You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Europeans have enjoyed it for years. Now, through careful state interventions and creative salesmanship from startups, Americans are close to having their turn.
For U.S. consumers, going solar is usually a major undertaking, involving tens of thousands of dollars, months of logistics, a slew of financing options, and ever-changing incentives.
But in Germany, upwards of a million customers — homeowners and renters alike — are simply plugging in small, affordable solar arrays to standard power outlets. These small systems are, by law, 800 watts or less, a fraction of the size of a typical rooftop solar system in the U.S. Often called “balcony solar,” these panels can live essentially anywhere with sufficient sunlight: on balconies or patios, or mounted on exterior walls or flat rooftops.
But while governments across the EU have simplified regulations to make installation a quick, DIY process, and utility approval little more than a formality — unleashing a wave of consumer demand in the process — the U.S. has so far failed to follow suit. Here, utility regulations prohibit customers from feeding power back into the grid without a formal interconnection agreement, a process that involves lots of time and paperwork.
Utilities in the U.S. want to account for all electricity sources on the grid, since theoretically, even small plug-in systems could have a cumulative impact on local voltage and power quality, whereas in Germany, for example, this is less of a concern. There, plug-in solar-specific policy caps these systems’ generating capacity, and the grid and metering infrastructure has been more extensively modernized to handle distributed energy generation.
Now, however, there are a number of domestic plug-in solar startups finding creative ways to navigate the constraints of the U.S. market. One of them, the nonprofit Bright Saver, announced on Wednesday that it’s raised $500,000 in new funding from TrueVentures.org and a handful of individual backers. The company gets around power export regulations by selling panels with very low wattage. “So we’re talking 200- or 220-watt systems that never backfeed to the grid, because we think close to every typical household will consume that electricity immediately, simply with the refrigerator,” Cora Stryker, the company’s co-founder, told me.
The San Francisco-based startup has sold a couple dozen systems already and has a waitlist of about 1,500 people, Stryker said. So far, she told me, the majority of this “early adoption crowd” is mainly interested in reducing their own emissions. “We think that’ll change over time,” she said. “The mass adoption in Germany has been driven not by that climate-conscious crowd, but really people who want to save money.”
The main drawback to Bright Saver’s approach, however, is also what makes it possible in the first place: the panels’ incredibly small size, which can’t come close to covering a home’s full power needs. So while the upfront cost of a 200-watt panel is small — $399 at the moment — a customer’s energy savings will also be tiny — potentially on the order of just a few bucks per month. Depending on the location, the savings will eclipse the total cost in about five to 10 years, Stryker told me.
That might not be enticing enough to convince a critical mass of customers to jump onboard the small-scale solar train. But Stryker thinks that getting these products out into the world will help catalyze the type of curiosity and interest that can dovetail into policy change. “Selling product in the next year or two is a small revenue stream for us, but it’s also our theory of change,” she told me. “These need to get out there in order for people to know they even exist.”
Much of Bright Saver’s work involves advocating for easing plug-in solar regulations, which is already starting to happen, bit by bit. In March, the Utah state legislature unanimously passed a bill creating a new category for “small portable solar generation devices” under 1,200 watts, exempting them from interconnection requirements. Stryker told me that Utah’s governor was inspired to introduce the bill after reading a story in The New York Times about balcony solar’s success in Germany.
Now more states, including Vermont, Maryland, and Pennsylvania, are expressing interest in similar legislation. If just a few more get onboard, Stryker told me that would be a critical tipping point. “We’ve had conversations with manufacturers and investors who tell us straight up, they’re not coming to the U.S. market because they see only one state where they’re not going to run into these regulatory concerns,” she said. “They tell us privately, five to seven more states and they’re in. So that’s a key threshold for us.”
But one veteran of the plug-in solar market, Craftstrom, isn’t betting on this happening. The company has been selling 400- to 800-watt systems in Europe since 2017, and expanded into the U.S. a few years later, targeting markets where electricity prices are highest, like California and the Northeast. To deal with domestic regulations, the company patented a new type of meter to be placed inside electric panels that blocks excess power from flowing back into the grid. This prevention mechanism also allows the company to sell larger systems — up to 2,000 watts — in the U.S.
Craftstrom’s chief revenue officer, Ken Hutchings, thinks this type of system is critical for grid safety in the U.S., where distribution networks tend to be older and less standardized than in Europe, and not necessarily built for two-way power flow. This opens up utilities to a good deal of legal liability in the case of equipment failures.
While Hutchings wouldn’t necessarily be surprised to see other states following Utah’s lead, he’s skeptical that the U.S. will become a haven for plug-in solar anytime soon — or even that it’s a good idea. “There’s no risk to one or two guys pushing power back into the grid,” he told me. “But when you have thousands and thousands of people doing it, tens of thousands, and the electric company is not sure who’s doing it, I think that’s where the issue lies.”
Thus far, Craftstrom has sold about 4,000 units in the U.S., with about 500 of those orders coming in the past month alone, Hutchings told me. He attributed the sudden uptick largely to a rush of customers trying to qualify for home energy efficiency tax credits — which he said Craftstrom’s systems are eligible for — before they expire at year’s end.
Craftstrom’s domestic prices are still more expensive than what its own customers in Europe can expect to pay for similar systems due to the extra hardware costs that come along with the specialized meters, as well as the fact that installing these products is not a DIY operation. That means Utah customers should now enjoy the same price relief, since the new state law lifts the grid restrictions that the rest of the U.S. faces. These days, Craftstrom’s more complex hardware plus the cost of labor “just about doubles the cost from what you’re able to get in Utah,” Stryker told me.
Bright Saver sold Craftstrom’s systems when it first started out earlier this year, but chose to discontinue this offering as it “didn’t serve our vision of making this accessible to everyone through cost and self-installation,” Stryker told me. Instead, the organization is focusing on policy changes that will make cheap self-install systems in the 800-watt range feasible in more states. And that means getting legislators onboard with some degree of deregulation, something Stryker acknowledges “has often been a dirty word” in the environmental movement.
“In this case, we need these regulations to get out of the way. They’re outdated. They’re artifacts,” she told me, referring to the requirement that small plug-in systems sign utility interconnection agreements. “I see it as a purple narrative, one that can appeal to values across the political spectrum — energy independence, energy affordability, renters’ rights.”
Of course, Stryker isn’t advocating for complete anarchy in the space. Grid stability is still a concern, and she said that Bright Saver is involved in discussions with regulators and standard-setting bodies to determine acceptable wattage thresholds. Countries that have embraced balcony solar in Europe have “impeccable” safety records, Stryker told me, enabling Germany to raise its wattage limit from 600 to 800 watts at the beginning of last year.
There are still some logistics to work out though. As the recent Utah law is written, plug-in solar arrays must comply with product standards from Underwriters Laboratories, a safety certification body. And while this organization has standards covering the individual components of plug-in solar systems, it has yet to create a systems-level standard. Depending on whom you ask, that might mean all domestic companies in the space are operating in a bit of a regulatory gray area at the moment.
Stryker told me she expects these system-wide standards to be released soon though, ideally in tandem with more bills like the one passed in Utah. “We think it’s a no-brainer.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Alaska’s permitting overhaul, HALEU winners, and Heatmap’s Climate 101
Current conditions: Kansas, Oklahoma, and Arkansas brace for up to a foot of rain • Tropical Storm Juliette, still located well west of Mexico, is moving northward and bringing rain to parts of Southern California • Heat and dryness are raising the risk of wildfire in South Africa.
The Trump administration has started the process to roll back logging protections from more than 44 million acres of national forest land. On Wednesday, U.S. Secretary of Agriculture Brooke Rollins proposed undoing a 25-year-old rule that banned building roads or harvesting timber on federally controlled forest land, much of which is located in Alaska. “Today marks a critical step forward in President Trump’s commitment to restoring local decision-making to federal land managers to empower them to do what’s necessary to protect America’s forests and communities from devastating destruction from fires,” Rollins said in a statement. “This administration is dedicated to removing burdensome, outdated, one-size-fits-all regulations that not only put people and livelihoods at risk but also stifle economic growth in rural America.”
Environmental groups slammed the proposal for jeopardizing wildlife habitats and putting waterways at risk. “Communities depend on clear water filtered by roadless areas, animals depend on the unfragmented habitat that can only exist where there are no roads, and anglers depend on clean water in the streams where trout and salmon swim,” Ellen Montgomery, the director of Environment America’s great outdoors campaign, said in a press release. “We cannot let these essential forests be carved up by roads, obliterated by chainsaws, and contaminated by mines.”
Heatmap’s new Climate 101 series aims, as Heatmap deputy editor Jillian Goodman explained, to be “a primer on some of the key technologies of the energy transition.” That includes “everything from what makes silicon a perfect material for solar panels (and computer chips), to what’s going on inside a lithium-ion battery, to the difference between advanced and enhanced geothermal.”
This might be especially helpful for those still trying to find their way into the climate conversation, but we hope there’s something here for everyone. For instance, did you know that contemporary readers might have understood Don Quixote’s “tilting at windmills” to be an expression of NIMBYism? Well, now you do!
The federal Permitting Council signed a first-of-a-kind memorandum of understanding to work together with Alaska’s government to streamline permitting on critical infrastructure projects across the state. First established in 2015, the agency was designed to improve transparency and speed up the greenlighting of infrastructure approvals. But it had yet to forge such a close pact with an individual state. “Our team is ready to work with Governor Dunleavy to bring Alaska back into the energy spotlight, ending the neglect of the Biden Administration and bringing Alaska’s incredible natural resources to the rest of the world,” Emily Domenech, the Permitting Council’s executive director, said in a statement.
Domenech — a former staffer for House Speakers Kevin McCarthy and Mike Johnson who went on to serve as a senior vice president at Boundary Stone, a firm founded by alumni of the Obama-era Department of Energy — acted as something of a Republican sage for the clean energy industry. In an interview with Heatmap’s Matthew Zeitlin after last November’s election, she urged the industry to forge closer relationships with members of the current congressional majority. “If you ask Republicans to be for or against the IRA as a whole, they’ll be against it,” Domenech said, “But Republicans think about energy as a regional issue. So instead of forcing this one size fits all approach, IRA advocates would be smart to give people room to support only the policies that make the most sense for their state or region.”
The Department of Energy selected another three companies to receive a special kind of nuclear fuel from its growing stockpile. HALEU — pronounced HAY-loo, an acronym for high assay low enriched uranium — is a reactor fuel enriched up to four times as much as traditional reactor fuel. The fuel is needed for all kinds of novel reactor designs, particularly those that use coolants other than water. Until recently, however, Russia’s state-owned Rosatom had enjoyed a virtual monopoly over its global supply. The Biden administration set aside billions for HALEU production. In April, the Trump administration selected five companies to receive some of the government-procured supply, including Westinghouse, Bill Gates’ TerraPower, and the Google-backed Kairos Power. Now the agency has picked another three:
Two firefighters battling the Bear Gulch fire on Washington’s Olympic Peninsula were arrested by federal law enforcement Wednesday. The reason for the arrests is unclear, according to the Seattle Times. Over three hours, federal agents from Border Patrol carried out an “operation on the fire,” demanding identification from members of two private contractor crews who were among the 400 firefighters battling Washington state’s largest active blaze. The Incident Management Team from the National Interagency Fire Center suggested that the action did not interfere with the efforts to tamp down the flames.
The American West is primed for wildfires right now. Following a lull in June and July, Heatmap’s Jeva Lange wrote that “the forecast for the Pacific Northwest for ‘Dirty August’ and ‘Snaptember,’ historically the two worst months of the year in the region for wildfires,” was full of warning signs, including low precipitation and abnormally high temperatures.
Living, gnawing weedwackers.Vesper Energy
The 1.36 million solar panels at Vesper Energy’s Hornet Solar farm in Swisher County, Texas, one of the United States' largest single-phase solar projects, were overgrown with vegetation. So naturally, the company brought in sheep. More than 2,000 white, wooly ovines arrived this month and were allowed to roam the facility’s six square miles. “As Texas continues to lead the nation in solar energy growth, solar grazing highlights how innovation can support rural economies, preserve farmland, and strengthen the state’s reliable energy future,” Vesper said.
Here at Heatmap, we write a lot about decarbonization — that is, the process of transitioning the global economy away from fossil fuels and toward long-term sustainable technologies for generating energy. What we don’t usually write about is what those technologies actually do. Sure, solar panels convert energy from the sun into electricity — but how, exactly? Why do wind turbines have to be that tall? What’s the difference between carbon capture, carbon offsets, and carbon removal, and why does it matter?
So today, we’re bringing you Climate 101, a primer on some of the key technologies of the energy transition. In this series, we’ll cover everything from what makes silicon a perfect material for solar panels (and computer chips), to what’s going on inside a lithium-ion battery, to the difference between advanced and enhanced geothermal.
There’s something here for everyone, whether you’re already an industry expert or merely climate curious. For instance, did you know that contemporary 17th century readers might have understood Don Quixote’s famous “tilting at windmills” to be an expression of NIMYBism? I sure didn’t! But I do now that I’ve read Jeva Lange’s 101 guide to wind energy.
That said, I’d like to extend an especial welcome to those who’ve come here feeling lost in the climate conversation and looking for a way to make sense of it. All of us at Heatmap have been there at some point or another, and we know how confusing — even scary — it can be. The constant drumbeat of news about heatwaves and floods and net-zero this and parts per million that is a lot to take in. We hope this information will help you start to see the bigger picture — because the sooner you do, the sooner you can join the transition, yourself.
Without further ado, here’s your Climate 101 syllabus:
Once you feel ready to go deeper, here are some more Heatmap stories to check out:
The basics on the world’s fastest-growing source of renewable energy.
Solar power is already the backbone of the energy transition. But while the basic technology has been around for decades, in more recent years, installations have proceeded at a record pace. In the United States, solar capacity has grown at an average annual rate of 28% over the past decade. Over a longer timeline, the growth is even more extraordinary — from an stalled capacity base of under 1 gigawatt with virtually no utility-scale solar in 2010, to over 60 gigawatts of utility-scale solar in 2020, and almost 175 gigawatts today. Solar is the fastest-growing source of renewable energy in both the U.S. and the world.
There are some drawbacks to solar, of course. The sun, famously, does not always shine, nor does it illuminate all places on Earth to an equal extent. Placing solar where it’s sunniest can sometimes mean more expense and complexity to connect to the grid. But combined with batteries — especially as energy storage systems develop beyond the four hours of storage offered by existing lithium-ion technology — solar power could be the core of a decarbonized grid.
Solar power can be thought of as a kind of cousin of the semiconductors that power all digital technology. As Princeton energy systems professor and Heatmap contributor Jesse Jenkins has explained, certain materials allow for electrons to flow more easily between molecules, carrying an electrical charge. On one end of the spectrum are your classic conductors, like copper, which are used in transmission lines; on the other end are insulators, like rubber, which limit electrical charges.
In between on that spectrum are semiconductors, which require some amount of energy to be used as a conductor. In the computing context these are used to make transistors, and in the energy context they’re used to make — you guessed it — solar panels.
In a solar panel, the semiconductor material absorbs heat and light from the sun, allowing electrons to flow. The best materials for solar panels, explained Jenkins, have just the right properties so that when they absorb light, all of that energy is used to get the electrons flowing and not turned into wasteful heat. Silicon fits the bill.
When you layer silicon with other materials, you can force the electrons to flow in a single direction consistently; add on a conductive material to siphon off those subatomic particles, and voilà, you’ve got direct current. Combine a bunch of these layers, and you’ve got a photovoltaic panel.
Globally, solar generation capacity stood at over 2,100 terawatt-hours in 2024, according to Our World in Data and the Energy Institute, growing by more than a quarter from the previous year. A huge portion of that growth has been in China, which has almost half of the world’s total installed solar capacity. Installations there have grown at around 40% per year in the past decade.
Solar is still a relatively small share of total electricity generation, however, let alone all energy usage, which includes sectors like transportation and industry. Solar is the sixth largest producer of electricity in the world, behind coal, gas, hydropower, nuclear power, and wind. It’s the fourth largest non-carbon-emitting generation source and the third largest renewable power source, after wind and hydropower.
Solar has taken off in the United States, too, where utility-scale installations make up almost 4% of all electricity generated.
While that doesn’t seem like much, overall growth in generation has been tremendous. In 2024, solar hit just over 300 terawatt-hours of generation in the U.S., compared to about 240 terawatt-hours in 2023 and just under 30 in 2014.
Looking forward, there’s even more solar installation planned. Developers plan to add some 63 gigawatts of capacity to the grid this year, following an additional 30 gigawatts in 2024, making up just over half of the total planned capacity additions, according to Energy information Administration.
Solar is cheap compared to other energy sources, and especially other renewable sources. The world has a lot of practice dealing with silicon at industrial scale, and China especially has rapidly advanced manufacturing processes for photovoltaic cells. Once the solar panel is manufactured, it’s relatively simple to install compared to a wind turbine. And compared to a gas- or coal-fired power plant, the fuel is free.
From 1975 to 2022, solar module costs fell from over $100 per watt to below $0.50, according to Our World In Data. From 2012 to 2022 alone, costs fell by about 90%, and have fallen by “around 20% every time the global cumulative capacity doubles,” writes OWID analyst Hannah Ritchie. Much of the decline in cost has been attributed to “Wright’s Law,” which says that unit costs fall as production increases.
While construction costs have flat-lined or slightly increased recently due to supply chain issues and overall inflation, the overall trend is one of cost declines, with solar construction costs declining from around $3,700 per kilowatt-hour in 2013, to around $1,600 in 2023.
There are solar panels at extreme latitudes — Alaska, for instance, has seen solar growth in the past few years. But there are obvious challenges with the low amount of sunlight for large stretches of the year. At higher latitudes, irradiance, a measure of how much power is transmitted from the sun to a specific area, is lower (although that also varies based on climate and elevation). Then there are also more day-to-day issues, such as the effect of snow and ice on panels, which can cause issues in turning sunlight into power (they literally block the panel from the sun). High latitudes can see wild swings in solar generation: In Tromso, in northern Norway, solar generation in summer months can be three times as high as the annual average, with a stretch of literally zero production in December and January.
While many Nordic countries have been leaders in decarbonizing their electricity grids, they tend not to rely on solar in that project. In Sweden, nuclear and hydropower are its largest non-carbon-emitting fuel sources for electricity; in Norway, electricity comes almost exclusively from hydropower.
There has been some kind of policy support for solar power since 1978, when the Energy Tax Act provided tax credits for solar power investment. Since then, the investment tax credit has been the workhorse of American solar policy. The tax credit as it was first established was worth 10% of the system’s upfront cost “for business energy property and equipment using energy resources other than oil or natural gas,” according to the Congressional Research Service.
But above that baseline consistency has been a fair amount of higher-level turmoil, especially recently. The Energy Policy Act of 2005 kicked up the value of that credit to 30% through 2007; Congress kept extending that timeline, with the ITC eventually scheduled to come down to 10% for utility-scale and zero for residential projects by 2024.
Then came the 2022 Inflation Reduction Act, which re-instituted the 30% investment tax credit, with bonuses for domestic manufacturing and installing solar in designated “energy communities,” which were supposed to be areas traditionally economically dependent on fossil fuels. The tax then transitioned into a “technology neutral” investment tax credit that applied across non-carbon-emitting energy sources, including solar, beginning in 2024.
This year, Congress overhauled the tax incentives for solar (and wind) yet again. Under the One Big Beautiful Bill Act, signed in July, solar projects have to start construction by July 2026, or complete construction by the end of 2027 to qualify for the tax credit. The Internal Revenue Service later tightened up its definition of what it means for a project to start construction, emphasizing continuing actual physical construction activities as opposed to upfront expenditures, which could imperil future solar development.
At the same time, the Trump administration is applying a vise to renewables projects on public lands and for which the federal government plays a role in permitting. Renewable industry trade groups have said that the highest levels of the Department of Interior are obstructing permitting for solar projects on public lands, which are now subject to a much closer level of review than non-renewable energy projects.
Massachusetts Institute of Technology Researchers attributed the falling cost of solar this century to “scale economies.” Much of this scale has been achieved in China, which dominates the market for solar panel production, especially for export, even though much of the technology was developed in the United States.
At this point, however, the cost of an actual solar system is increasingly made up of “soft costs” like labor and permitting, at least in the United States. According to data from the National Renewables Energy Laboratory, a utility-scale system costs $1.20 per watt, of which soft costs make up a third, $0.40. Ten years ago, a utility-scale system cost $2.90 per watt, of which soft costs was $1.20, or less than half.
Beyond working to make existing technology even cheaper, there are other materials-based advances that promise higher efficiency for solar panels.
The most prominent is “perovskite,” the name for a group of compounds with similar structures that absorb certain frequencies of light particularly well and, when stacked with silicon, can enable more output for a given amount of solar radiation. Perovskite cells have seen measured efficiencies upwards of 34% when combined with silicon, whereas typical solar cells top out around 20%.
The issue with perovskite is that it’s not particularly durable, partially due to weaker chemical bonds within the layers of the cell. It’s also more expensive than existing solar, although much of that comes down inefficient manufacturing processes. If those problems can be solved, perovskite could promise more output for the same level of soft costs as silicon-based solar panels.