You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Plus a note on batteries.

Rooftop solar is not like other types of consumer technology. Even though the end result is having a bunch of electrical equipment installed on the roof of your home, the process of getting solar is more like doing a bathroom renovation than buying a flat screen TV. To get the results you’re looking for, the most important decisions you’ll make are not the brand or model of the panels, but rather who you hire for the job, the size of your system, and how you finance it.
There’s a bunch more choices you’ll have to navigate along the way, and it’s easy to get overwhelmed. One expert I spoke with told me that sometimes the customers who are the most excited about getting solar end up bailing, the victims of decision fatigue.
We created this guide to save you from that fate. So take a deep breath, take my hand, and let’s walk down the metaphorical hardware store aisle and get you the rooftop solar solution you’re dreaming of.
Roger Horowitz is the director of Go Solar programs at Solar United Neighbors, a national nonprofit that serves as an unbiased resource for homeowners interested in solar. Horowitz manages and provides technical support to the company’s Solar Help Desk team.
Tony Vernetti is a senior trainer at Enphase Energy, a company that produces inverters, batteries, and EV chargers, where he trains solar sales and installation teams. Before joining Enphase in 2020, Vernetti spent 12 years working for rooftop solar companies in California.
Nate Bowie is the vice president of residential sales at ReVision Energy, an employee-owned solar company operating throughout northern New England. Bowie has been selling solar for ReVision for 15 years.
While the actual installation of the system should only take one to two days, the entire process from initial outreach to grid connection takes two to four months on average, according to Solar United Neighbors.
Example: The highest rated solar panels for 2024 according to EnergySage.com are SunPower's M-Series 440 watt model. If you install 20 of these, the system will be capable of generating 8,800 watts, or 8.8 kilowatts in direct sun.
When you start searching for information about solar on the internet, you might come across advertisements or commercials promoting free solar panels. There is no such thing. These ads are typically schemes to collect your personal data and sell it to solar companies looking for leads, and the federal government is starting to
crack down on them.
It is possible to install solar with zero up-front costs if you lease the system or take out a loan to finance it, but in both cases you will still owe monthly payments. It is also rare that anyone is able to offset 100% of their utility bill. You can get close, but you will likely still owe at least a connection fee to your utility company.
Most homeowners in the U.S. can benefit from installing solar as long as local energy policies are favorable. Placing the panels on a south-facing roof is optimal, but not necessary. If your panels face due west, you’ll only lose about 10% of potential generation, according to Vernetti. “They still produce a ton of energy. They’re still very effective. It's just a little bit less than if they're facing south,” he said. An east-facing roof is also viable in most cases.
You don’t have to worry about shoveling snow off the roof or anything like that. But like any other electronic devices, solar panels, inverters, and batteries can break or malfunction, and your system may require servicing at some point. Pay close attention to your warranties (more on that later). If you lease the system, you do not have to worry about this as much because the third-party owner will be responsible for maintenance.
In order to design a system that meets your needs and budget, solar companies will ask for a copy of your most recent electricity bill or, ideally, your annual energy consumption history. Make sure you have this information handy before you reach out for quotes.
Some utilities include your annual energy consumption, broken out by month, at the bottom of your electric bill. If you don’t see it, you should be able to log into your utility account online and download either your statements from the past year or a spreadsheet of your monthly electric meter readings.
In most of the U.S., you will find you have the option either to lease your solar panels or buy them outright. You don’t have to decide which way you want to go before you get started, but it’s helpful to think through the pros and cons of each.
Heatmap Recommends leasing if: You’re fairly certain you’ll keep your house for the next 15 to 20 years; you can’t afford the system outright, but you don’t want to take out a loan; your priority is to generate clean energy and reduce emissions, but you don’t want to spend too much time figuring out what you want or worrying about the system’s maintenance.
Heatmap Recommends buying if: You have the cash in hand; you might sell your house in the next 20 years; you know you want to have control over the details of your project.
The federal government offers a 30% tax credit for solar installations (and batteries) that covers parts and labor. It can significantly reduce the cost of getting solar, even if you don’t have a lot of tax liability in the year that you install the system. The credit will roll over to subsequent tax years.
Example: If you spend $25,000 installing solar in 2024, you’ll be eligible to take $7,500 off your federal income tax bill. If you only owe $3,000 in federal taxes in 2024, you’ll get $3,000 back and will be eligible to claim the remaining $4,500 for the 2025 tax year. If in 2025 you only owe $3,000 again, you can claim the remaining $1,500 in 2026.
Additional tax credits and rebates may also be offered by your state energy office, city, or utility. Contractors should be able to help you figure out what you’re eligible for, and you can wait to talk to them to learn more. However, incentives change frequently, and contractors don’t always keep up, so you might want to review the options in your area independently.
It will also be helpful to understand your state’s net metering policy, as that will determine how quickly your investment in solar will pay off and may also dictate how big your system can be. Some states, like New Jersey, also allow homeowners to generate additional income through the sale of solar renewable energy credits, or SRECS.
Where to look for more information:
One of the worst things that could happen is you install rooftop solar panels, and then later find out you have a leak or some other problem with your roof. “Removal and replacement of an array for a reroof is expensive and could significantly impact the owner’s return on investment,” Bowie told me. While metal roofs last a very long time and are unlikely to need a replacement, asphalt shingle roofs generally have a useful life of 25 to 30 years, Bowie said. You should be fine if your roof is less than 10 years old, but if not, you may need some roofing work done before your solar panels are installed.
If you don’t know how old your roof is, Vernetti recommended having a roofing contractor inspect it. He added that there’s varying opinions on this, with some solar experts recommending replacement if the roof is only 5 years old. “In my opinion, scrapping a 5 year old roof is wasteful and goes against the goal of sustainability,” he said.
“A good solar contractor will help evaluate the roof conditions and should recommend replacement when necessary, even if it is just to replace the roof on the roof plane where the solar panels will go,” said Bowie.
Solar contractors range from local mom and pop shops, to regional providers like ReVision Energy, which operates in multiple states in the Northeast, to national companies that install across the country like Sunrun and Sunnova.
“The advantage of going with a large company is that they have the ability to offer financing the smaller companies might not be able to. With a regional company, you can actually walk to their office and knock on the door and talk to somebody if you want to,” said Vernetti.
Heatmap Recommends: Contact at least one local company and one national company to get a good sense of your options. Always get at least three quotes!
If you are calling installers directly, here are some tips for what you should ask for or look for in a quote. (If you are using an online resource like EnergySage that finds quotes for you, use the following to help you ask follow-up questions or refine the proposals.)
A few questions you should ask:
One of the first questions an installer might ask you is how big you want the system to be. You may want to see quotes for multiple options in order to compare them. Options include:
Heatmap Recommends: Oversize your system if you can afford it.
Why?
Exceptions:
Most installers will include a financing option in their quote. Horowitz noted that some installers advertise very low interest rates that are below market rate. They are typically able to do this by paying a “dealer fee” to the bank, which they incorporate into the price of your installation — in other words, if your interest rate seems too good to be true, the total cost of your installation will likely be higher than it otherwise would be. To get a better sense of the true cost, ask for quotes both with and without financing options.
Adding energy storage, a.k.a. a battery, to your solar array can add another 10 grand or more to the project cost. But there are a few reasons it might be worth it:
In conclusion, if you just want back-up power, any battery that’s large enough to power your essential systems should do. If you want to pay off the investment, look into time-of-use rates. If you want your investment to go further for decarbonization, ask your contractor if there are local grid services programs available, and if any of their products are compatible.
After you get a few quotes, you’re going to want to spend some time comparing them, asking questions, and potentially soliciting additional quotes with variations on the system. If you’re feeling overwhelmed or you don’t have the time or patience to sort through the details on your own, you can also call the Solar United Neighbors Help Desk, which offers a free quote review service.
The most important number on the quote is the price per watt, not the total system cost. That is the number you should be comparing between different installers, as the quotes may be for differently sized systems.
You should also compare the annual bill savings. If two different companies quote you significantly different savings for systems that are roughly the same size, one of them has likely done a more detailed analysis of your roof than the other.
“It doesn't matter what module you have, from which manufacturer, or what inverter you have. There really is no difference in what your system can produce if it's the same size,” said Bowie.
Lastly, if the quote is for a solar lease, or includes a financing option, look at the monthly payments.
Every installer has certain brands and types of equipment they work with. Our expert panel agreed that it’s important to look at the brand names the installer is offering for the solar panels, inverters, and batteries, and to make sure they are from reputable companies that have been around for at least five years — even if it means paying more. A quick internet search of the top 10 residential solar panel brands should give you a taste of what those companies are.
“It is definitely worth paying a little bit extra to have really good equipment,” Vernetti said.
You may also see installers advertise that they offer “Tier 1” solar panels. That means the manufacturer has been designated “bankable” by Bloomberg New Energy Finance. The designation is more related to finance than product quality, but many solar companies use it as a rough proxy for reliability.
That being said, don’t get too bogged down in comparing solar brands.
“There's not a huge difference, typically, between one solar panel and the next of the Tier 1 manufacturers,” said Bowie. “A lot of solar companies will maybe offer one or two different manufacturers, and then maybe beyond that one or two different sizes.”
When it comes to inverters, you do want to pay attention to whether your quote includes string inverters, microinverters, or power optimizers. In a system with a string inverter, your panels will all be wired to one central inverter. This is generally the cheapest option, but it is less durable and may need to be replaced, said Vernetti, whose employer, Enphase, is the leading producer of microinverters. String inverters can also limit the output of your system if part of the roof gets more shade.
The other two options are more expensive but get around the issue with shade. A system with power optimizers is similar to one with a string inverter, but each panel will also have a small device attached to it that regulates the output and maximizes your system’s performance. By contrast, microinverters are small inverters attached to each individual panel. Both of these options also allow you to monitor each panel’s performance.
Bowie said the two were comparable in terms of performance and price. A key consideration, he said, is that your choice of inverter can begin to lock you into using the same brand of equipment on other home upgrades you might do down the line. “If you're an EnPhase customer, you're likely going to be going down the track of an EnPhase battery storage system,” he said. “Whether the customers know it or not, they're kind of being pushed down a path towards this manufacturer for more things in their home, like batteries, whole home controls, electric vehicle charging."
Your quote should provide information about warranties offered by the manufacturers of the panels, inverters, and batteries, as well as by the installation company. 25-year warranties are standard, but the details vary by installation company and by manufacturer. For example, your inverters may have a 25-year warranty, meaning you can get replacement inverters for free if any of them fails within that time period — but if you don’t have a warranty on labor, it could cost you several hundred dollars to get them installed.
“It's really important for customers to read the fine print and to talk with their local solar company who is quoting the system for them to uncover what the warranties mean,” said Bowie.
This is especially important if you are installing batteries. Ask your installer about both the equipment warranty and their policy is for servicing the equipment.
Most solar installers offer financing options. Your quote should include the name of the lender the installer works with, the down payment, monthly payment, financing term, and interest rate. However, you may find a better deal elsewhere. Horowitz noted that installers like using their own financing companies because it speeds up the sales process — they can approve you for a loan just by putting in your social security number, and sell it to you at the same time as the contract. But you may find a better deal elsewhere.
“Talk to your bank, talk to your credit union, look at home equity lines of credit, see what other options you have out there, and if those have lower interest rates or better payment terms,” said Horowitz. “You are not required to use their finance.”
After you’ve found an installer, settled on a system design, and secured financing, all that’s left to do is sign your contract. Then, you wait. Your installer will have to obtain permits from your city, county, or state, as well as an interconnection agreement with your utility.
One way to try to minimize the wait time is by working with an installer with lots of local experience. They’ll be better equipped to navigate the permitting process. For example, if you want Tesla solar panels but Tesla hasn’t done many installations in your community, it may take longer for the company to get through this stage.
After these two steps are complete, the solar company will reach out to you to schedule the installation, which should only take a few days.
After the system is installed, you may have to wait for a final inspection from your utility or a verified third party for permission to operate the system.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Redwood Materials’ milestone, states welcome geothermal, and Indian nuclear
Current conditions: Powerful winds of up to 50 miles per hour are putting the Front Range states from Wyoming to Colorado at high risk of wildfire • Temperatures are set to feel like 101 degrees Fahrenheit in Santa Fe in northern Argentina • Benin is bracing for flood flooding as thunderstorms deluge the West African nation.

New York Governor Kathy Hochul inked a partnership agreement with Ontario Premier Doug Ford on Friday to work together on establishing supply chains and best practices for deploying next-generation nuclear technology. Unlike many other states whose formal pronouncements about nuclear power are limited to as-yet-unbuilt small modular reactors, the document promised to establish “a framework for collaboration on the development of advanced nuclear technologies, including large-scale nuclear” and SMRs. Ontario’s government-owned utility just broke ground on what could be the continent’s first SMR, a 300-megawatt reactor with a traditional, water-cooled design at the Darlington nuclear plant. New York, meanwhile, has vowed to build at least 1 gigawatt of new nuclear power in the state through its government-owned New York Power Authority. Heatmap’s Matthew Zeitlin wrote about the similarities between the two state-controlled utilities back when New York announced its plans. “This first-of-its-kind agreement represents a bold step forward in our relationship and New York’s pursuit of a clean energy future,” Hochul said in a press release. “By partnering with Ontario Power Generation and its extensive nuclear experience, New York is positioning itself at the forefront of advanced nuclear technology deployment, ensuring we have safe, reliable, affordable, and carbon-free energy that will help power the jobs of tomorrow.”
Hochul is on something of a roll. She also repealed a rule that’s been on the books for nearly 140 years that provided free hookups to the gas system for new customers in the state. The so-called 100-foot-rule is a reference to how much pipe the state would subsidize. The out-of-pocket cost for builders to link to the local gas network will likely be thousands of dollars, putting the alternative of using electric heat and cooking appliances on a level playing field. “It’s simply unfair, especially when so many people are struggling right now, to expect existing utility ratepayers to foot the bill for a gas hookup at a brand new house that is not their own,” Hochul said in a statement. “I have made affordability a top priority and doing away with this 40-year-old subsidy that has outlived its purpose will help with that.”
Redwood Materials, the battery recycling startup led by Tesla cofounder J.B. Straubel, has entered into commercial production at its South Carolina facility. The first phase of the $3.5 billion plant “has brought a system online that’s capable of recovering 20,000 metric tons of critical minerals annually, which isn’t full capacity,” Sawyer Merritt, a Tesla investor, posted on X. “Redwood’s goal is to keep these resources here; recovered, refined, and redeployed for America’s advantage,” the company wrote in a blog post on its website. “This strategy turns yesterday’s imports into tomorrow’s strategic stockpile, making the U.S. stronger, more competitive, and less vulnerable to supply chains controlled by China and other foreign adversaries.”
A 13-state alliance at the National Association of State Energy Officials launched a new accelerator program Friday that’s meant to “rapidly expand geothermal power development.” The effort, led by state energy offices in Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia, “will work to establish statewide geothermal power goals and to advance policies and programs that reduce project costs, address regulatory barriers, and speed the deployment of reliable, firm, flexible power to the grid.” Statements from governors of red and blue states highlighted the energy source’s bipartisan appeal. California Governor Gavin Newsom, a Democrat, called geothermal a key tool to “confront the climate crisis.” Idaho’s GOP Governor Brad Little, meanwhile, said geothermal power “strengthens communities, supports economic growth, and keeps our grid resilient.” If you want to review why geothermal is making a comeback, read this piece by Matthew.
Sign up to receive Heatmap AM in your inbox every morning:
Yet another pipeline is getting the greenlight. Last week, the Federal Energy Regulatory Commission approved plans for Mountain Valley’s Southgate pipeline, clearing the way for construction. The move to shorten the pipeline’s length from 75 miles down to 31 miles, while increasing the diameter of the project to 30 inches from between 16 and 23 inches, hinged on whether FERC deemed the gas conduit necessary. On Thursday, E&E News reported, FERC said the developers had demonstrated a need for the pipeline stretching from the existing Mountain Valley pipeline into North Carolina.
Last week, I told you about a bill proposed in India’s parliament to reform the country’s civil liability law and open the nuclear industry to foreign companies. In the 2010s, India passed a law designed to avoid another disaster like the 1984 Bhopal chemical leak that killed thousands but largely gave the subsidiary of the Dow Chemical Corporation that was responsible for the accident a pass on payouts to victims. As a result, virtually no foreign nuclear companies wanted to operate in India, lest an accident result in astronomical legal expenses in the country. (The one exception was Russia’s state-owned Rosatom.) In a bid to attract Western reactor companies, Indian lawmakers in both houses of parliament voted to repeal the liability provisions, NucNet reported.
The critically endangered Lesser Antillean iguana has made a stunning recovery on the tiny, uninhabited islet of Prickly Pear East near Anguilla. A population of roughly 10 breeding-aged lizards ballooned to 500 in the past five years. “Prickly Pear East has become a beacon of hope for these gorgeous lizards — and proves that when we give native wildlife the chance, they know what to do,” Jenny Daltry, Caribbean Alliance Director of nature charities Fauna & Flora and Re:wild, told Euronews.
The fourth-generation gas-cooled reactor company ZettaJoule is setting up shop at an unnamed university.
The appeal of next-generation nuclear technology is simple. Unlike the vast majority of existing reactors that use water, so-called fourth-generation units use coolants such as molten salt, liquid metal, or gases that can withstand intense heat such as helium. That allows the machines to reach and maintain the high temperatures necessary to decarbonize industrial processes, which currently only fossil fuels are able to reach.
But the execution requirements of these advanced reactors are complex, making skepticism easy to understand. While the U.S., Germany, and other countries experimented with fourth-generation reactors in earlier decades, there is only one commercial unit in operation today. That’s in China, arguably the leader in advanced nuclear, which hooked up a demonstration model of a high-temperature gas-cooled reactor to its grid two years ago, and just approved building another project in September.
Then there’s Japan, which has been operating its own high-temperature gas-cooled reactor for 27 years at a government research site in Ibaraki Prefecture, about 90 minutes north of Tokyo by train. Unlike China’s design, it’s not a commercial power reactor. Also unlike China’s design, it’s coming to America.
Heatmap has learned that ZettaJoule, an American-Japanese startup led by engineers who worked on that reactor, is now coming out of stealth and laying plans to build its first plant in Texas.
For months, the company has quietly staffed up its team of American and Japanese executives, including a former U.S. Nuclear Regulatory Commission official and a high-ranking ex-administrator from the industrial giant Mitsubishi. It’s now preparing to decamp from its initial home base in Rockville, Maryland, to the Lone Star State as it prepares to announce its debut project at an as-yet-unnamed university in Texas.
“We haven’t built a nuclear reactor in many, many decades, so you have only a handful of people who experienced the full cycle from design to operations,” Mitsuo Shimofuji, ZettaJoule’s chief executive, told me. “We need to complete this before they retire.”
That’s where the company sees its advantage over rivals in the race to build the West’s first commercial high-temperature gas reactor, such as Amazon-backed X-energy or Canada’s StarCore nuclear. ZettaJoule’s chief nuclear office, Kazuhiko Kunitomi, oversaw the construction of Japan’s research reactor in the 1990s. He’s considered Japan’s leading expert in high-temperature gas reactors.
“Our chief nuclear officer and some of our engineers are the only people in the Western world who have experience of the whole cycle from design to construction to operation of a high temperature gas reactor,” Shimofuji said.
Like X-energy’s reactor, ZettaJoule’s design is a small modular reactor. With a capacity of 30 megawatts of thermal output and 12 megawatts of electricity, the ZettaJoule reactor qualifies as a microreactor, a subcategory of SMR that includes anything 20 megawatts of electricity or less. Both companies’ reactors will also run on TRISO, a special kind of enriched uranium with cladding on each pellet that makes the fuel safer and more efficient at higher temperatures.
While X-energy’s debut project that Amazon is financing in Washington State is a nearly 1-gigawatt power station made up of at least a dozen of the American startup’s 80-megawatt reactors, ZettaJoule isn’t looking to generate electricity.
The first new reactor in Texas will be a research reactor, but the company’s focus is on producing heat. The reactor already working in Japan, which produces heat, demonstrates that the design can reach 950 degrees Celsius, roughly 25% higher than the operating temperature of China’s reactor.
The potential for use in industrial applications has begun to attract corporate partners. In a letter sent Monday to Ted Garrish, the U.S. assistant secretary of energy in charge of nuclear power — a copy of which I obtained — the U.S. subsidiary of the Saudi Arabian oil goliath Aramco urged the Trump administration to support ZettaJoule, and said that it would “consider their application to our operations” as the technology matures. ZettaJoule is in talks with at least two other multinational corporations.
The first new reactor ZettaJoule builds won’t be identical to the unit in Japan, Shimofuji said.
“We are going to modernize this reactor together with the Japanese and U.S. engineering partners,” he said. “The research reactor is robust and solid, but it’s over-engineered. What we want to do is use the safety basis but to make it more economic and competitive.”
Once ZettaJoule proves its ability to build and operate a new unit in Texas, the company will start exporting the technology back to Japan. The microreactor will be its first product line.
“But in the future, we can scale up to 20 times bigger,” Shimofuji said. “We can do 600 megawatts thermal and 300 megawatts electric.”
Another benefit ZettaJoule can tap into is the sweeping deal President Donald Trump brokered with Japanese Prime Minister Sanae Takaichi in October, which included hundreds of billions of dollars for new reactors of varying sizes, including the large-scale Westinghouse AP1000. That included financing to build GE Vernova Hitachi Nuclear Energy’s 300-megawatt BWRX-300, one of the West’s leading third-generation SMRs, which uses a traditional water-cooled design.
Unlike that unit, however, ZettaJoule’s micro-reactor is not a first-of-a-kind technology, said Chris Gadomski, the lead nuclear analyst at the consultancy BloombergNEF.
“It’s operated in Japan for a long, long time,” he told me. “So that second-of-a-kind is an attractive feature. Some of these companies have never operated a reactor. This one has done that.”
A similar dynamic almost played out with large-scale reactors more than two decades ago. In the late 1990s, Japanese developers built four of GE and Hitachi’s ABWR reactor, a large-scale unit with some of the key safety features that make the AP1000 stand out compared to its first- and second-generation predecessors. In the mid 2000s, the U.S. certified the design and planned to build a pair in South Texas. But the project never materialized, and America instead put its resources into Westinghouse’s design.
But the market is different today. Electricity demand is surging in the near term from data centers and in the long term from electrification of cars and industry. The need to curb fossil fuel consumption in the face of worsening climate change is more widely accepted than ever. And China’s growing dominance over nuclear energy has rattled officials from Tokyo to Washington.
“We need to deploy this as soon as possible to not lose the experienced people in Japan and the U.S.,” Shimofuji said. “In two or three years time, we will get a construction permit ideally. We are targeting the early 2030s.”
If every company publicly holding itself to that timeline is successful, the nuclear industry will be a crowded field. But as history shows, those with the experience to actually take a reactor from paper to concrete may have an advantage.
It’s now clear that 2026 will be big for American energy, but it’s going to be incredibly tense.
Over the past 365 days, we at The Fight have closely monitored numerous conflicts over siting and permitting for renewable energy and battery storage projects. As we’ve done so, the data center boom has come into full view, igniting a tinderbox of resentment over land use, local governance and, well, lots more. The future of the U.S. economy and the energy grid may well ride on the outcomes of the very same city council and board of commissioners meetings I’ve been reporting on every day. It’s a scary yet exciting prospect.
To bring us into the new year, I wanted to try something a little different. Readers ask me all the time for advice with questions like, What should I be thinking about right now? And, How do I get this community to support my project? Or my favorite: When will people finally just shut up and let us build things? To try and answer these questions and more, I wanted to give you the top five trends in energy development (and data centers) I’ll be watching next year.
The best thing going for American renewable energy right now is the AI data center boom. But the backlash against developing these projects is spreading incredibly fast.
Do you remember last week when I told you about a national environmental group calling for data center moratoria across the country? On Wednesday, Senator Bernie Sanders called for a nationwide halt to data center construction until regulations are put in place. The next day, the Working Families Party – a progressive third party that fields candidates all over the country for all levels of government – called for its candidates to run in opposition to new data center construction.
On the other end of the political spectrum, major figures in the American right wing have become AI skeptics critical of the nascent data center buildout, including Florida Governor Ron DeSantis, Missouri Senator Josh Hawley, and former Trump adviser Steve Bannon. These figures are clearly following the signals amidst the noise; I have watched in recent months as anti-data center fervor has spread across Facebook, with local community pages and groups once focused on solar and wind projects pivoting instead to focus on data centers in development near them.
In other words, I predicted just one month ago, an anti-data center political movement is forming across the country and quickly gaining steam (ironically aided by the internet and algorithms powered by server farms).
I often hear from the clean energy sector that the data center boom will be a boon for new projects. Renewable energy is the fastest to scale and construct, the thinking goes, and therefore will be the quickest, easiest, and most cost effective way to meet the projected spike in energy demand.
I’m not convinced yet that this line of thinking is correct. But I’m definitely sure that no matter the fuel type, we can expect a lot more transmission development, and nothing sparks a land use fight more easily than new wires.
Past is prologue here. One must look no further than the years-long fight over the Piedmont Reliability Project, a proposed line that would connect a nuclear power plant in Pennsylvania to data centers in Virginia by crossing a large swathe of Maryland agricultural land. I’ve been covering it closely since we put the project in our inaugural list of the most at-risk projects, and the conflict is now a clear blueprint.
In Wisconsin, a billion-dollar transmission project is proving this thesis true. I highly recommend readers pay close attention to Port Washington, where the release of fresh transmission line routes for a massive new data center this week has aided an effort to recall the city’s mayor for supporting the project. And this isn’t even an interstate project like Piedmont.
While I may not be sure of the renewable energy sector’s longer-term benefits from data center development, I’m far more confident that this Big Tech land use backlash is hitting projects right now.
The short-term issue for renewables developers is that opponents of data centers use arguments and tactics similar to those deployed by anti-solar and anti-wind advocates. Everyone fighting data centers is talking about ending development on farmland, avoiding changes to property values, stopping excess noise and water use, and halting irreparable changes to their ways of life.
Only one factor distinguishes data center fights from renewable energy fights: building the former potentially raises energy bills, while the latter will lower energy costs.
I do fear that as data center fights intensify nationwide, communities will not ban or hyper-regulate the server farms in particular, but rather will pass general bans that also block the energy projects that could potentially power them. Rural counties are already enacting moratoria on solar and wind in tandem with data centers – this is not new. But the problem will worsen as conflicts spread, and it will be incumbent upon the myriad environmentalists boosting data center opponents to not accidentally aid those fighting zero-carbon energy.
This week, the Bureau of Land Management approved its first solar project in months: the Libra facility in Nevada. When this happened, I received a flood of enthusiastic and optimistic emails and texts from sources.
We do not yet know whether the Libra approval is a signal of a thaw inside the Trump administration. The Interior Department’s freeze on renewables permitting decisions continues mostly unabated, and I have seen nothing to indicate that more decisions like this are coming down the pike. What we do know is that ahead of a difficult midterm election, the Trump administration faces outsized pressure to do more to address “affordability,” Democrats plan to go after Republicans for effectively repealing the Inflation Reduction Act and halting permits for solar and wind projects, and there’s a grand bargain to be made in Congress over permitting reform that rides on an end to the permitting freeze.
I anticipate that ahead of the election and further permitting talks in Congress, the Trump administration will mildly ease its chokehold on solar and wind permits because that is the most logical option in front of them. I do not think this will change the circumstances for more than a small handful of projects sited on federal lands that were already deep in the permitting process when Trump took power.
It’s impossible to conclude a conversation about next year’s project fights without ending on the theme that defined 2025: battery fire fears are ablaze, and they’ll only intensify as data centers demand excess energy storage capacity.
The January Moss Landing fire incident was a defining moment for an energy sector struggling to grapple with the effects of the Internet age. Despite bearing little resemblance to the litany of BESS proposals across the country, that one hunk of burning battery wreckage in California inspired countless communities nationwide to ban new battery storage outright.
There is no sign this trend will end any time soon. I expect data centers to only accelerate these concerns, as these facilities can also catch fire in ways that are challenging to address.