You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
At least in the short term, developers looking to build quickly have just a few sites to choose from.
Donald Trump aims to spur the biggest nuclear development boom this side of the 21st century. The big question: Will it work?
Trump signed a fleet of executive orders on Friday seeking to quadruple U.S. nuclear capacity, expanding generation from 100 gigawatts today to 400 gigawatts by 2050. To that end, he also set a near-term goal to start construction on 10 new conventional reactors by 2030 — that is, within the next five years.
The interim goal on its own is, on its face, extremely ambitious. There have only been three reactors completed this century: Watts Bar Unit 2, which had a complicated, multi-decade development timeline and finally entered operation in 2016; and Vogtle Units 3 and 4, which started construction in 2009 and came online in 2023 and 2024, respectively.
Part of the reason those three facilities took so long is the convoluted permitting process nuclear hopefuls must navigate. (Chris Gadomski, lead nuclear analyst at BloombergNEF, called it a “gauntlet.”) It can take almost a decade for a new nuclear project to receive what’s called a “combined operating license” from the Nuclear Regulatory Commission, the federal body charged with overseeing civilian nuclear technology and power plant operations. The orders seek to simplify and accelerate the NRC’s licensing procedure, giving the body 18 months to issue new rules and guidance designed to shorten the timeline for processing new applications to 18 months at the longest, and to reduce the timeline for considering continuing operations licenses to just a year.
In the even nearer term, however, “If you want to build nuclear fast in this country, you would go to sites that are already licensed or already have infrastructure,” Brett Rampal, senior director of nuclear and power strategy at Veriten, told Heatmap. Many of these sites received NRC approval in the 2000 and 2010s but languished due to poor market conditions (the rise of cheap natural gas), the nuclear industry’s own instability (Westinghouse, a major contractor, went bankrupt in 2017), or some combination of both.
But even then the process is complicated, as Adam Stein, director of the nuclear energy innovation program of the Breakthrough Institute, told Heatmap. “Several of the sites with licenses for AP1000 [reactors] theoretically could start construction fairly quickly without major license changes,” he said. “However, that’s not likely to happen.”
The AP1000 is a 1-gigawatt pressurized water reactor made by Westinghouse, and it’s currently pumping out electrons at the Vogtle site in Georgia. There are hopes that it can become a standard design that is built over and over again at scale.
But even on an already-licensed site, any new project would be starting from scratch with its supply chain and workforce. And just because the site has a license now doesn’t mean its developers are done with the licensing process. “The licenses for those sites were issued for a design that was essentially what Vogtle started out as,” Stein explained. Vogtle subsequently underwent almost 200 license amendments, and it’s probable that a new build would want to incorporate many of these design changes into their license, as well. “That takes time,” Stein said.
Duke Energy, which serves over 8 million customers largely in the Southeast, has an active combined operating license for AP1000s in South Carolina. The company told South Carolina utilities regulators in April that its W.S. Lee site in the state “offers the best opportunity to deploy large light-water reactors in the Carolinas” — but that, at least at the time, “the conceptual deployment timeline from when a definitive “go forward” decision is made is about 13 to 14 years.” (Emphasis mine.)
The spokesperson noted that the combined operating license at the site “gives us optionality in the future to construct and operate two Westinghouse AP1000 units at the site,” and that “we will have an opportunity to update state Commissions in the Carolinas on our progress regarding the potential for future new nuclear investments later this year.” The spokesperson gave no specific indication that the company’s timeline for building a new plant had changed due to the executive orders.
Duke also terminated a combined operating license for a Florida site in 2018. “We currently have no nuclear planned for Duke Energy Florida per our 10-year site plan, although advanced nuclear overall is still a longer-term option,” the spokesperson said.
What about “advanced nuclear”? Several advanced nuclear projects have either applied for or gotten construction permits. Kairos Power received construction permits for demonstration reactors, while X-Energy, the Tennessee Valley Authority, and TerraPower have applied for construction permits for advanced reactors. These companies are pursuing a different pathway than the combined operating license application process and will need to apply for operation licenses as well. Two advanced reactor designs by NuScale have received approval from the NRC to date, including one that’s fresh as of Thursday, but there are no current plans to deploy either anywhere.
That hasn’t dampened excitement about advanced nuclear, including on sites with licenses for larger reactors. Virginia utility Dominion Energy is looking at new nuclear development at its North Anna site, which is licensed for a GE-Hitachi Economic Simplified Boiling Water Reactor, a large reactor which has received an NRC design certification but has not yet been deployed. But instead of conventional reactors, Dominion has a memorandum of understanding with Amazon to explore small modular reactor development.
Duke Energy, meanwhile, told Heatmap that the company “strongly supports the advancement and deployment of new nuclear technologies, including large reactors and small modular reactors, to meet the growing energy needs of our customers.”
There is one nuclear company that greeted the executive orders with fulsome excitement: The Nuclear Company. Unlike other newer entrants in the space, The Nuclear Company — which raised a $51 million Series A in April — aims to build six conventional reactors with “proven, licensed technology.”
“I feel like I’m Jack and Rose from the Titanic and my arms are out. I feel like we're flying finally,” Juliann Edwards, chief development officer at The Nuclear Company, told Heatmap. “I feel like we’ve been unleashed through these executive orders.”
As difficult and costly as it was to bring the new Vogtle reactors online, the process jumpstarted the previously dormant domestic nuclear industry. And The Nuclear Company thinks it would be a shame for this emergent expertise to go to waste.
The Nuclear Company has identified the first site where it plans to build, but it’s not yet public, Edwards told Heatmap, though she pointed to states such as Florida, South Carolina, North Carolina, Tennessee, and Alabama as places where the company could “hit the ground running,” given that they already have the necessary licenses in place.
And yet The Nuclear Company does not, itself, intend to design or operate these reactors. Instead it would run licensing, permitting, and construction, while also potentially serving as the facility’s long-term owner, depending on the regulatory structure of the local utilities and grid operators.
That still leaves the question of whether the market will end up valuing the power produced from all these new reactors at a level that will keep an operator in business. That’s not a given. In the 2010s, nuclear capacity fell in part because the market preferred natural gas to nuclear, since it was cheaper and could respond quickly to varying demand. “Why would you build a nuclear reactor when you got very cheap natural gas?” BNEF’s Gadomski, told Heatmap.
But the prospects of an artificial-intelligence-fueled data center boom, as well as the broader electrification of the economy, has begun to change this calculus, as utilities look to catch up to quickly rising electricity demand for the first time this century.
"I’m hoping that this environment doesn’t create too much uncertainty for folks, and I’m hoping it sends signals to get things going and that things will hopefully work out,” Rampal said. “I love my utilities, but they are 14 times bitten, 97 times shy.”
Editor’s note: This story has been updated to reflect that Duke Energy terminated its Florida license.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It’s his philosophy. They’re just legislating it.
As the Senate Finance Committee worked on its version of the reconciliation bill that would, among things, overhaul the Inflation Reduction Act, there was much speculation among observers that there could be a carve out for sources of power like geothermal, hydropower, and nuclear, which provide steady generation and tend to be more popular among Republicans, along the lines of the slightly better treatment received by advanced nuclear in the House bill.
Instead, the Senate Finance Committee’s text didn’t carve out these “firm” sources of power, it carved out solar and wind, preserving tax credits for everything else through 2035, while sunsetting solar and wind by 2028.
For much of the last few months — and for years before he was sworn in as Secretary of Energy — Chris Wright has been expounding on his philosophy of energy and climate. If anything, the Senate Finance draft seems to hew closer to Wright’s worldview than Trump’s, which is less specific, even more critical of renewables (especially wind), and largely in favor of nuclear power when it comes to non-carbon-emitting generation.
“I’m sure Secretary Wright’s strong support for firm technologies over the past few months played a role in Chairman Crapo’s approach to energy tax credit reform,” Pavan Venkatakrishnan, an infrastructure fellow at the Institute for Progress, told me.
Wright argues that climate change is real but not a top-tier concern and that it certainly should not be addressed by restricting energy usage, which he sees as foundational to the good life here and abroad.
And among energy sources, the former fracking executive is no opponent of fossil fuels but is also enthusiastic about energy innovation.
In his company Liberty Energy’s Bettering Human Lives report, published last year, which doubles as a kind of manifesto, Wright wrote that “viable paths to reducing greenhouse gas (GHG) emissions can only come from reliable and affordable low-carbon energy technologies,” and specifically listed next-generation nuclear and geothermal, which Liberty had invested in through the geothermal company Fervo and nuclear company Oklo.
“To achieve largescale human betterment, we will need significant future energy additions from nuclear, hydropower, geothermal, and all other viable energy technologies,” the report read.
And he’s often been skeptical of renewables along the lines of many Congressional Republicans, that they aren’t reliable enough and require additional resources to fully support the grid.
“Maybe the biggest problem is intermittency,” Wright said at a Liberty Energy event last year.
“You can build a lot of wind and solar, and then at night, the sun’s not shining and then sometimes the wind doesn’t blow, and you have no energy. So to keep society running, you have to have a whole second separate energy system,” Wright said.
In testimony to the House of Representatives last week, Wright said “If you’re not there at peak demand, you’re just a parasite on the grid, because you just make the other sources turn up and down as you come and go.”
Many critics of the Republican reconciliation bills have noted that much of the electricity generation pipeline is solar, wind, or storage, and so cutting off their tax credits risks leaving the country at an energy shortage while gas turbines take years and years to actually get on the grid.
But as Congress was working on the reconciliation bill, Wright made a series of widely noted public appearances where he promoted clean firm power and continued government support for it.
“My recommendation has been to leave behind the equivalent of the wind and solar tax credits — through if you start construction by 2031 — for nuclear fission and fusion and geothermal,” Wright said at an event earlier this month.
In May, Wright addressed the Nuclear Energy Institute, outlining his support for sunsetting wind and solar tax credits will working to kickstart nuclear power. “My personal goal would be to much more rapidly sunset the technologies that have been around and have been living on decades of subsidies,” Wright said. He also supported a “window” of “favorable treatment” for nuclear and geothermal.
“I’m in favor of every nudge, every incentive we can get from the federal government to restart this industry,” Wright said.
While Wright has been skeptical of wind and solar and optimistic about nuclear and geothermal for years, he’s also started talking more positively about energy storage. In the past, he’s talked up hydrocarbons for “coming with their own storage,” as he put it in a 2018 podcast.
But at an appearance at ARPA-E in March, Wright gave some of his most extended thoughts on energy storage, which sits somewhat awkwardly between variable resources like solar and wind and firm resources like nuclear and geothermal.
“Solar is growing very fast, getting more efficient and taking panels, cheaper materials and developing energy,” Wright said. “The biggest problem there is the sun doesn’t always shine, and we don’t know when clouds are going to come and when it’s not going to shine, but if we can get energy storage better, that’s a game changer.”
At least until 2035.
When I reached out to climate tech investors on Tuesday to gauge their reaction to the Senate’s proposed overhaul of the clean energy tax credits, I thought I might get a standard dose of can-do investor optimism. Though the proposal from the Senate Finance committee would cut tax credits for wind and solar, it would preserve them for other sources of clean energy, such as geothermal, nuclear, and batteries — areas of significant focus and investment for many climate-focused venture firms.
But the vibe ended up being fairly divided. While many investors expressed cautious optimism about what this latest text could mean for their particular portfolio companies, others worried that by slashing incentives for solar and wind, the bill’s implications for the energy transition at large would be categorically terrible.
“We have investments in nuclear, we have investments in geothermal, we have investments in carbon capture. All of that stuff is probably going to get a boost from this, because so much money is going to be flowing out of quote, unquote, ‘slightly more established’ zero emissions technologies,” Susan Su, a climate tech investor at Toba Capital, told me. “So we’re diversified. But for me, as a human being, and as somebody that cares about climate change and cares about having an abundant energy future, this is very short-sighted.”
Bigger picture aside, the idea that the Senate proposal could lead to more capital for non-solar, non-wind clean energy technologies was shared by other investors, many of whom responded with tentative hope when I asked for their thoughts on the bill.
“The extension of the nuclear and geothermal tax credits compared to the House bill is really important,” Rachel Slaybaugh, a climate tech investor at DCVC, told me. The venture firm has invested in the nuclear fission company Radiant Nuclear, the fusion company Zap Energy, and the geothermal startup Fervo Energy. As for how Slaybaugh has been feeling since the bill’s passage as well as the general sentiment among DCVC’s portfolio companies, she told me that “it's mostly been the relief of like, thank you for at least supporting clean, firm and bringing transferability back.”
Indeed, the proposed bill not only fully preserves tax credits for most forms of zero-emissions power until 2034, but also keeps tax credit transferability on the books. This financing mechanism is essential for renewable energy developers who cannot fully utilize the tax credits themselves, as it allows them to sell credits to other companies for cash. All of this puts nascent clean, firm technologies on far more stable footing than after the House’s version of the bill was released last month.
Carmichael Roberts of Breakthrough Energy Ventures echoed these sentiments via email when he told me, “the Senate proposal is a meaningful improvement over the House version for clean energy companies. It creates more predictability and a clearer runway for emerging technologies that are not yet fully commercial.” Breakthrough invests in multiple fusion, geothermal, and long-duration energy storage startups.
Amy Duffuor, co-founder and general partner at Azolla Ventures, also acknowledged in an email that it’s “encouraging” that the Senate has “seen the way forward on clean firm baseload power.” However, she issued a warning that the unsettled policy environment is leading to “material risks and uncertainties for start-ups reliant on current tax incentives.”
Solar and wind are by far the most widely deployed and cost-competitive forms of renewable energy. So while they now mainly exist outside the remit of venture firms, there are numerous climate-focused startups that operate downstream of this tech. Think about all the software companies working to optimize load forecasting, implement demand response programs, facilitate power purchase agreements, monitor grid assets, and so much more. By proxy, these startups are now threatened by the Senate’s proposal to phase out the investment and production tax credits for solar and wind projects beginning next year, with a full termination after 2027.
“I think solar and wind will survive. But it's going to be like 80% of the deals don't pencil for a long time,” Ryan Guay, co-founder and president of the software startup Euclid Power, told me. Euclid makes data management and workflow tools for renewable project developers, so if the tax credits for solar and wind go kaput, that will mean less business for them. In the meantime though, Guay expects to be especially busy as developers rush to build projects before their tax credit eligibility expires.
As Guay explained to me, it’s not just the rescission of tax credits that he believes will kill such a large percent of solar and wind projects. It’s the combined impact of those cuts, the bill’s foreign entity of concern rules restricting materials from China, and Trump’s tariffs on Chinese-made components. “You’re not giving the industry enough time to actually build that robust domestic supply chain, which I agree needs to happen,” Guay told me. “I’m all for the security of the grid, but our supply chains are already very constrained.”
Many investors also expressed frustration and confusion over why Senate Republicans, and the Trump administration at large, would target incentives for solar and wind — the fastest growing domestic energy sources — while touting an agenda of energy dominance and American leadership. Some even used the president’s own language around energy issues to deride the One Big Beautiful Bill’s treatment of solar and wind as well as its repeal of the electric vehicle tax credits.
“The rollbacks of the IRA weaken the U.S. in key areas like energy dominance and the auto industry, which is rapidly becoming synonymous with the EV industry,” Matt Eggers, a managing director at the climate-tech investment firm Prelude Ventures, wrote to me in an email. “This bill will still ultimately cost us economic growth, jobs, and strategic positioning on the world stage.”
“The only real question is, are we going to double down on the future and on American dynamism?” Andrew Beebe, managing director at Obvious Ventures, asked in an emailed response. “Or are we going to cling to the past by trying to hold back a future of abundant, clean, and affordable energy?”
Su wanted to focus on the bigger picture too. While the Senate’s proposal gives tax credits for solar and wind a much longer phaseout period than the House’s bill — which would have required projects to start construction within 60 days of the bill’s passage and enter service by 2028 — Su still doesn’t think the Senate’s version is much to celebrate.
“The specific changes that came through in the Senate version are really kind of nibbling at the edges and at the end of the day, this is a huge blow for our emissions trajectory,” Su told me. She’s always been a big believer that there’s still a significant amount of cutting edge innovation in the solar and wind sectors, she told me. For example, Toba is an investor in Swift Solar, a startup developing high-efficiency perovskite solar cells. Nixing tax credits that benefit the solar industry will hit these smaller players especially hard, she told me.
With the Senate now working to finalize the bill, investors agreed that the current proposal is certainly not the worst case scenario. But many did say it was worse than they had — perhaps overly optimistically — been holding out for.
“To me, it's really bad because it now has a major Senate stamp of approval,” Su told me. The Senate usually tempers the more extreme, partisan impulses of the House. Thus, the closer a bill gets to clearing the Senate, the closer it usually is to its final form. Now, it seems, the reconciliation bill is suddenly feeling very real for people.
“At least back between May 22 and [Monday], we didn't know what was going to get amended, so there was still this window of hope that things could change more dramatically." Su said. Now that window is slowly closing, and the picture of what incentives will — and won’t — survive is coming into greater focus.
Rob and Jesse talk with John Henry Harris, the cofounder and CEO of Harbinger Motors.
You might not think that often about medium-duty trucks, but they’re all around you: ambulances, UPS and FedEx delivery trucks, school buses. And although they make up a relatively small share of vehicles on the road, they generate an outsized amount of carbon pollution. They’re also a surprisingly ripe target for electrification, because so many medium-duty trucks drive fewer than 150 miles a day.
On this week’s episode of Shift Key, Rob and Jesse talk with John Henry Harris, the cofounder and CEO of Harbinger Motors. Harbinger is a Los Angeles-based startup that sells electric and hybrid chassis for medium-duty vehicles, such as delivery vans, moving trucks, and ambulances.
Rob, John, and Jesse chat about why medium-duty trucking is unlike any other vehicle segment, how to design an electric truck to last 20 years, and how President Trump’s tariffs are already stalling out manufacturing firms. Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: What is it like building a final assembly plant — a U.S. factory — in this moment?
John Harris: I would say lots of people talk about how excited they are about U.S. manufacturing, but that's very different than putting their money where their mouth is. Building a final assembly line, like we have — our team here is really good, that they made it feel not that hard. The challenge is the whole supply chain.
If we look at what we build here in-house at Harbinger, we have a final assembly line where we bolt parts together to make chassis. We also have two sub-component assembly lines where we take copper and make motors, and where we take cells and make batteries. All three of those lines work pretty well. We're pumping out chassis, and they roll out the door, and we sell them to people, which is great. But it’s all the stuff that goes into those, that's the most challenging. There's a lot of trade policy at certain hours of the day, on certain days of the week — depending on when we check — that is theoretically supposed to encourage us manufacturing.
But it's really not because of the volatility. It costs us an enormous amount to build the supply chain, to feed these lines. And when we have volatile trade policy, our reaction, and everyone else's reaction, is to just pause. It’s not to spend more money on U.S. manufacturing, because we were already doing that. We were spending a lot on U.S. manufacturing as part of our core approach to manufacturing.
The latest trade policy has caused us to spend less money on U.S. manufacturing — not more, because we're unclear on what is the demand environment going to be, what is the policy going to be next week? We were getting ready to make major investments to take certain manufacturing tasks in our supply chain out of China and move them to Mexico, for example. Now we’re not. We were getting ready to invest in certain kinds of automation to do things in house, and now we're waiting. So the volatility is dramatically shrinking investment in US manufacturing, including ours.
Meyer: And can you just explain, why did you make that decision to pause investment and how does trade policy affect that decision?
Harris: When we had 25% tariffs on China, if we take content out of China and move it to Mexico, we break even — if that. We might still end up underwater. That's because there's better automation in China. There's much higher labor productivity. And — this one is always shocking to people — there’s lower logistics costs. When we move stuff from Shenzhen to our factory, in many cases it costs us less than moving shipments from Monterey.
Mentioned:
CalStart’s data on medium-duty electric trucks deployed in the U.S.
Here’s the chart that John showed Rob and Jesse:
Courtesy of Harbinger
It draws on data from Bloomberg in China, the ICCT, and the Calstart ZET Dashboard in the United States.
Jesse’s case for EVs with gas tanks — which are called extended range electric vehicles