors that push the wheels, just like an EV does. They also carry an onboard gas engine that acts as a generator, recharging the battery when it gets low and greatly increasing the vehicle’s range between refueling stops. EREVs are big in China. They got a burst of hype in America when Ram promised its upcoming Ramcharger EREV pickup truck would achieve nearly 700 miles of combined range. Scout Motors, the brand behind the boxy International Scout icon of the 1960s and 70s, is returning to the U.S. under Volkswagen ownership and finding a groundswell of enthusiasm for its promised EREV SUV.
The EREV setup makes a lot of sense for heavy-duty rides. Ramcharger, for example, will come with a 92 kilowatt-hour battery that can charge via plug and should deliver around 145 miles of electric range. The size of the pickup truck means it can also accommodate a V6 engine and a gas tank large enough to stretch the Ramcharger’s overall range to 690 miles. It is, effectively, a plug-in hybrid on steroids, with a battery big enough to accomplish nearly any daily driving on electricity and enough backup gasoline to tow anything and go anywhere.
Using that trusty V6 to generate electricity isn’t nearly as energy-efficient as charging and discharging a battery. But as a backup that kicks in only after 100-plus miles of electric driving, it’s certainly a better climate option than a gas-only pickup or a traditional hybrid. The setup is also ideally suited for what drivers of heavy duty vehicles need (or, at least, what they think they need): efficient local driving with no range anxiety. And it’s similar enough to the comfortable plug-and-go paradigm that an extended-range EV should seem less alien to the pickup owner.
Ford’s big pivot looks like a sign of the times. The brand still plans to build EVs at the smaller end of its range; its skunkworks experimental team is hard at work on Ford’s long-running attempt to build an electric vehicle in the $30,000 range. If Ford could make EVs at a price at least reasonably competitive with entry-level combustion cars, then many buyers might go electric for pure pragmatic terms, seeing the EV as a better economic bet in the long run. Electric-only makes sense here.
But at the big end, that’s not the case. As Bloombergreports on Ford’s EV trouble, most buyers in the U.S. show “no willingness to pay a premium” for an electric vehicle over a gas one or a hybrid. Facing the prospect of the $7,500 EV tax credit disappearing under Trump, plus the specter of tariffs driving up auto production costs, and the task of selling Americans an expensive electric-only pickup truck or giant SUV goes from fraught to extremely difficult.
As much as the industry has coalesced around the pure EV as the best way to green the car industry, this sort of bifurcation — EV for smaller vehicles, EREV for big ones — could be the best way forward. Especially if the Ramcharger or EREV Ford F-150 is what it takes to convince a quorum of pickup truck drivers to ditch their gas-only trucks.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Energy Transfer’s legal win, battery storage, and the Cybertruck
Current conditions: Red flag warnings are in place for much of Florida • Spain is bracing for extreme rainfall from Storm Martinho, the fourth named storm in less than two weeks • Today marks the vernal equinox, or the first day of spring.
A jury has ordered Greenpeace to pay more than $660 million in damages to one of the country’s largest fossil fuel infrastructure companies after finding the environmental group liable for defamation, conspiracy, and physical damages at the Dakota Access Pipeline. Greenpeace participated in large protests, some violent and disruptive, at the pipeline in 2016, though it has maintained that its involvement was insignificant and came at the request of the local Standing Rock Sioux Tribe. The project eventually went ahead and is operational today, but Texas-based Energy Transfer sued the environmental organization, accusing it of inciting the uprising and encouraging violence. “We should all be concerned about the future of the First Amendment, and lawsuits like this aimed at destroying our rights to peaceful protest and free speech,” said Deepa Padmanabha, senior legal counsel for Greenpeace USA. The group said it plans to appeal.
The Department of Energy yesterday approved a permit for the Calcasieu Pass 2 liquified natural gas terminal in Louisiana, allowing the facility to export to countries without a free trade agreement. The project hasn’t yet been constructed and is still waiting for final approvals from the independent Federal Energy Regulatory Commission, but the DOE’s green light means it faces one less hurdle.
CP2 was awaiting DOE’s go-ahead when the Biden administration announced its now notorious pause on approvals for new LNG export facilities. The project’s opponents argue it’s a “carbon bomb.” Analysis from the National Resources Defense Council suggested the greenhouse gases from the project would be equivalent to putting more than 1.85 million additional gas-fueled automobiles on the road, while the Sierra Club found it would amount to about 190 million tons of carbon dioxide equivalent annually.
President Trump met with 15 to 20 major oil and gas executives from the American Petroleum Institute at the White House yesterday. This was the president’s first meeting with fossil fuel bosses since his second term began in January. Interior Secretary Doug Burgum and Energy Secretary Chris Wright were also in the room. Everyone is staying pretty quiet about what exactly was said, but according to Burgum and Wright, the conversation focused heavily on permitting reform and bolstering the grid. Reuters reported that “executives had been expected to express concerns over Trump’s tariffs and stress the industry view that higher oil prices are needed to help meet Trump’s promise to grow domestic production.” Burgum, however, stressed that oil prices didn’t come up in the chat. “Price is set by supply and demand,” he said. “There was nothing we could say in that room that could change that one iota, and so it wasn’t really a topic of discussion.” The price of U.S. crude has dropped 13% since Trump returned to office, according to CNBC, on a combination of recession fears triggered by Trump’s tariffs and rising oil output from OPEC countries.
The U.S. installed 1,250 megawatts of residential battery storage last year, the highest amount ever and nearly 60% more than in 2023, according to a new report from the American Clean Power Association and Wood Mackenzie. Overall, battery storage installations across all sectors hit a new record in 2024 at 12.3 gigawatts of new capacity. Storage is expected to continue to grow next year, but uncertainties around tariffs and tax incentives could slow things down.
China is delaying approval for construction of BYD’s Mexico plant because authorities worry the electric carmaker’s technology could leak into the United States, according to the Financial Times. “The commerce ministry’s biggest concern is Mexico’s proximity to the U.S.,” sources told the FT. As Heatmap’s Robinson Meyer writes, BYD continues to set the global standard for EV innovation, and “American and European carmakers are still struggling to catch up.” This week the company unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes.
Tesla has recalled 46,096 Cybertrucks over an exterior trim panel that can fall off and become a road hazard. This is the eighth recall for the truck since it went on sale at the end of 2023.
This fusion startup is ahead of schedule.
Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.
Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”
The company thinks it can achieve simplicity via its artificial intelligence software, which controls the reactor’s magnetic field keeping the unruly plasma at the heart of the fusion reaction confined and stabilized. Unlike typical stellarators, which rely on the ultra-precise manufacturing and installment of dozens of huge, twisted magnets, Thea’s design uses exactly 450 smaller, simpler planar magnets, arranged in the more familiar donut-shaped configuration. These magnets are still able to generate a helical magnetic field — thought to keep the plasma better stabilized than a tokamak — because each magnet is individually controlled via the company’s software, just like “the array of pixels in your computer screen,” Berzin told me.
“We’re able to utilize the control system that we built and very specifically modulate and control each magnet slightly differently,” Berzin explained, allowing Thea to “make those really complicated, really precise magnetic fields that you need for a stellarator, but with simple hardware.”
This should make manufacturing a whole lot easier and cheaper, Berzin told me. If one of Thea’s magnets is mounted somewhat imperfectly, or wear and tear of the power plant slightly shifts its location or degrades its performance over time, Thea’s AI system can automatically compensate. “It then can just tune that magnet slightly differently — it turns that magnet down, it turns the one next to it up, and the magnetic field stays perfect,” Berzin explained. As he told me, a system that relies on hardware precision is generally much more expensive than a system that depends on well-designed software. The idea is that Thea’s magnets can thus be mass manufactured in a way that’s conducive to “a business versus a science project.”
In 2023, Thea published a technical report proving out the physics behind its so-called “planar coil stellarator,” which allowed the company to raise its $20 million Series A last year, led by the climate tech firm Prelude Ventures. To validate the hardware behind its initial concept, Thea built a 3x3 array of magnets, representative of one section of its overall “donut” shaped reactor. This array was then integrated with Thea’s software and brought online towards the end of last year.
The results that Thea announced today were obtained during testing last month, and prove that the company can create and precisely control the complex magnetic field shapes necessary for fusion power. These results will allow the company to raise a Series B in the “next couple of years,” Berzin said. During this time, Thea will be working to scale up manufacturing such that it can progress from making one or two magnets per week to making multiple per day at its New Jersey-based facility.
The company’s engineers are also planning to stress test their AI software, such that it can adapt to a range of issues that could arise after decades of fusion power plant operation. “So we’re going to start breaking hardware in this device over the next month or two,” Berzin told me. “We’re purposely going to mismount a magnet by a centimeter, put it back in and not tell the control system what we did. And then we’re going to purposely short out some of the magnetic coils.” If the system can create a strong, stable magnetic field anyway, this will serve as further proof of concept for Thea’s software-oriented approach to a simplified reactor design.
The company is still years away from producing actual fusion power though. Like many others in the space, Thea hopes to bring fusion electrons to the grid sometime in the 2030s. Maybe this simple hardware, advanced software approach is what will finally do the trick.
The Chinese carmaker says it can charge EVs in 5 minutes. Can America ever catch up?
The Chinese automaker BYD might have cracked one of the toughest problems in electric cars.
On Tuesday, BYD unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes. That’s made possible because of a 1,000-volt architecture and what BYD describes as matching charging capability, which could theoretically add nearly one mile of range every second.
It’s still not entirely clear whether the technology actually works, although BYD has a good track record on that front. But it suggests that the highest-end EVs worldwide could soon add range as fast as gasoline-powered cars can now, eliminating one of the biggest obstacles to EV adoption.
The new charging platform won’t work everywhere. BYD says that it will also build 4,000 chargers across China that will be able to take advantage of these maximum speeds. If this pans out, then BYD will be able to charge its newest vehicles twice as fast as Tesla’s next generation of superchargers can.
“This is a good thing,” Jeremy Wallace, a Chinese studies professor at Johns Hopkins University, told me. “Yes, it’s a Chinese company. And there are geopolitical implications to that. But the better the technology gets, the easier it is to decarbonize.”
“As someone who has waited in line for chargers in Pennsylvania and New Jersey, I look forward to the day when charging doesn’t take that long,” he added.
The announcement also suggests that the Chinese EV sector remains as dynamic as ever and continues to set the global standard for EV innovation — and that American and European carmakers are still struggling to catch up. The Trump administration is doing little to help the industry catch up: It has proposed repealing the Inflation Reduction Act’s tax credits for EV buyers, which provide demand-side support for the fledgling industry, and the Environmental Protection Agency is working to roll back tailpipe-pollution rules that have furnished early profits to EV makers, including Tesla. Against that background, what — if anything — can U.S. companies do to catch up?
The situation isn’t totally hopeless, but it’s not great.
BYD’s mega-charging capability is made possible by two underlying innovations. First, BYD’s new platform — the wiring, battery, and motors that make up the electronic guts of the car — will be capable of channeling up to 1,000 volts. That is only a small step-change above the best platforms available elsewhere— the forthcoming Gravity SUV from the American carmaker Lucid is built on a 926-volt platform, while the Cybertruck’s platform is 800 volts — but BYD will be able to leverage its technological firepower with mass manufacturing capacity unrivaled by any other brand.
Second, BYD’s forthcoming chargers will be capable of using the platform’s full voltage. These chargers may need to be built close to power grid infrastructure because of the amount of electricity that they will demand.
But sitting underneath these innovations is a sprawling technological ecosystem that keeps all Chinese electronics companies ahead — and that guarantees Chinese advantages well into the future.
“China’s decisive advantage over the U.S. when it comes to innovation is that it has an entrenched workforce that is able to continuously iterate on technological advances,” Dan Wang, a researcher of China’s technology industry and a fellow at the Paul Tsai China Center at Yale Law School, told me.
The country is able to innovate so relentlessly because of its abundance of process knowledge, Wang said. This community of engineering practice may have been seeded by Apple’s iPhone-manufacturing effort in the aughts and Tesla’s carmaking prowess in the 2010s, but it has now taken on a life of its own.
“Shenzhen is the center of the world’s hardware manufacturing industry because it has workers rubbing shoulders with academics rubbing shoulders with investors rubbing shoulders with engineers,” Wang told me. “And you have a more hustle-type culture because it’s so much harder to maintain technological moats and technological differentiation, because people are so competitive in these sorts of spaces.”
In a way, Shenzhen is the modern-day version of the hardware and software ecosystem that used to exist in northern California — Silicon Valley. But while the California technology industry now largely focuses on software, China has taken over the hardware side.
That allows the country to debut new technological innovations much faster than any other country can, he added. “The comparison I hear is that if you have a new charging platform or a new battery chemistry, Volkswagen and BMW will say, We’ll hustle to put this into our systems, and we’ll put it in five years from now. Tesla might say, we’ll hustle and get it in a year from now.”
“China can say, we’ll put it in three months from now,” he said.“You have a much more focused concentration of talent in China, which collapses coordination time.”
That culture has allowed the same companies and engineers to rapidly advance in manufacturing skill and complexity. It has helped CATL, which originally made batteries for smartphones, to become one of the world’s top EV battery makers. And it has helped BYD — which is close to unseating Tesla as the world’s No. 1 seller of electric vehicles — move from making lackluster gasoline cars to some of the world’s best and cheapest EVs.
It will be a while until America can duplicate that manufacturing capability, partly because of the number of headwinds it faces, Wang said.