You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Plus a note on batteries.

Rooftop solar is not like other types of consumer technology. Even though the end result is having a bunch of electrical equipment installed on the roof of your home, the process of getting solar is more like doing a bathroom renovation than buying a flat screen TV. To get the results you’re looking for, the most important decisions you’ll make are not the brand or model of the panels, but rather who you hire for the job, the size of your system, and how you finance it.
There’s a bunch more choices you’ll have to navigate along the way, and it’s easy to get overwhelmed. One expert I spoke with told me that sometimes the customers who are the most excited about getting solar end up bailing, the victims of decision fatigue.
We created this guide to save you from that fate. So take a deep breath, take my hand, and let’s walk down the metaphorical hardware store aisle and get you the rooftop solar solution you’re dreaming of.
Roger Horowitz is the director of Go Solar programs at Solar United Neighbors, a national nonprofit that serves as an unbiased resource for homeowners interested in solar. Horowitz manages and provides technical support to the company’s Solar Help Desk team.
Tony Vernetti is a senior trainer at Enphase Energy, a company that produces inverters, batteries, and EV chargers, where he trains solar sales and installation teams. Before joining Enphase in 2020, Vernetti spent 12 years working for rooftop solar companies in California.
Nate Bowie is the vice president of residential sales at ReVision Energy, an employee-owned solar company operating throughout northern New England. Bowie has been selling solar for ReVision for 15 years.
While the actual installation of the system should only take one to two days, the entire process from initial outreach to grid connection takes two to four months on average, according to Solar United Neighbors.
Example: The highest rated solar panels for 2024 according to EnergySage.com are SunPower's M-Series 440 watt model. If you install 20 of these, the system will be capable of generating 8,800 watts, or 8.8 kilowatts in direct sun.
When you start searching for information about solar on the internet, you might come across advertisements or commercials promoting free solar panels. There is no such thing. These ads are typically schemes to collect your personal data and sell it to solar companies looking for leads, and the federal government is starting to
crack down on them.
It is possible to install solar with zero up-front costs if you lease the system or take out a loan to finance it, but in both cases you will still owe monthly payments. It is also rare that anyone is able to offset 100% of their utility bill. You can get close, but you will likely still owe at least a connection fee to your utility company.
Most homeowners in the U.S. can benefit from installing solar as long as local energy policies are favorable. Placing the panels on a south-facing roof is optimal, but not necessary. If your panels face due west, you’ll only lose about 10% of potential generation, according to Vernetti. “They still produce a ton of energy. They’re still very effective. It's just a little bit less than if they're facing south,” he said. An east-facing roof is also viable in most cases.
You don’t have to worry about shoveling snow off the roof or anything like that. But like any other electronic devices, solar panels, inverters, and batteries can break or malfunction, and your system may require servicing at some point. Pay close attention to your warranties (more on that later). If you lease the system, you do not have to worry about this as much because the third-party owner will be responsible for maintenance.
In order to design a system that meets your needs and budget, solar companies will ask for a copy of your most recent electricity bill or, ideally, your annual energy consumption history. Make sure you have this information handy before you reach out for quotes.
Some utilities include your annual energy consumption, broken out by month, at the bottom of your electric bill. If you don’t see it, you should be able to log into your utility account online and download either your statements from the past year or a spreadsheet of your monthly electric meter readings.
In most of the U.S., you will find you have the option either to lease your solar panels or buy them outright. You don’t have to decide which way you want to go before you get started, but it’s helpful to think through the pros and cons of each.
Heatmap Recommends leasing if: You’re fairly certain you’ll keep your house for the next 15 to 20 years; you can’t afford the system outright, but you don’t want to take out a loan; your priority is to generate clean energy and reduce emissions, but you don’t want to spend too much time figuring out what you want or worrying about the system’s maintenance.
Heatmap Recommends buying if: You have the cash in hand; you might sell your house in the next 20 years; you know you want to have control over the details of your project.
The federal government offers a 30% tax credit for solar installations (and batteries) that covers parts and labor. It can significantly reduce the cost of getting solar, even if you don’t have a lot of tax liability in the year that you install the system. The credit will roll over to subsequent tax years.
Example: If you spend $25,000 installing solar in 2024, you’ll be eligible to take $7,500 off your federal income tax bill. If you only owe $3,000 in federal taxes in 2024, you’ll get $3,000 back and will be eligible to claim the remaining $4,500 for the 2025 tax year. If in 2025 you only owe $3,000 again, you can claim the remaining $1,500 in 2026.
Additional tax credits and rebates may also be offered by your state energy office, city, or utility. Contractors should be able to help you figure out what you’re eligible for, and you can wait to talk to them to learn more. However, incentives change frequently, and contractors don’t always keep up, so you might want to review the options in your area independently.
It will also be helpful to understand your state’s net metering policy, as that will determine how quickly your investment in solar will pay off and may also dictate how big your system can be. Some states, like New Jersey, also allow homeowners to generate additional income through the sale of solar renewable energy credits, or SRECS.
Where to look for more information:
One of the worst things that could happen is you install rooftop solar panels, and then later find out you have a leak or some other problem with your roof. “Removal and replacement of an array for a reroof is expensive and could significantly impact the owner’s return on investment,” Bowie told me. While metal roofs last a very long time and are unlikely to need a replacement, asphalt shingle roofs generally have a useful life of 25 to 30 years, Bowie said. You should be fine if your roof is less than 10 years old, but if not, you may need some roofing work done before your solar panels are installed.
If you don’t know how old your roof is, Vernetti recommended having a roofing contractor inspect it. He added that there’s varying opinions on this, with some solar experts recommending replacement if the roof is only 5 years old. “In my opinion, scrapping a 5 year old roof is wasteful and goes against the goal of sustainability,” he said.
“A good solar contractor will help evaluate the roof conditions and should recommend replacement when necessary, even if it is just to replace the roof on the roof plane where the solar panels will go,” said Bowie.
Solar contractors range from local mom and pop shops, to regional providers like ReVision Energy, which operates in multiple states in the Northeast, to national companies that install across the country like Sunrun and Sunnova.
“The advantage of going with a large company is that they have the ability to offer financing the smaller companies might not be able to. With a regional company, you can actually walk to their office and knock on the door and talk to somebody if you want to,” said Vernetti.
Heatmap Recommends: Contact at least one local company and one national company to get a good sense of your options. Always get at least three quotes!
If you are calling installers directly, here are some tips for what you should ask for or look for in a quote. (If you are using an online resource like EnergySage that finds quotes for you, use the following to help you ask follow-up questions or refine the proposals.)
A few questions you should ask:
One of the first questions an installer might ask you is how big you want the system to be. You may want to see quotes for multiple options in order to compare them. Options include:
Heatmap Recommends: Oversize your system if you can afford it.
Why?
Exceptions:
Most installers will include a financing option in their quote. Horowitz noted that some installers advertise very low interest rates that are below market rate. They are typically able to do this by paying a “dealer fee” to the bank, which they incorporate into the price of your installation — in other words, if your interest rate seems too good to be true, the total cost of your installation will likely be higher than it otherwise would be. To get a better sense of the true cost, ask for quotes both with and without financing options.
Adding energy storage, a.k.a. a battery, to your solar array can add another 10 grand or more to the project cost. But there are a few reasons it might be worth it:
In conclusion, if you just want back-up power, any battery that’s large enough to power your essential systems should do. If you want to pay off the investment, look into time-of-use rates. If you want your investment to go further for decarbonization, ask your contractor if there are local grid services programs available, and if any of their products are compatible.
After you get a few quotes, you’re going to want to spend some time comparing them, asking questions, and potentially soliciting additional quotes with variations on the system. If you’re feeling overwhelmed or you don’t have the time or patience to sort through the details on your own, you can also call the Solar United Neighbors Help Desk, which offers a free quote review service.
The most important number on the quote is the price per watt, not the total system cost. That is the number you should be comparing between different installers, as the quotes may be for differently sized systems.
You should also compare the annual bill savings. If two different companies quote you significantly different savings for systems that are roughly the same size, one of them has likely done a more detailed analysis of your roof than the other.
“It doesn't matter what module you have, from which manufacturer, or what inverter you have. There really is no difference in what your system can produce if it's the same size,” said Bowie.
Lastly, if the quote is for a solar lease, or includes a financing option, look at the monthly payments.
Every installer has certain brands and types of equipment they work with. Our expert panel agreed that it’s important to look at the brand names the installer is offering for the solar panels, inverters, and batteries, and to make sure they are from reputable companies that have been around for at least five years — even if it means paying more. A quick internet search of the top 10 residential solar panel brands should give you a taste of what those companies are.
“It is definitely worth paying a little bit extra to have really good equipment,” Vernetti said.
You may also see installers advertise that they offer “Tier 1” solar panels. That means the manufacturer has been designated “bankable” by Bloomberg New Energy Finance. The designation is more related to finance than product quality, but many solar companies use it as a rough proxy for reliability.
That being said, don’t get too bogged down in comparing solar brands.
“There's not a huge difference, typically, between one solar panel and the next of the Tier 1 manufacturers,” said Bowie. “A lot of solar companies will maybe offer one or two different manufacturers, and then maybe beyond that one or two different sizes.”
When it comes to inverters, you do want to pay attention to whether your quote includes string inverters, microinverters, or power optimizers. In a system with a string inverter, your panels will all be wired to one central inverter. This is generally the cheapest option, but it is less durable and may need to be replaced, said Vernetti, whose employer, Enphase, is the leading producer of microinverters. String inverters can also limit the output of your system if part of the roof gets more shade.
The other two options are more expensive but get around the issue with shade. A system with power optimizers is similar to one with a string inverter, but each panel will also have a small device attached to it that regulates the output and maximizes your system’s performance. By contrast, microinverters are small inverters attached to each individual panel. Both of these options also allow you to monitor each panel’s performance.
Bowie said the two were comparable in terms of performance and price. A key consideration, he said, is that your choice of inverter can begin to lock you into using the same brand of equipment on other home upgrades you might do down the line. “If you're an EnPhase customer, you're likely going to be going down the track of an EnPhase battery storage system,” he said. “Whether the customers know it or not, they're kind of being pushed down a path towards this manufacturer for more things in their home, like batteries, whole home controls, electric vehicle charging."
Your quote should provide information about warranties offered by the manufacturers of the panels, inverters, and batteries, as well as by the installation company. 25-year warranties are standard, but the details vary by installation company and by manufacturer. For example, your inverters may have a 25-year warranty, meaning you can get replacement inverters for free if any of them fails within that time period — but if you don’t have a warranty on labor, it could cost you several hundred dollars to get them installed.
“It's really important for customers to read the fine print and to talk with their local solar company who is quoting the system for them to uncover what the warranties mean,” said Bowie.
This is especially important if you are installing batteries. Ask your installer about both the equipment warranty and their policy is for servicing the equipment.
Most solar installers offer financing options. Your quote should include the name of the lender the installer works with, the down payment, monthly payment, financing term, and interest rate. However, you may find a better deal elsewhere. Horowitz noted that installers like using their own financing companies because it speeds up the sales process — they can approve you for a loan just by putting in your social security number, and sell it to you at the same time as the contract. But you may find a better deal elsewhere.
“Talk to your bank, talk to your credit union, look at home equity lines of credit, see what other options you have out there, and if those have lower interest rates or better payment terms,” said Horowitz. “You are not required to use their finance.”
After you’ve found an installer, settled on a system design, and secured financing, all that’s left to do is sign your contract. Then, you wait. Your installer will have to obtain permits from your city, county, or state, as well as an interconnection agreement with your utility.
One way to try to minimize the wait time is by working with an installer with lots of local experience. They’ll be better equipped to navigate the permitting process. For example, if you want Tesla solar panels but Tesla hasn’t done many installations in your community, it may take longer for the company to get through this stage.
After these two steps are complete, the solar company will reach out to you to schedule the installation, which should only take a few days.
After the system is installed, you may have to wait for a final inspection from your utility or a verified third party for permission to operate the system.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
America runs on natural gas.
That’s not an exaggeration. Almost half of home heating is done with natural gas, and around 40% — the plurality — of our electricity is generated with natural gas. Data center developers are pouring billions into natural gas power plants built on-site to feed their need for computational power. In its -260 degree Fahrenheit liquid form, the gas has attracted tens of billions of dollars in investments to export it abroad.
The energy and climate landscape in the United States going into 2026 — and for a long time afterward — will be largely determined by the forces pushing and pulling on natural gas. Those could lead to higher or more volatile prices for electricity and home heating, and even possibly to structural changes in the electricity market.
But first, the weather.
“Heating demand is still the main way gas is used in the U.S.,” longtime natural gas analyst Amber McCullagh explained to me. That makes cold weather — experienced and expected — the main driver of natural gas prices, even with new price pressures from electricity demand.
New sources of demand don’t help, however. While estimates for data center construction are highly speculative, East Daily Analytics figures cited by trade publication Natural Gas Intel puts a ballpark figure of new data center gas demand at 2.5 billion cubic feet per day by the end of next year, compared to 0.8 billion cubic feet per day for the end of this year. By 2030, new demand from data centers could add up to over 6 billion cubic feet per day of natural gas demand, East Daley Analytics projects. That’s roughly in line with the total annual gas production of the Eagle Ford Shale in southwest Texas.
Then there are exports. The U.S. Energy Information Administration expects outbound liquified natural gas shipments to rise to 14.9 billion cubic feet per day this year, and to 16.3 billion cubic feet in 2026. In 2024, by contrast, exports were just under 12 billion cubic feet per day.
“Even as we’ve added demand for data centers, we’re getting close to 20 billion per day of LNG exports,” McCullagh said, putting more pressure on natural gas prices.
That’s had a predictable effect on domestic gas prices. Already, the Henry Hub natural gas benchmark price has risen to above $5 per million British thermal units earlier this month before falling to $3.90, compared to under $3.50 at the end of last year. By contrast, LNG export prices, according to the most recent EIA data, are at around $7 per million BTUs.
This yawning gap between benchmark domestic prices and export prices is precisely why so many billions of dollars are being poured into LNG export capacity — and why some have long been wary of it, including Democratic politicians in the Northeast, which is chronically short of natural gas due to insufficient pipeline infrastructure. A group of progressive Democrats in Congress wrote a letter to Secretary of Energy Chris Wright earlier this year opposing additional licenses for LNG exports, arguing that “LNG exports lead to higher energy prices for both American families and businesses.”
Industry observers agree — or at least agree that LNG exports are likely to pull up domestic prices. “Henry Hub is clearly bullish right now until U.S. gas production catches up,” Ira Joseph, a senior research associate at the Center for Global Energy Policy at Columbia University, told me. “We’re definitely heading towards convergence” between domestic and global natural gas prices.
But while higher natural gas prices may seem like an obvious boon to renewables, the actual effect may be more ambiguous. The EIA expects the Henry Hub benchmark to average $4 per million BTUs for 2026. That’s nothing like the $9 the benchmark hit in August 2022, the result of post-COVID economic restart, supply tightness, and the Russian invasion of Ukraine.
Still, a tighter natural gas market could mean a more volatile electricity and energy sector in 2026. The United States is basically unique globally in having both large-scale domestic production of coal and natural gas that allows its electricity generation to switch between them. When natural gas prices go up, coal burning becomes more economically attractive.
Add to that, the EIA forecasts that electricity generation will have grown 2.4% by the end of 2025, and will grow another 1.7% in 2026, “in contrast to relatively flat generation from 2010 to 2020. That is “primarily driven by increasing demand from large customers, including data centers,” the agency says.
This is the load growth story. With the help of the Trump administration, it’s turning into a coal growth story, too.
Already several coal plants have extended out their retirement dates, either to maintain reliability on local grids or because the Trump administration ordered them to. In America’s largest electricity market, PJM Interconnection, where about a fifth of the installed capacity is coal, diversified energy company Alliance Resource Partners expects 4% to 6% demand growth, meaning it might even be able to increase coal production. Coal consumption has jumped 16% in PJM in the first nine months of 2025, the company’s Chairman Joseph Kraft told analysts.
“The domestic thermal coal market is continuing to experience strong fundamentals, supported by an unprecedented combination of federal energy and environmental policy support plus rapid demand growth,” Kraft said in a statement accompanying the company’s October third quarter earnings report. He pointed specifically to “natural gas pricing dynamics” and “the dramatic load growth required by artificial intelligence.”
Observers are also taking notice. “The key driver for coal prices remains strong natural gas prices,” industry newsletter The Coal Trader wrote.
In its December short term outlook, the EIA said that it expects “coal consumption to increase by 9% in 2025, driven by an 11% increase in coal consumption in the electric power sector this year as both natural gas costs and electricity demand increased,” while falling slightly in 2026 (compared to 2025), leaving coal consumption sill above 2024 levels.
“2025 coal generation will have increased for the first time since the last time gas prices spiked,” McCullagh told me.
Assuming all this comes to pass, the U.S.’s total carbon dioxide emissions will have essentially flattened out at around 4.8 million metric tons. The ultimate cost of higher natural gas prices will likely be felt far beyond the borders of the United States and far past 2026.
Lawmakers today should study the Energy Security Act of 1980.
The past few years have seen wild, rapid swings in energy policy in the United States, from President Biden’s enthusiastic embrace of clean energy to President Trump’s equally enthusiastic re-embrace of fossil fuels.
Where energy industrial policy goes next is less certain than any other moment in recent memory. Regardless of the direction, however, we will need creative and effective policy tools to secure our energy future — especially for those of us who wish to see a cleaner, greener energy system. To meet the moment, we can draw inspiration from a largely forgotten piece of energy industrial policy history: the Energy Security Act of 1980.
After a decade of oil shocks and energy crises spanning three presidencies, President Carter called for — and Congress passed — a new law that would “mobilize American determination and ability to win the energy war.” To meet that challenge, lawmakers declared their intent “to utilize to the fullest extent the constitutional powers of the Congress” to reduce the nation’s dependence on imported oil and shield the economy from future supply shocks. Forty-five years later, that brief moment of determined national mobilization may hold valuable lessons for the next stage of our energy industrial policy.
The 1970s were a decade of energy volatility for Americans, with spiking prices and gasoline shortages, as Middle Eastern fossil fuel-producing countries wielded the “oil weapon” to throttle supply. In his 1979 “Crisis of Confidence” address to the nation, Carter warned that America faced a “clear and present danger” from its reliance on foreign oil and urged domestic producers to mobilize new energy sources, akin to the way industry responded to World War II by building up a domestic synthetic rubber industry.
To develop energy alternatives, Congress passed the Energy Security Act, which created a new government-run corporation dedicated to investing in alternative fuels projects, a solar bank, and programs to promote geothermal, biomass, and renewable energy sources. The law also authorized the president to create a system of five-year national energy targets and ordered one of the federal government’s first studies on the impacts of greenhouse gases from fossil fuels.
Carter saw the ESA as the beginning of an historic national mission. “[T]he Energy Security Act will launch this decade with the greatest outpouring of capital investment, technology, manpower, and resources since the space program,” he said at the signing. “Its scope, in fact, is so great that it will dwarf the combined efforts expended to put Americans on the Moon and to build the entire Interstate Highway System of our country.” The ESA was a recognition that, in a moment of crisis, the federal government could revive the tools it once used in wartime to meet an urgent civilian challenge.
In its pursuit of energy security, the Act deployed several remarkable industrial policy tools, with the Synthetic Fuels Corporation as the centerpiece. The corporation was a government-run investment bank chartered to finance — and in some cases, directly undertake — alternative fuels projects, including those derived from coal, shale, and oil.. Regardless of the desirability or feasibility of synthetic fuels, the SFC as an institution illustrates the type of extraordinary authority Congress was once willing to deploy to address energy security and stand up an entirely new industry. It operated outside of federal agencies, unencumbered by the normal bureaucracy and restrictions that apply to government.
Along with everything else created by the ESA, the Sustainable Fuels Corporation was also financed by a windfall profits tax assessed on oil companies, essentially redistributing income from big oil toward its nascent competition. Both the law and the corporation had huge bipartisan support, to the tune of 317 votes for the ESA in the House compared to 93 against, and 78 to 12 in the Senate.
The Synthetic Fuels Corporation was meant to be a public catalyst where private investment was unlikely to materialize on its own. Investors feared that oil prices could fall, or that OPEC might deliberately flood the market to undercut synthetic fuels before they ever reached scale. Synthetic fuel projects were also technically complex, capital-intensive undertakings, with each plant costing several billion dollars, requiring up to a decade to plan and build.
To address this, Congress equipped the corporation with an unusually broad set of tools. The corporation could offer loans, loan guarantees, price guarantees, purchase agreements, and even enter joint ventures — forms of support meant to make first-of-a-kind projects bankable. It could assemble financing packages that traditional lenders viewed as too risky. And while the corporation was being stood up, the president was temporarily authorized to use Defense Production Act powers to initiate early synthetic fuel projects. Taken together, these authorities amounted to a federal attempt to build an entirely new energy industry.
While the ESA gave the private sector the first shot at creating a synthetic fuels industry, it also created opportunities for the federal government to invest. The law authorized the Synthetic Fuels Corporation to undertake and retain ownership over synthetic fuels construction projects if private investment was insufficient to meet production targets. The SFC was also allowed to impose conditions on loans and financial assistance to private developers that gave it a share of project profits and intellectual property rights arising out of federally-funded projects. Congress was not willing to let the national imperative of energy security rise or fall on the whims of the market, nor to let the private sector reap publicly-funded windfalls.
Employing logic that will be familiar to many today, Carter was particularly concerned that alternative fuel sources would be unduly delayed by permitting rules and proposed an Energy Mobilization Board to streamline the review process for energy projects. Congress ultimately refused to create it, worried it would trample state authority and environmental protections. But the impulse survived elsewhere. At a time when the National Environmental Policy Act was barely 10 years old and had become the central mechanism for scrutinizing major federal actions, Congress provided an exemption for all projects financed by the Synthetic Fuels Corporation, although other technologies supported in the law — like geothermal energy — were still required to go through NEPA review. The contrast is revealing — a reminder that when lawmakers see an energy technology as strategically essential, they have been willing not only to fund it but also to redesign the permitting system around it.
Another forgotten feature of the corporation is how far Congress went to ensure it could actually hire top tier talent. Lawmakers concluded that the federal government’s standard pay scales were too low and too rigid for the kind of financial, engineering, and project development expertise the Synthetic Fuels Corporation needed. So it gave the corporation unusual salary flexibility, allowing it to pay above normal civil service rates to attract people with the skills to evaluate multibillion dollar industrial projects. In today’s debates about whether federal agencies have the capacity to manage complex clean energy investments, this detail is striking. Congress once knew that ambitious industrial policy requires not just money, but people who understand how deals get done.
But the Energy Security Act never had the chance to mature. The corporation was still getting off the ground when Carter lost the 1980 election to Ronald Reagan. Reagan’s advisers viewed the project as a distortion of free enterprise — precisely the kind of government intervention they believed had fueled the broader malaise of the 1970s. While Reagan had campaigned on abolishing the Department of Energy, the corporation proved an easier and more symbolic target. His administration hollowed it out, leaving it an empty shell until Congress defunded it entirely in 1986.
At the same time, the crisis atmosphere that had justified the Energy Security Act began to wane. Oil prices fell nearly 60% during Reagan’s first five years, and with them the political urgency behind alternative fuels. Drained of its economic rationale, the synthetic fuels industry collapsed before it ever had a chance to prove whether it could succeed under more favorable conditions. What had looked like a wartime mobilization suddenly appeared to many lawmakers to be an expensive overreaction to a crisis that had passed.
Yet the ESA’s legacy is more than an artifact of a bygone moment. It offers at least three lessons that remain strikingly relevant today:
As we now scramble to make up for lost time, today’s clean energy push requires institutions that can survive electoral swings. Nearly half a century after the ESA, we must find our way back to that type of institutional imagination to meet the energy challenges we still face.
On Google’s energy glow up, transmission progress, and South American oil
Current conditions: Nearly two dozen states from the Rockies through the Midwest and Appalachians are forecast to experience temperatures up to 30 degrees above historical averages on Christmas Day • Parts of northern New York and New England could get up to a foot of snow in the coming days • Bethlehem, the West Bank city south of Jerusalem in which Christians believe Jesus was born, is preparing for a sunny, cloudless Christmas Day, with temperatures around 60 degrees Fahrenheit.
This is our last Heatmap AM of 2025, but we’ll see you all again in 2026!
Just two weeks after a federal court overturned President Donald Trump’s Day One executive order banning new offshore wind permits, the administration announced a halt to all construction on seaward turbines. Secretary of the Interior Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!” As Heatmap’s Jael Holzman explained in her writeup, there are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. “The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told Fox Business host Maria Bartiromo.
The new blanket policy is likely to slow progress on passing the big bipartisan federal permitting reform bill. The SPEED Act (if you need an explainer, read this one from Heatmap’s Emily Pontecorvo) passed in the House last week. But key Senate Democrats said they would not champion a bill with provisions they might otherwise support unless the legislation curbed federal agencies’ power to yank already-granted permits, a move clearly meant to thwart Trump’s “total war on wind.” Republican leaders in the House stripped the measure out at the last moment. On Monday afternoon, the senators called the SPEED Act “dead in the water.”
The Department of the Interior and the Forest Service greenlit the 500-kilovolt Cross-Tie transmission project to carry electricity 217 miles between substations in Utah and Nevada. Dubbed the “missing pathway” between two states with fast-growing solar and geothermal industries, the power line had previously won support from a Biden-era program at the Department of Energy’s Grid Deployment Office. Last week, the federal agencies approved a right-of-way for a route that crosses the Humboldt-Toiyabe National Forest and public land controlled by the Interior Department’s Bureau of Land Management. In a press release directing the public to official documents, the bureau said the project “supports the administration’s priority to strengthen the reliability and security of the United States electric grid.”
Get Heatmap AM directly in your inbox every morning:
Google parent Alphabet bought the data center and energy infrastructure developer Intersect for nearly $5 billion in cash. Google had already held a minority stake in the company. But the deal, which also includes assuming debt, allows the tech behemoth to “expand capacity, operate more nimbly in building new power generation in lockstep with new data center load, and reimagine energy solutions to drive U.S. innovation and leadership,” Sundair Pichai, the chief executive of Alphabet and Google, said in a statement.
The acquisition comes as Google steps up its energy development, with deals to commercialize all kinds of nascent energy technologies, including next-generation nuclear reactors, fusion, and geothermal. The company, as Heatmap's Matthew Zeitlin noted this morning, has also hired a team of widely respected experts to advance its energy work, including the researcher Tyler Norris and and the Texas grid analyst Doug Lewin. But Monday’s deal wowed industry watchers. “Damn, big tech is now just straight up acquiring power developers to scale up data centers faster,” Aniruddh Mohan, an electricity analyst at The Brattle Group consultancy, remarked on X. In response, the researcher Isaac Orr joked: “Next they buy out the utilities themselves.”
Sign up to receive Heatmap AM in your inbox every morning:
The long duration energy storage developer Hydrostor has won final approval from California regulators for a 500-megawatt advanced compressed air energy storage project capable of pumping out eight hours of continuous discharge to the grid. With the thumbs up from the California Energy Commission, the Willow Rock Energy Storage Center will be “shovel ready” next year. The technology works by using electricity from wind and solar to power a compressor that pushes air into an underground cavern, displacing water, then capturing the heat generated during the compression and storing the energy in the pressurized chamber. When the energy is discharged, the water pressure forces the air up, and the excess heat warms the expanding air, driving a turbine to generate electricity. The plant would be Hydrostor’s first facility in the U.S. The company has another “late-stage” development underway in Australia, and 7 gigawatts of projects in the pipeline worldwide.

The world is awash in oil and prices are on track to keep falling as rising supply outstrips demand. At just 0.8 million barrels per day, predictions for growth in 2026 are the lowest in the last four years. But Brazil, Guyana, and Argentina will account for at least half of the expected global increase in production of crude. In its latest forecast, the U.S. Energy Information Administration said the three South American nations will account for 0.4 million barrels per day of the 0.8 million spike projected for 2026. The three countries — oddly enough one of the only potential trios on the mostly Spanish-speaking continent with three distinct languages, given Brazil’s Portuguese and Guyana’s English — comprised 28% of all global growth in 2025.
A fungal blight that gets worse as temperatures rise is killing conifers, including Christmas trees. But scientists at Mississippi State University have discovered a unique Leyland cypress tree at a Louisiana farm with a resistance to Passalora sequoia, the fast-spreading disease that attacks the needles of evergreens. In a statement, Jeff Wilson, an associate professor of ornamental horticulture at Mississippi State University, said that, prior to the study, “there had not been any research on Christmas trees in Mississippi since the late ‘70s or early ‘80s, but there is a real need for the research today.” May all your endeavors in the new year be as curious, civic-minded, and fruitful as that. Wishing you all a merry Christmas, happy New Year, and what I hope is a restful time off until we return to your inbox in January.