You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Europeans have enjoyed it for years. Now, through careful state interventions and creative salesmanship from startups, Americans are close to having their turn.
For U.S. consumers, going solar is usually a major undertaking, involving tens of thousands of dollars, months of logistics, a slew of financing options, and ever-changing incentives.
But in Germany, upwards of a million customers — homeowners and renters alike — are simply plugging in small, affordable solar arrays to standard power outlets. These small systems are, by law, 800 watts or less, a fraction of the size of a typical rooftop solar system in the U.S. Often called “balcony solar,” these panels can live essentially anywhere with sufficient sunlight: on balconies or patios, or mounted on exterior walls or flat rooftops.
But while governments across the EU have simplified regulations to make installation a quick, DIY process, and utility approval little more than a formality — unleashing a wave of consumer demand in the process — the U.S. has so far failed to follow suit. Here, utility regulations prohibit customers from feeding power back into the grid without a formal interconnection agreement, a process that involves lots of time and paperwork.
Utilities in the U.S. want to account for all electricity sources on the grid, since theoretically, even small plug-in systems could have a cumulative impact on local voltage and power quality, whereas in Germany, for example, this is less of a concern. There, plug-in solar-specific policy caps these systems’ generating capacity, and the grid and metering infrastructure has been more extensively modernized to handle distributed energy generation.
Now, however, there are a number of domestic plug-in solar startups finding creative ways to navigate the constraints of the U.S. market. One of them, the nonprofit Bright Saver, announced on Wednesday that it’s raised $500,000 in new funding from TrueVentures.org and a handful of individual backers. The company gets around power export regulations by selling panels with very low wattage. “So we’re talking 200- or 220-watt systems that never backfeed to the grid, because we think close to every typical household will consume that electricity immediately, simply with the refrigerator,” Cora Stryker, the company’s co-founder, told me.
The San Francisco-based startup has sold a couple dozen systems already and has a waitlist of about 1,500 people, Stryker said. So far, she told me, the majority of this “early adoption crowd” is mainly interested in reducing their own emissions. “We think that’ll change over time,” she said. “The mass adoption in Germany has been driven not by that climate-conscious crowd, but really people who want to save money.”
The main drawback to Bright Saver’s approach, however, is also what makes it possible in the first place: the panels’ incredibly small size, which can’t come close to covering a home’s full power needs. So while the upfront cost of a 200-watt panel is small — $399 at the moment — a customer’s energy savings will also be tiny — potentially on the order of just a few bucks per month. Depending on the location, the savings will eclipse the total cost in about five to 10 years, Stryker told me.
That might not be enticing enough to convince a critical mass of customers to jump onboard the small-scale solar train. But Stryker thinks that getting these products out into the world will help catalyze the type of curiosity and interest that can dovetail into policy change. “Selling product in the next year or two is a small revenue stream for us, but it’s also our theory of change,” she told me. “These need to get out there in order for people to know they even exist.”
Much of Bright Saver’s work involves advocating for easing plug-in solar regulations, which is already starting to happen, bit by bit. In March, the Utah state legislature unanimously passed a bill creating a new category for “small portable solar generation devices” under 1,200 watts, exempting them from interconnection requirements. Stryker told me that Utah’s governor was inspired to introduce the bill after reading a story in The New York Times about balcony solar’s success in Germany.
Now more states, including Vermont, Maryland, and Pennsylvania, are expressing interest in similar legislation. If just a few more get onboard, Stryker told me that would be a critical tipping point. “We’ve had conversations with manufacturers and investors who tell us straight up, they’re not coming to the U.S. market because they see only one state where they’re not going to run into these regulatory concerns,” she said. “They tell us privately, five to seven more states and they’re in. So that’s a key threshold for us.”
But one veteran of the plug-in solar market, Craftstrom, isn’t betting on this happening. The company has been selling 400- to 800-watt systems in Europe since 2017, and expanded into the U.S. a few years later, targeting markets where electricity prices are highest, like California and the Northeast. To deal with domestic regulations, the company patented a new type of meter to be placed inside electric panels that blocks excess power from flowing back into the grid. This prevention mechanism also allows the company to sell larger systems — up to 2,000 watts — in the U.S.
Craftstrom’s chief revenue officer, Ken Hutchings, thinks this type of system is critical for grid safety in the U.S., where distribution networks tend to be older and less standardized than in Europe, and not necessarily built for two-way power flow. This opens up utilities to a good deal of legal liability in the case of equipment failures.
While Hutchings wouldn’t necessarily be surprised to see other states following Utah’s lead, he’s skeptical that the U.S. will become a haven for plug-in solar anytime soon — or even that it’s a good idea. “There’s no risk to one or two guys pushing power back into the grid,” he told me. “But when you have thousands and thousands of people doing it, tens of thousands, and the electric company is not sure who’s doing it, I think that’s where the issue lies.”
Thus far, Craftstrom has sold about 4,000 units in the U.S., with about 500 of those orders coming in the past month alone, Hutchings told me. He attributed the sudden uptick largely to a rush of customers trying to qualify for home energy efficiency tax credits — which he said Craftstrom’s systems are eligible for — before they expire at year’s end.
Craftstrom’s domestic prices are still more expensive than what its own customers in Europe can expect to pay for similar systems due to the extra hardware costs that come along with the specialized meters, as well as the fact that installing these products is not a DIY operation. That means Utah customers should now enjoy the same price relief, since the new state law lifts the grid restrictions that the rest of the U.S. faces. These days, Craftstrom’s more complex hardware plus the cost of labor “just about doubles the cost from what you’re able to get in Utah,” Stryker told me.
Bright Saver sold Craftstrom’s systems when it first started out earlier this year, but chose to discontinue this offering as it “didn’t serve our vision of making this accessible to everyone through cost and self-installation,” Stryker told me. Instead, the organization is focusing on policy changes that will make cheap self-install systems in the 800-watt range feasible in more states. And that means getting legislators onboard with some degree of deregulation, something Stryker acknowledges “has often been a dirty word” in the environmental movement.
“In this case, we need these regulations to get out of the way. They’re outdated. They’re artifacts,” she told me, referring to the requirement that small plug-in systems sign utility interconnection agreements. “I see it as a purple narrative, one that can appeal to values across the political spectrum — energy independence, energy affordability, renters’ rights.”
Of course, Stryker isn’t advocating for complete anarchy in the space. Grid stability is still a concern, and she said that Bright Saver is involved in discussions with regulators and standard-setting bodies to determine acceptable wattage thresholds. Countries that have embraced balcony solar in Europe have “impeccable” safety records, Stryker told me, enabling Germany to raise its wattage limit from 600 to 800 watts at the beginning of last year.
There are still some logistics to work out though. As the recent Utah law is written, plug-in solar arrays must comply with product standards from Underwriters Laboratories, a safety certification body. And while this organization has standards covering the individual components of plug-in solar systems, it has yet to create a systems-level standard. Depending on whom you ask, that might mean all domestic companies in the space are operating in a bit of a regulatory gray area at the moment.
Stryker told me she expects these system-wide standards to be released soon though, ideally in tandem with more bills like the one passed in Utah. “We think it’s a no-brainer.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A new list of Department of Energy grants slated for termination will hit clean energy and oil majors alike, including Exxon and Chevron.
A new list of Department of Energy grants slated for termination obtained by Heatmap reveals an additional 338 awards for clean energy projects that the agency intends to cancel. Combined with the 321 grants the agency said it was terminating last week, the total value is nearly $24 billion.
While last week’s announcement mostly targeted companies and institutions located in Democratic states, the new list appears to be indiscriminate. Conrad Schneider, the senior U.S. director at Clean Air Task Force, told me in a statement that the move “will have far-reaching consequences — with virtually no region unscathed.”
“The federal government plays an essential role in addressing gaps that stall the commercialization of energy breakthroughs by providing grants and loans to accelerate innovative projects,” he said. “By abruptly canceling funding for several hundred energy projects, the U.S. risks ceding American energy leadership and signals that U.S. innovation is not a priority.”
Some of the most significant new terminations on the list include:
While two of the seven hydrogen hubs — those in California and the Pacific Northwest — were on last week’s cancellations list, all seven have their status listed as “terminate” on this new list. That includes hubs that planned to make hydrogen from natural gas based in Appalachia, the Gulf Coast, Texas, and the Midwest.
Those awards came out of $8 billion allocated by Congress in the IIJA in 2021 to develop hubs where companies and states would work together to produce and test the use of cleaner hydrogen fuel in new industries. The move would hit oil majors in addition to green energy companies. Exxon and Chevron were partners on the Hyvelocity hydrogen hub on the Gulf Coast.
“If the program is dismantled, it could undermine the development of the domestic hydrogen industry,” Rachel Starr, the senior U.S. policy manager for hydrogen and transportation at Clean Air Task Force told me. “The U.S. will risk its leadership position on the global stage, both in terms of exporting a variety of transportation fuels that rely on hydrogen as a feedstock and in terms of technological development as other countries continue to fund and make progress on a variety of hydrogen production pathways and end uses."
The Inflation Reduction Act’s Domestic Manufacturing Conversion Grants, which were meant to support the conversion of shuttered or at-risk auto plants to be able to manufacture electric vehicles and their supply chains, would be fully obliterated based on the new list. All 13 grants that were awarded under the program are there, including $80 million for Blue Bird’s new electric school bus plant in Fort Valley, Georgia, $500 million for General Motors’ Grant River Assembly Plant in Lansing, Michigan, and $285 million for Mercedes-Benz’s next-generation electric van plant in Ladson, South Carolina.
Some of the other projects slated for termination raise questions about other projects from the same grant program that are not on the list. For example, a $45 million grant for the National Rural Electric Cooperative Association to deploy microgrids in seven communities shows up as terminated, along with several other awards made as part of the IIJA’s Energy Improvements in Rural or Remote Areas program. Grants for indigenous tribes in Alaska, Wisconsin, and throughout the Southwest from that program appear to be preserved, however.
A $9.8 million grant to Sparkz to build a first-of-its-kind battery-grade iron phosphate plant in West Virginia also makes an appearance. The award was made as part of a nearly $430 million funding round from the IIJA to accelerate domestic clean energy manufacturing in 15 former coal communities. Similar awards made to Anthro Energy in Louisville, Kentucky, Infinitum in Rockdale, Texas, Mainspring Energy in Coraopolis, Pennsylvania, and a company called MetOx International developing an advanced superconductor manufacturing facility in the Southeast appear to be safe.
When asked about the new list, DOE spokesperson Ben Dietderich told me by email that he couldn’t attest to its validity. He added that “no further determinations have been made at this time other than those previously announced,” referring to the earlier 321 cancellations.
A new list of grant cancellations obtained by Heatmap includes Climeworks and Heirloom projects funded by 2021 infrastructure law.
Trump’s Department of Energy is planning to terminate awards for the two major Direct Air Capture Hubs funded by the Bipartisan Infrastructure Law in Louisiana and Texas, Heatmap has learned.
An internal agency project list shared with Heatmap names nearly $24 billion worth of grants with their status designated as “terminated,” including the Occidental Petroleum’s South Texas DAC Hub as well as Project Cypress, a joint venture between DAC startups Heirloom and Climeworks.
Christoph Gebald, the CEO of Climeworks, acknowledged “market rumors” in an email, but said that the company is “prepared for all scenarios.”
“Demand for removals is increasing significantly, with momentum set to build as governments set their long-term targets,” he said. “The need for DAC is growing as the world falls short of its climate goals and we’re working to achieve the gigaton capacity that will be needed.”
Heirloom’s head of global policy, Vikrum Aiyer, said that the company was not aware of any decision from the DOE and continued “to productively engage with the administration in a project review.” He added that Heirloom remains “incredibly proud to stand shoulder to shoulder with Louisiana energy majors, workforce groups, non-profits, state leaders, the governor and economic development organizations who have strongly advocated for this project.”
Much of the rest of the list overlaps with the project terminations the agency announced last week as part of a spate of retributive actions against Democrats during the government shutdown. “Nearly $8 billion in Green New Scam funding to fuel the Left’s climate agenda is being canceled,” White House Budget Director Russ Vought wrote on social media ahead of the announcement.
DOE spokesperson Ben Dietderich told me by email that the department was “unable to verify” the new list of canceled grants, and that “no further determinations have been made at this time other than those previously announced.”
“As [Secretary of Energy Chris Wright] made clear last week, the Department continues to conduct an individualized and thorough review of financial awards made by the previous administration,” Dietderich said.
Direct air capture is a nascent technology that sucks carbon, as the name suggests, directly from the air, and is one of several carbon removal solutions with potential to slow global warming in the near term, and even reverse it in the long run. The $3.5 billion DAC Hubs program, created by Congress in the 2021 Bipartisan Infrastructure Law, promised to “establish a new sector of the American economy and remake another one, while providing the world with an important tool to fight climate change,” as my colleague Robinson Meyer put it.
After a competitive application process, the Biden administration selected two projects that would receive up to $600 million each to build DAC projects capable of removing more than 1 million tons of carbon from the atmosphere per year and storing it permanently underground. Occidental, which first partnered with and later acquired a Canadian DAC startup called Carbon Engineering, would build its hub in South Texas, near Corpus Christi. Two other leading DAC startups, the California-based Heirloom Carbon and Swiss company Climeworks, would work together to build a hub in Louisiana. After the selections were announced, both projects received an initial $50 million award for their next phase of development, which was set to be matched by private investment.
"These hubs were selected through a rigorous and competitive process designed to identify projects capable of advancing U.S. leadership in carbon removal and industrial decarbonization,” Jennifer Wilcox, the former principal deputy assistant secretary for the DOE’s Office of Fossil Energy and Carbon Management, told me in an email. “The burden should be on DOE to clearly demonstrate why that process is being overturned.”
All three companies already have demonstration plants that are either operating or under construction. Climeworks began operating the world’s first commercial DAC plant in Iceland in 2021, designed to capture about 4,000 tons per year, and has since scaled up to a larger plant more than eight times that size. Heirloom opened the first DAC plant in the U.S. in November 2023, in Tracy, California, capable of capturing 1,000 tons per year. Occidental’s first DAC project, Stratos, in West Texas, will be the largest of the bunch, designed to capture 500,000 tons per year. It is set to be completed in the next few months.
Removing carbon from the air with one of these facilities is currently extremely expensive and energy-intensive. Today, companies pre-sell carbon credits to airlines and tech companies to raise money for the projects, but will likely require government support to continue to innovate and bring the cost down. While both Climeworks and Heirloom announced the sale of credits that would support their DAC hub projects, it’s not clear whether those credits were meant to be fulfilled by the projects themselves.
The DOE grants would have helped prove the viability of the technology at a scale that will make a measurable difference for the climate, while also demonstrating a potential off-ramp for oil companies and the economies they support. Both projects said they expected to create more than 2,000 local jobs in construction, operations, and maintenance.
“The United States, up to this point, was the direct air capture leader and the place where top innovators in the field were choosing to build facilities as well as manufacture the actual components of the units themselves,” Jack Andreasen Cavanaugh, a global fellow at the Columbia University’s Carbon Management Research Initiative, told me. “The cancellation of these grants to high-quality projects ensures that these American jobs will be shipped overseas and cede our broader economic advantage.”
That’s already happening. On the same day last week that the DOE announced it was terminating an award for CarbonCapture Inc., another California-based DAC company, the startup said it would move its first commercial pilot from Arizona to Alberta, Canada. Gebald, of Climeworks, said the company has “a pipeline of other DAC projects around the world,” including opportunities in Canada, the U.K., and Saudi Arabia.
Cavanaugh also pointed out there was a disconnect between the terminations, Congress’ recent actions, and even actions under the first Trump administration. Trump’s DOE revised the 45Q tax credit for carbon capture in 2018 to allow direct air capture projects to qualify. In July, the reconciliation bill preserved that credit and strengthened it. “These were bipartisan-supported projects, and it goes expressly against congressional intent.”
As the DAC hubs program was congressionally mandated and the awards were under contract, the companies may have legal recourse to fight the terminations. The press release from the DOE announcing last week’s terminations said that award recipients had 30 days to appeal the decision. “That process must be meaningful and transparent,” Wilcox said. “If DOE is invoking financial-viability criteria, companies and communities deserve to see the underlying metrics, thresholds, and justification — and to understand whether those criteria are being applied consistently across projects.”
While this isn’t a death knell for DAC in general, it will be a “massive setback for American climate and industrial policy”, Erin Burns, executive director of the carbon removal advocacy group Carbon 180, told me. “The need for carbon removal hasn’t changed. The science hasn’t changed. What’s changed is our political will, and we’ll feel the consequences for years to come.”
Editor’s note: This piece has been updated to add comment from the Department of Energy and to correct the total value of canceled grants.
On Trump’s metal nationalization spree, Tesla’s big pitch, and fusion’s challenges
Current conditions: King tides are raising ocean levels near Charleston, South Carolina, as much as eight feet above low water averages • A blizzard on Mount Everest has trapped hundreds of hikers and killed at least one • A depression that could form into Tropical Storm Jerry is strengthening in the Atlantic as it barrels northward with an unclear path.
Solar and wind outpaced the growth of global electricity demand in the first half of 2025, vaulting renewables toward overtaking coal worldwide for the first time on record, according to analysis published Tuesday by the research outfit Ember. This year’s growth resulted in a small overall decline in both coal and gas-fired power generation, with India and China seeing the most notable reductions, despite the United States and Europe ratcheting up fossil fuel usage. “We are seeing the first signs of a crucial turning point,” Malgorzata Wiatros-Motyka, a senior electricity analyst at Ember, said in a statement. “Solar and wind are now growing fast enough to meet the world’s growing appetite for electricity. This marks the beginning of a shift where clean power is keeping pace with demand growth.”
Wind and solar installations matched 109% of new global demand for power in the first half of 2025.Ember
That growth is projected to continue. Later on Tuesday morning, the International Energy Agency released its own report forecasting that renewable capacity will double over the next five years. Solar is predicted to make up 80% of that growth. But, factoring in the Trump administration’s policies, the forecast roughly cut in half previous projections for U.S. growth. Domestic opposition to renewables runs beyond the White House, too. Exclusive data gathered by Heatmap Pro and published in July showed that a fifth of U.S. counties now restrict development of renewables.
President Donald Trump signed an executive order Monday directing federal agencies to push forward with a controversial 211-mile mining road in Alaska designed to facilitate production of copper, zinc, gallium, and other critical minerals. The project, which the Biden administration halted last year over concerns for permafrost in the fast-warming region, has been at the center of a decadeslong legal battle. As part of the deal, the U.S. government will invest $35.6 million in Alaska’s Ambler Mining District, including taking a 10% stake in the main developer, Trilogy Metals, that includes warrants to buy an additional 7.5% of the company. The road itself will be jointly owned by the state, the federal government, and Alaska Native villages. “It’s a very, very big deal from the standpoint of minerals and energy,” Trump said in the Oval Office.
It’s just the latest stake the Trump administration has taken in a mineral company. In July, the Department of Defense became the largest shareholder of MP Materials, the company producing rare earths in the U.S. at its Mountain Pass mine in California. The move, The Economist noted at the time, marked the biggest American experiment in direct government ownership since the nationalization of the railroads in World War I. Last week, the Department of Energy renegotiated a loan to Lithium Americas’ Thacker Pass project in Nevada to take a stake in what’s set to become the largest lithium mine in the Western Hemisphere when it comes online in the next few years. The White House’s mineral shopping spree isn’t over. On Friday, Reuters reported that the administration is considering buying shares in Critical Metals, the company looking to develop rare earths production in Greenland. In response to the news, shares in the Nasdaq-traded miner surged 62% on Monday. Partial nationalization isn’t the only approach the administration is taking to challenging China’s grip over global mineral supplies. Last month, as I reported for Heatmap, the Defense Logistics Agency awarded money to Xerion, an Ohio startup devising a novel way to process cobalt and gallium.
Tesla looks poised to unveil a cheaper, stripped-down version of its Model Y as early as today. In one of two short videos posted to CEO Elon Musk’s X social media site, the electric automaker showed the midsize SUV’s signature lights beaming through the dark. The design matches what InsideEVs noted were likely images of the prototype spotted on a test drive in Texas. The second teaser video showed what appears to be a fast-spinning, Tesla-branded fan. “Your guess is as good as ours as to what will be revealed,” InsideEVs’ Andrei Nedelea wrote Monday. “Our money is on the Roadster or a new vacuum cleaner design to take on Dyson.”
The new products come amid an historic slump for Tesla. As Heatmap’s Matthew Zeitlin reported, the company’s share of the U.S. electric vehicle sales sank to their lowest-ever level in August despite the surge in purchases as Americans rushed to use the federal tax credits before they expired thanks to Trump’s landmark One Big Beautiful Bill Act law. Yet Musk has managed to steer the automaker’s financial fate through an attention-grabbing maneuver. Last month, the world’s richest man bought $1 billion in Tesla shares in a show of self confidence that managed to rebound the company’s stock price. But Andrew Moseman argued in Heatmap that “the bullish stock market performance is divorced not only from the reality of the company’s electric car sales, but also from, well, everything else that’s happened lately.”
On Monday, Trump warned that medium and heavy-duty trucks imported to the U.S. will face a 25% tariff starting on November 1. The president announced the trade levies in a post on Truth Social on the eve of a White House visit by Canadian Prime Minister Mark Carney, whose country would feel the pinch of tariffs on imported trucks. As the Financial Times noted, Trump had threatened to impose 25% tariffs on some trucks in late September but “failed to implement them, raising questions about his commitment to the policy.”
Fusion startups make a lot of bold claims about how soon a technology long dismissed as the energy source of tomorrow will be able to produce commercial electrons. Though investors are betting that, as Heatmap’s Katie Brigham wrote last year, “it is finally, possibly, almost time for fusion,” a new report from the University of Pennsylvania’s Kleinman Center for Energy Policy shows that supply chain challenges threaten to hold back the nascent industry even if it can bring laboratory breakthroughs to market. Tritium, one of two main fusion fuels, has a half life of just 12.3 years, meaning it does not exist in significant quantities in nature. Today, tritium is primarily produced by 30 pressurized heavy water fission reactors globally, but only at a total of 4 kilograms per year. As a result, “tritium availability could throttle fusion development,” the report found. That’s not the only bottleneck. “The fusion industry will require specialized components that don’t yet have well-established supply chains, like superconducting cables and the aforementioned advanced materials, and shortages of these components would delay development and inflate costs.”
Scientists mapped the RNA — the molecules that carry out DNA’s instructions — of wheat and, for the first time, identified when certain genes are active. The discovery promises to accelerate plant breeders’ efforts to develop more resilient varieties of the world’s most widely cultivated crop that use less fertilizer, resist higher temperatures, and survive with less water as the climate changes. “We discovered how groups of genes work together as regulatory networks to control gene expression,” Rachel Rusholme-Pilcher, the study’s lead author and a researcher at Britain’s Earlham Institute, said in a statement. “Our research allowed us to look at how these network connections differ between wheat varieties, revealing new sources of genetic diversity that could be critical in boosting the resilience of wheat.”