You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Spinning turbines have it, but solar panels don’t.

Spain and Portugal are still recovering from Monday’s region-wide blackout. The cause remains unknown, but already a debate has broken out over whether grids like Spain’s, which has a well-above-average proportion of renewables, are more at risk of large-scale disruptions.
At the time of the blackout, Spain’s grid had little “inertia,” which renewables opponents have seized on as a reason to blame carbon-free electricity for the breakdown. If the electricity system as a whole is a dance of electrons choreographed by the laws of electromagnetism, then inertia is the system’s brute force Newtonian backup. In a fossil fuel-powered grid, inertia comes from spinning metal — think a gas turbine — and it can give the whole system a little extra boost if another generator drops off the grid.
Solar panels, however, don’t spin. Instead, they produce direct current that needs to be converted by an inverter into alternating current at the grid’s frequency.
“If a power plant goes out, that frequency starts to drop a little bit because there’s an imbalance in the power between supply and demand, and inertia provides a little bit of extra power,” Bri-Mathias Hodge, an electrical and energy engineering professor at the University of Colorado and a former chief scientist at the nearby National Renewable Energy Laboratory, explained to me. Inertia, he said, “just gives a little bit more wiggle room in the system, so that if there are big changes, you can sort of ride through them.”
Of course, blackouts happen on grids dominated by fossil fuels — the 2003 Northeast Blackout in the U.S and Canada, for example, which plunged several states and tens of millions of people into darkness. Even on renewable-heavy grids, blackouts can still come down to failures of fossil fuel systems, as with Texas’ Winter Storm Uri in 2021, when the natural gas distribution system froze up. Much of the state had no electricity for several days amidst freezing temperatures, and over 200 people died.
But Bloomberg’s Javier Blas was nevertheless fair to the Iberian blackout when he bestowed on it the sobriquet, “The first big blackout of the green electricity era.”
Spain has been especially aggressive in decarbonizing its power grid and there’s some initial evidence that the first generators to turn off were solar power. “We started to see oscillations between the Iberian Peninsula and the rest of the European power grid, and this generally means that there’s a power imbalance — somebody’s trying to export power that they can’t, or import power that they can’t because of the limits on the lines,” Hodge told me. “The reason why people have gone on to say that this is a solar issue is because where they’ve seen some of those oscillations and where they saw some of the events starting, there are a couple large solar plants in that part of southwestern Spain.”
While Spanish grid and government officials will likely take months to investigate the failure, we already know that Spain and Portugal are relatively isolated from the rest of the European grid and rely heavily on renewables, especially solar and wind. Portugal has in the past gone several days in a row generating 100% of its power from renewables; Spain, meanwhile, was boasting of its 100% renewable generation just weeks before the blackout.
Last week, Spanish solar produced over 20,000 megawatts of power, comprising more than 60% of the country’s resource mix. Spain’s seven remaining nuclear reactors — which still provide about a fifth of its electric power — are scheduled to shut down over the next decade (though officials have indicated they might be open to extending their life), while its minimal coal generation is scheduled to be retired this year.
“Spain and Portugal have been relatively early adopters of wind and solar power. The Iberian Peninsula is actually relatively weakly connected to the rest of Europe through France. And so that’s one of the tricky parts here — it’s not as well integrated just because of the geography,” Hodge said.
The disturbances on the grid started on the Spain-France interconnection, but a European power official told The New York Times that transmission issues typically don’t lead to cascading blackouts unless there’s some major disturbance in supply or demand as well, such as a power plant going offline.
Spain’s grid had issues before Monday’s blackout that can be fairly attributed to its reliance on renewables. It often has to curtail solar power production because the grid gets congested when particularly sunny parts of the country where there’s large amounts of solar generation are churning out power that can’t be transmitted to the rest of the country. Spain has also occasionally experienced negative prices for electricity, and is using European Investment Bank funds to help support the expansion of pumped-hydro storage in order to store power when prices go down.
On Monday afternoon, however, solar power dropped from around 18,000 megawatts to 8,000, Reuters reported. At the time the blackout began, the grid was overwhelmingly powered by renewables. Spanish grid operator Red Electrica said it was able to pinpoint two large-scale losses of solar power in the southwestern part of the country, according to Reuters.
That a renewables-heavy grid might struggle with maintaining reliability thanks to low inertia is no surprise. Researchers have been studying the issue for decades.
In Texas — which, like Spain, has a high level of renewable generation and is isolated from the greater continental grid — the energy market ERCOT has been monitoring inertia since 2013, when wind generation sometimes got to 30% of total generation, and in 2016 started real-time monitoring of inertia in its control room.
That real time monitoring is necessary because traditionally, grid inertia is just thought of as an inherent quality of the system, not something that has to be actively ensured and bolstered, Hodge said.
As renewables build up on grids, Hodge told me, operators should prepare by having their inverters be what’s known as “grid-forming” instead of “grid-following.”
“Right now, in the power system, almost all of the wind, solar, battery plants, all the inverter-based generation, they just look to the grid for a signal. If the grid is producing at 60 Hertz, then they want to produce 60 Hertz. If it’s producing at 59.9, then they try to match that,” Hodge said. This works when you have relatively low amounts of [renewable generation]. But when [renewables] start to become the majority of the generation, you need somebody else to provide that strong signal for everybody else to follow. And that’s sort of what grid-forming inverters do,” he said.
Grid-forming inverters could hold back some power from the grid to provide an inertia-like boost when needed. Right now, the only sizable grid outfitted with this technology, Hodge said, is the Hawaiian island of Kauai, which has a population of around 75,000. Spain, by contrast, is home to nearly 50 million.
The other key technology for grid-forming inverters to provide stability to a power system is batteries. “Batteries are actually the perfect solution for this because if you have a battery system there, you know most of the time it’s not producing or charging and totally full output or input. So the vast majority of time you’re going to have some room to sort of move on in either direction,” Hodge said.
But this requires both technology and market structures that incentivize and allow batteries to always be ready to provide that instantaneous response.
“The entire stability paradigm of the power grid was built around this idea of synchronous machines,” Hodge told me. “And we’re moving toward one that’s more based on the inverters, but we’re not there yet. We have to fix the car while we’re driving it. We can’t turn off the grid for a couple years and figure everything out.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
NineDot Energy’s nine-fiigure bet on New York City is a huge sign from the marketplace.
Battery storage is moving full steam ahead in the Big Apple under new Mayor Zohran Mamdani.
NineDot Energy, the city’s largest battery storage developer, just raised more than $430 million in debt financing for 28 projects across the metro area, bringing the company’s overall project pipeline to more than 60 battery storage facilities across every borough except Manhattan. It’s a huge sign from the marketplace that investors remain confident the flashpoints in recent years over individual battery projects in New York City may fail to halt development overall. In an interview with me on Tuesday, NineDot CEO David Arfin said as much. “The last administration, the Adams administration, was very supportive of the transition to clean energy. We expect the Mamdani administration to be similar.”
It’s a big deal given that a year ago, the Moss Landing battery fire in California sparked a wave of fresh battery restrictions at the local level. We’ve been able to track at least seven battery storage fights in the boroughs so far, but we wouldn’t be surprised if the number was even higher. In other words, risk remains evident all over the place.
Asked where the fears over battery storage are heading, Arfin said it's “really hard to tell.”
“As we create more facts on the ground and have more operating batteries in New York, people will gain confidence or have less fear over how these systems operate and the positive nature of them,” he told me. “Infrastructure projects will introduce concern and reasonably so – people should know what’s going on there, what has been done to protect public safety. We share that concern. So I think the future is very bright for being able to build the cleaner infrastructure of the future, but it's not a straightforward path.”
In terms of new policy threats for development, local lawmakers are trying to create new setback requirements and bond rules. Sam Pirozzolo, a Staten Island area assemblyman, has been one of the local politicians most vocally opposed to battery storage without new regulations in place, citing how close projects can be to residences, because it's all happening in a city.
“If I was the CEO of NineDot I would probably be doing the same thing they’re doing now, and that is making sure my company is profitable,” Pirozzolo told me, explaining that in private conversations with the company, he’s made it clear his stance is that Staten Islanders “take the liability and no profit – you’re going to give money to the city of New York but not Staten Island.”
But onlookers also view the NineDot debt financing as a vote of confidence and believe the Mamdani administration may be better able to tackle the various little bouts of hysterics happening today over battery storage. Former mayor Eric Adams did have the City of Yes policy, which allowed for streamlined permitting. However, he didn’t use his pulpit to assuage battery fears. The hope is that the new mayor will use his ample charisma to deftly dispatch these flares.
“I’d be shocked if the administration wasn’t supportive,” said Jonathan Cohen, policy director for NY SEIA, stating Mamdani “has proven to be one of the most effective messengers in New York City politics in a long time and I think his success shows that for at least the majority of folks who turned out in the election, he is a trusted voice. It is an exercise that he has the tools to make this argument.”
City Hall couldn’t be reached for comment on this story. But it’s worth noting the likeliest pathway to any fresh action will come from the city council, then upwards. Hearings on potential legislation around battery storage siting only began late last year. In those hearings, it appears policymakers are erring on the side of safety instead of blanket restrictions.
The week’s most notable updates on conflicts around renewable energy and data centers.
1. Wasco County, Oregon – They used to fight the Rajneeshees, and now they’re fighting a solar farm.
2. Worcester County, Maryland – The legal fight over the primary Maryland offshore wind project just turned in an incredibly ugly direction for offshore projects generally.
3. Manitowoc County, Wisconsin – Towns are starting to pressure counties to ban data centers, galvanizing support for wider moratoria in a fashion similar to what we’ve seen with solar and wind power.
4. Pinal County, Arizona – This county’s commission rejected a 8,122-acre solar farm unanimously this week, only months after the same officials approved multiple data centers.
.
A conversation with Adib Nasle, CEO of Xendee Corporation
Today’s Q&A is with Adib Nasle, CEO of Xendee Corporation. Xendee is a microgrid software company that advises large power users on how best to distribute energy over small-scale localized power projects. It’s been working with a lot with data centers as of late, trying to provide algorithmic solutions to alleviate some of the electricity pressures involved with such projects.
I wanted to speak with Nasle because I’ve wondered whether there are other ways to reduce data center impacts on local communities besides BYO power. Specifically, I wanted to know whether a more flexible and dynamic approach to balancing large loads on the grid could help reckon with the cost concerns driving opposition to data centers.
Our conversation is abridged and edited slightly for clarity.
So first of all, tell me about your company.
We’re a software company focused on addressing the end-to-end needs of power systems – microgrids. It’s focused on building the economic case for bringing your own power while operating these systems to make sure they’re delivering the benefits that were promised. It’s to make sure the power gap is filled as quickly as possible for the data center, while at the same time bringing the flexibility any business case needs to be able to expand, understand, and adopt technologies while taking advantage of grid opportunities, as well. It speaks to multiple stakeholders: technical stakeholders, financial stakeholders, policy stakeholders, and the owner and operator of a data center.
At what point do you enter the project planning process?
From the very beginning. There’s a site. It needs power. Maybe there is no power available, or the power available from the grid is very limited. How do we fill that gap in a way that has a business case tied to it? Whatever objective the customer has is what we serve, whether it’s cost savings or supply chain issues around lead times, and then the resiliency or emissions goals an organization has as well.
It’s about dealing with the gap between what you need to run your chips and what the utility can give you today. These data center things almost always have back-up systems and are familiar with putting power on site. It must now be continuous. We helped them design that.
With our algorithm, you tell it what the site is, what the load requirements are, and what the technologies you’re interested in are. It designs the optimal power system. What do we need? How much money is it going to take and how long?
The algorithm helps deliver on those cost savings, deliverables, and so forth. It’s a decision support system to get to a solution very, very quickly and with a high level of confidence.
How does a microgrid reduce impacts to the surrounding community?
The data center obviously wants to power as quickly and cheaply as possible. That’s the objective of that facility. At the same time, when you start bringing generation assets in, there are a few things that’ll impact the local community. Usually we have carbon monoxide systems in our homes and it warns us, right? Emissions from these assets become important and there’s a need to introduce technologies in a way that introduces that power gap and the air quality need. Our software helps address the emissions component and the cost component. And there are technologies that are silent. Batteries, technology components that are noise compliant.
From a policy perspective and a fairness perspective, a microgrid – on-site power plant you can put right next to the data center – helps unburden the local grid at a cost of upgrades that has no value to ratepayers other than just meeting the needs of one big customer. That one big customer can produce and store their own power and ratepayers don’t see a massive increase in their costs. It solves a few problems.
What are data centers most focused on right now when it comes to energy use, and how do you help?
I think they’re very focused on the timeframe and how quickly they can get that power gap filled, those permits in.
At the end of the day the conversation is about the utility’s relationship with the community as opposed to the data center’s relationship with the utility. Everything’s being driven by timelines and those timelines are inherently leaning towards on-site power solutions and microgrids.
More and more of these data center operators and owners are going off-grid. They’ll plug into the grid with what’s available but they’re not going to wait.
Do you feel like using a microgrid makes people more supportive of a data center?
Whether the microgrid is serving a hospital or a campus or a data center, it’s an energy system. From a community perspective, if it’s designed carefully and they’re addressing the environmental impact, the microgrid can actually provide shock absorbers to the system. It can be a localized generation source that can bring strength and stability to that local, regional grid when it needs help. This ability to take yourself out of the equation as a big load and run autonomously to heal itself or stabilize from whatever shock it's dealing with, that’s a big benefit to the local community.