Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

The Case for EVs With Gas Tanks

Let’s talk about the Ramcharger 1500 — and why it’s different from a plug-in hybrid.

A 1500 Ramcharger.
Heatmap Illustration/Getty Images, Ram Trucks

The American car buyer is a hard one to satisfy.

The freedom of the open road is embedded in our consciousness in a way it is in few (if any) other countries. A typical American consumer may want to be able to embark on a summer road-trip across the United States’ vast distances, to cram in a family of five and all their camping supplies (and maybe a dog and a canoe!), or to hitch up a trailer to haul a boat or RV wherever they might want to adventure.

We may not use all those features most of the time, but we don’t want to make a major purchase like a car, truck, or SUV to meet the average use case; if we can afford to, we buy for the edge case.

That’s why I can’t stop thinking about a recent announcement made by Stellantis, the Euro-American conglomerate behind brands like Dodge, Jeep, Ram and Alfa Romeo.

For model year 2025, Stellantis will electrify its full-size Ram 1500 pickup, following in the footsteps of GM and Ford. But unlike its rivals, Stellantis will offer the Ram 1500 REV in both an all-electric model (with 350-500 mile range) and a "range extender" Ramcharger 1500 that features around 140 miles of electric range — plus a V6 engine mated to a generator to power the vehicle when the battery is depleted.

I think it’s brilliant.

This kind of range-extended EV seems like the ideal near-term product to satisfy some of the trickiest American market segments to electrify: namely the uniquely American demand for full-size pickups and massive SUVs.

I’ve been a critic of plug-in hybrid vehicles as a bridge to an electrified future in the past. But I’ve leveled that critique against the popular “parallel” plug-in hybrid architecture, which features both a conventional internal combustion engine and mechanical transmission plus a battery and electric motor/generator.

Despite Toyota’s reputation for hybrids, Stellantis is actually the undisputed king of plug-in hybrids in the U.S. already, with plug-in hybrid versions of popular models like the Jeep Wrangler and Cherokee and the Chrysler Pacifica minivan selling at a record pace in recent months.

While this common plug-in hybrid architecture could be right for many Americans reluctant to fully electrify (especially those without access to dedicated Level 2 charging), they suffer from one big drawback: they carry around the full drive train — and all the baggage and cost — of both a conventional gas-burning vehicle and a full battery EV. Duplicate drivetrains means they’ll never be cheaper than a pure internal-combustion or electric car. And with limited space on board to cram in a big battery, these vehicles sport a modest 20-40 mile all-electric range.

(Listen to this recent episode of Shift Key for more on my problems with plug-ins and a discussion of recent U.S. electrified vehicle trends)

In contrast, a “range-extended EV” or “series” plug-in hybrid (or whatever we start calling this other third thing) like the new Ramcharger is a fully electric-drive vehicle. There’s no mechanical transmission to power the wheels. It simply has a compact gasoline engine, tuned to run at a single, most-efficient speed, married to a generator that can produce electricity to run the electric motors when the battery is depleted.

Thanks to the extended range provided by the gasoline generator, these vehicles can drop battery mass and cost, squeeze in a gasoline engine and fuel tank, and still come out comparable on cost as a pure EV with substantially longer range than parallel plug-in hybrids.

The Ram 1500 EV needs a massive 229 kilowatt-hour (kWh) pack to deliver an as-advertised 500 mile range. (The 168-kWh battery for the 350-mile-range version is also huge, 85% larger than the pack in my extended range Mustang Mach-E which gets about 300 miles range.)

In contrast, the Ramcharger has a 92 kWh pack and offers about 145 miles of all-electric range.

The range-extended series hybrid thus sheds 137 kWh of batteries vs. the 500 mile range EV. At about $100+ per kWh to manufacture and assemble those incremental battery cells, that saves Stellantis at least $14,000 to manufacture the truck. A new V6 engine costs about $5,000-10,000 retail and surely much less for an automaker to manufacture, so swapping batteries for the V6 nets a significant cost savings.

The economics and capabilities of a range-extended EV thus make a lot of sense, especially for massive vehicles like the full-size trucks and SUVs so many Americans love. And they squash any concerns about range anxiety that might give buyers pause — especially those interested in towing something, which decimates the range of the all-electric pickups on the market today.

At the same time, more range-extended EVs on the road would reduce demand for D.C. fast chargers — which are especially scarce in the more rural areas of America where the full-size pickup is king. You can still charge these vehicles at a D.C. fast charger (if you can find one), but you can also pull into any gas station to extend range on road trips.

Meanwhile, a 100+ mile electric range is sufficient to cover around 99% of trips taken in personal vehicle in America. Plus, even when running in generator mode, a series electric drive train with regenerative braking is more efficient than a pure internal combustion drive (especially when the internal combustion generator can bypass the battery to directly power the electric motors, as it can in the Ramcharger). Near-term adoption of range-extended EVs could deliver substantial reductions in both emissions and gas use.

Sound familiar? That’s because this was exactly how the original Chevy Volt and BMW i3 range extended option were configured way back in 2011. Why GM didn’t continue down this path to electrify their massive Silverados, Sierras, and Escalades is beyond me.

Stellantis isn’t the only automaker going down this path. Mazda has struggled to get a competitive EV out, with their MX-30 offering a paltry 100-mile range. So they’re launching a range-extended version with a compact 830cc rotary engine (one of Mazda’s core IPs), which could turn the compact SUV into a truly viable product. Across the Atlantic, Nissan also offers a series hybrid drivetrain marketed as e-POWER in Europe and the U.K.

Building range-extended battery EVs is also a good way for manufacturers to develop experience with all-electric vehicle architecture and achieve economies of scale in production. A series hybrid can ride on the same all-electric platform as a full battery electric variant — as in the case of the Ram 1500 REV and Ramcharger — which is key to keeping manufacturing costs low. (Several Chinese automakers took this route.) In contrast, a parallel plug-in hybrid always shares a platform with its pure fossil fueled siblings.

Finally, the U.S. is embarking on a strategic effort to onshore and “friend shore” the whole EV battery and critical minerals supply chain. It’s going to be a serious challenge. Cutting the size of battery packs in electric full-size pickup and SUVs in half makes that a lot easier.

So are range-extended EVs with 100 mile range the electrified vehicle Americans are waiting for? If they're demanding big vehicles, towing capacity, and long-distance travel away from cities and interstates — e.g. exactly the segments hardest to satisfy with a pure EV — the answer might be yes.

Editor’s note: A previous version of this article used “personal vehicle miles traveled” instead of trips taken in personal vehicles. It’s been updated.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Adaptation

The ‘Buffer’ That Can Protect a Town from Wildfires

Paradise, California, is snatching up high-risk properties to create a defensive perimeter and prevent the town from burning again.

Homes as a wildfire buffer.
Heatmap Illustration/Getty Images

The 2018 Camp Fire was the deadliest wildfire in California’s history, wiping out 90% of the structures in the mountain town of Paradise and killing at least 85 people in a matter of hours. Investigations afterward found that Paradise’s town planners had ignored warnings of the fire risk to its residents and forgone common-sense preparations that would have saved lives. In the years since, the Camp Fire has consequently become a cautionary tale for similar communities in high-risk wildfire areas — places like Chinese Camp, a small historic landmark in the Sierra Nevada foothills that dramatically burned to the ground last week as part of the nearly 14,000-acre TCU September Lightning Complex.

More recently, Paradise has also become a model for how a town can rebuild wisely after a wildfire. At least some of that is due to the work of Dan Efseaff, the director of the Paradise Recreation and Park District, who has launched a program to identify and acquire some of the highest-risk, hardest-to-access properties in the Camp Fire burn scar. Though he has a limited total operating budget of around $5.5 million and relies heavily on the charity of local property owners (he’s currently in the process of applying for a $15 million grant with a $5 million match for the program) Efseaff has nevertheless managed to build the beginning of a defensible buffer of managed parkland around Paradise that could potentially buy the town time in the case of a future wildfire.

Keep reading...Show less
Spotlight

How the Tax Bill Is Empowering Anti-Renewables Activists

A war of attrition is now turning in opponents’ favor.

Massachusetts and solar panels.
Heatmap Illustration/Library of Congress, Getty Images

A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.

Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”

Keep reading...Show less
Yellow
Hotspots

The Midwest Is Becoming Even Tougher for Solar Projects

And more on the week’s most important conflicts around renewables.

The United States.
Heatmap Illustration/Getty Images

1. Wells County, Indiana – One of the nation’s most at-risk solar projects may now be prompting a full on moratorium.

  • Late last week, this county was teed up to potentially advance a new restrictive solar ordinance that would’ve cut off zoning access for large-scale facilities. That’s obviously bad for developers. But it would’ve still allowed solar facilities up to 50 acres and grandfathered in projects that had previously signed agreements with local officials.
  • However, solar opponents swamped the county Area Planning Commission meeting to decide on the ordinance, turning it into an over four-hour display in which many requested in public comments to outright ban solar projects entirely without a grandfathering clause.
  • It’s clear part of the opposition is inflamed over the EDF Paddlefish Solar project, which we ranked last year as one of the nation’s top imperiled renewables facilities in progress. The project has already resulted in a moratorium in another county, Huntington.
  • Although the Paddlefish project is not unique in its risks, it is what we view as a bellwether for the future of solar development in farming communities, as the Fort Wayne-adjacent county is a picturesque display of many areas across the United States. Pro-renewables advocates have sought to tamp down opposition with tactics such as a direct text messaging campaign, which I previously scooped last week.
  • Yet despite the counter-communications, momentum is heading in the other direction. At the meeting, officials ultimately decided to punt a decision to next month so they could edit their draft ordinance to assuage aggrieved residents.
  • Also worth noting: anyone could see from Heatmap Pro data that this county would be an incredibly difficult fight for a solar developer. Despite a slim majority of local support for renewable energy, the county has a nearly 100% opposition risk rating, due in no small part to its large agricultural workforce and MAGA leanings.

2. Clark County, Ohio – Another Ohio county has significantly restricted renewable energy development, this time with big political implications.

Keep reading...Show less
Yellow