You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
You’ve probably noticed — even Trump has noticed — but the reason why is as complicated as the grid itself.
You’re not imagining things: Electricity prices are surging.
Electricity rates, which have increased steadily since the pandemic, are now on a serious upward tear. Over the past 12 months, power prices have increased more than twice as fast as inflation, according to recent government data. They will likely keep rising in years to come as new data centers and factories connect to the power grid.
That surge is a major problem for the economy — and for President Trump. On the campaign trail, Trump vowed to cut Americans’ electricity bills in half within his first year in office. “Your electric bill — including cars, air conditioning, heating, everything, your total electric bill — will be 50% less. We’re going to cut it in half,” he said.
Now Trump has mysteriously stopped talking about that pledge, and on Tuesday he blamed renewables for rising electricity rates. Even Trump’s Secretary of Energy Chris Wright has acknowledged that costs are doing the opposite of what the president has promised.
Trump’s promise to cut electricity rates in half was always ridiculous. But while his administration is likely making the electricity crisis worse, the roots of our current power shock did not begin in January.
Why has electricity gotten so much more expensive over the past five years? The answer, despite what the president might say, isn’t renewables. It has far more to do with the part of the power grid you’re most familiar with: the poles and wires outside your window.
Before we begin, a warning: Electricity prices are weird.
In most of the U.S. economy, markets set prices for goods and services in response to supply and demand. But electricity prices emerge from a complicated mix of regulation, fuel costs, and wholesale auction. In general, electricity rates need to cover the costs of running the electricity system — and that turns out to be a complicated task.
You can split costs associated with the electricity system into three broad segments. The biggest and traditionally the most expensive part of the grid is generation — the power plants and the fuels needed to run them. The second category is transmission, which moves electricity across long distances and delivers it to local substations. The final category is distribution, the poles and wires that get electricity the “the last mile” to homes and businesses. (You can think of transmission as the highways for electricity and distribution as the local roads.)
In some states, especially those in the Southeast and Mountain West, monopoly electricity companies run the entire power grid — generation, transmission, and distribution. A quasi-judicial body of state officials regulates what this monopoly can do and what it can charge consumers. These monopoly utilities are supposed to make long-term decisions in partnership with these state commissions, and they must get their permission before they can raise electricity rates. But when fuel costs go up for their power plants — such as when natural gas or oil prices spike — they can often “pass through” those costs directly to consumers.
In other states, such as California or those in the Mid-Atlantic, electricity bills are split in two. The “generation” part of the bill is set through regulated electricity auctions that feature many different power plants and power companies. The market, in other words, sets generation costs. But the local power grid — the infrastructure that delivers electricity to customers — cannot be handled by a market, so it is managed by utilities that cover a particular service area. These local “transmission and distribution” utilities must get state regulators’ approval when they raise rates for their part of the bill.
The biggest driver of the power grid’s rising costs is … the power grid itself.
Historically, generation — building new power plants, and buying the fuel to run them — has driven the lion’s share of electricity rates. But since the pandemic, the cost of building the distribution system has ballooned.
Electricity costs are “now becoming a wires story and less of an electrons story,” Madalsa Singh, an economist at the University of California Santa Barbara, told me. In 2023, distribution made up nearly half of all utility spending, up from 37% in 2019, according to a recent Lawrence Berkeley National Laboratory report.
Where are these higher costs coming from? When you look under the hood, the possibly surprising answer is: the poles and wires themselves. Utilities spent roughly $6 billion more on “overhead poles, towers, and conductors” in 2023 than in 2019, according to the Lawrence Berkeley report. Spending on underground power lines — which are especially important out West to avoid sparking a wildfire — increased by about $4 billion over the same period.
Spending on transformers also surged. Transformers, which connect different circuits on the grid and keep the flow of electricity constant, are a crucial piece of transmission and distribution infrastructure. But they’ve been in critically short supply more or less since the supply chain crunch of the pandemic. Utility spending on transformers has more than doubled since 2019, according to Wood Mackenzie.
At least some of the costs are hitting because the grid is just old, Singh said. As equipment reaches the end of its life, it needs to be upgraded and hardened. But it’s not completely clear why that spike in distribution costs is happening now as opposed to in the 2010s, when the grid was almost as old and in need of repair as it was now.
Some observers have argued that for-profit utilities are “goldplating” distribution infrastructure, spending more on poles and wires because they know that customers will ultimately foot the bill for them. But when Singh studied California power companies, she found that even government-run utilities — i.e. utilities without private investors to satisfy — are now spending more on distribution than they used to, too. Distribution costs, in other words, seem to be going up for everyone.
Sprawling suburbs in some states may be driving some of those costs, she added. In California, people have pushed farther out into semi-developed or rural land in order to find cheaper housing. Because investor-owned utilities have a legal obligation to get wires and electricity to everyone in their service area, these new and more distant housing developments might be more expensive to connect to the grid than older ones.
These higher costs will usually appear on the “transmission and distribution” part of your power bill — the “wires” part, if it is broken out. What’s interesting is that as a share of total utility investment, virtually all of the cost inflation is happening on the distribution side of that ledger. While transmission costs have fluctuated year to year, they have hovered around 20% of total utility investment since 2019, according to the Lawrence Berkeley Labs report.
Higher transmission spending might eventually bring down electricity rates because it could allow utilities to access cheaper power in neighboring service areas — or connect to distant solar or wind projects. (If renewables were driving up power prices as the president claims, you might see it here, in the “transmission” part of the bill.) But Charles Hua, the founder and executive director of the think tank PowerLines, said that even now, most utilities are building out their local grids, not connecting to power projects that are farther away.
The second biggest driver of higher electricity costs is disasters — natural and otherwise.
In California, ratepayers are now partially footing the bill for higher insurance costs associated with the risk of a grid-initiated wildfire, Sam Kozel, a researcher at E9 Insight, told me. Utilities also face higher costs whenever they rebuild the grid after a wildfire because they install sensors and software in their infrastructure that might help avoid the next blaze.
Similar stories are playing out elsewhere. Although the exact hazards vary region by region, some utilities and power grids have had to pay steep costs to rebuild from disasters or prevent the likelihood of the next one occurring.
In the Southeast, for instance, severe storms and hurricanes have knocked out huge swaths of the distribution grid, requiring emergency line crews to come in and rebuild. Those one-time, storm-induced costs then get recovered through higher utility rates over time.
Why have costs gone up so much this decade? Wildfires seem to grow faster now because of climate change — but wildfires in California are also primed to burn by a century of built-up fuel in forests. The increased disaster costs may also be partially the result of the bad luck of where storms happen to hit. Relatively few hurricanes made landfall in the U.S. during the 2010s — just 13, most of which happened in the second half of the decade. Eleven hurricanes have already come ashore in the 2020s.
Because fuel costs are broadly seen as outside a utility’s control, regulators generally give utilities more leeway to pass those costs directly through to customers. So when fuel prices go up, so do rates in many cases.
The most important fuel for the American power grid is natural gas, which produces more than 40% of American electricity. In 2022, surging demand and rising European imports caused American natural gas prices to increase more than 140%. But it can take time for a rise of that magnitude to work its way to consumers, and it can take even longer for electricity prices to come back down.
Although natural gas prices returned to pre-pandemic levels by 2023, utilities paid 30% more for fuel and energy that year than they did in 2019, according to Lawrence Berkeley National Lab. That’s because higher fuel costs do not immediately get processed in power bills.
The ultimate impact of these price shocks can be profound. North Carolina’s electricity rates rose from 2017 to 2024, for instance, largely because of natural gas price hikes, according to an Environmental Defense Fund analysis.
The final contributor to higher power costs is the one that has attracted the most worry in the mainstream press: There is already more demand for electricity than there used to be.
A cascade of new data centers coming onto the grid will use up any spare electron they can get. In some regions, such as the Mid-Atlantic’s PJM power grid, these new data centers are beginning to drive up costs by increasing power prices in the capacity market, an annual auction to lock in adequate supply for moments of peak demand. Data centers added $9.4 billion in costs last year, according to an independent market monitor.
Under PJM’s rules, it will take several years for these capacity auction prices to work their way completely into consumer prices — but the process has already started. Hua told me that the power bill for his one-bedroom apartment in Washington, D.C., has risen over the past year thanks largely to these coming demand shocks. (The Mid-Atlantic grid implemented a capacity-auction price cap this year to try to limit future spikes.)
Across the country, wherever data centers have been hooked up to the grid but have not supplied or purchased their own around-the-clock power, costs will probably rise for consumers. But it will take some time for those costs to be felt.
In order to meet that demand, utilities and power providers will need to build more power plants, transmission lines, and — yes — poles and wires in the years to come. But recent Trump administration policies will make this harder. The reconciliation bill’s termination of wind and solar tax credits, its tariffs on electrical equipment, and a new swathe of anti-renewable regulations will make it much more expensive to add new power capacity to the strained grid. All those costs will eventually hit power bills, too, even if it takes a few years.
“We're just getting started in terms of price increases, and nothing the federal administration is doing ‘to assure American energy dominance’ is working in the right direction,” Kozel said. “They’re increasing all the headwinds.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob and Jesse riff on the state of utility regulation in America — and how to fix it.
Electricity is getting more expensive — and the culprit, in much of the country, is the poles and wires. Since the pandemic, utility spending on the “last mile” part of the power grid has surged, and it seems likely to get worse before it gets better.
How can we fix it? Well, we can start by fixing utility regulation.
On today’s episode of Shift Key, Rob and Jesse talk about why utility regulation sucks and how to make it better. In Europe and other parts of the world, utilities are better at controlling their cost overruns. What can the U.S. learn from their experience? Why is it so hard to regulate electricity companies? And how should the coming strains of electrification, and climate change affect how we think about the power grid? Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: This is, I think, exactly where the wonky habit of referring to this as “T&D,” or transmission and distribution —
Jesse Jenkins: Yeah, we should split those.
Meyer: — simply because it’s a part of people’s bills, is actually driving the misnomer, because it allows renewable opponents — like the current administration, like officials in the current administration to say, Oh, well, the transmission and distribution section, the wire is part of the grid, is the surging part of electricity costs, this is driven by renewables. And that kind of does cohere to a mental model people might have of, oh, you have to build a lot of solar farms everywhere, or, oh, you have to build a lot of wind farms everywhere. They’re distributed over the landscape, unlike a single big power plant or something, and therefore that is driving up transmission spending.
And indeed, for renewables, as Jesse was saying, you do have to build more transmission. But where you look at the actual increase in prices is coming from in that T&D section of the bill, it is not at all that story. It’s all coming from distribution.
Jenkins: It’s certainly not coming from long-distance transmission because we’re not building any long-distance transmission, right?
And that’s the other big problem, is we have not been building transmission at anywhere near the pace that we have historically during periods when demand was growing rapidly to tap into the best resources around the country. But also, then, we should be, if we were to try to tap into American renewable energy resources that could lower consumer costs. The transmission we are building is mostly also local, short-distance, reliability-related upgrades that the transmission utilities are able to build with much less regulatory oversight.
Mentioned:
Rob on how electricity got so expensive
Matthew Zeitlin on Trump’s electricity price problem
Ofgem’s price cap
Previously on Shift Key: How to Talk to Your Friendly Neighborhood Public Utility Regulator
Jesse’s upshift (plus one more); Rob’s upshift.
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
Music for Shift Key is by Adam Kromelow.
A new report from Rhodium Group takes stock of how Trump’s policies will affect America’s emissions future.
In less than a year, the Trump administration has fully transformed U.S. climate and energy policy. The changes have come through the tax code, regulatory repeals, and sweeping but fickle tariffs. Taken together, it means that the worst-case scenario for climate action under Biden has now become the best-case scenario under Trump.
That’s one of the key findings of the Rhodium Group’s latest Taking Stock report, an annual look at how U.S. policies will shape our energy system and emissions trajectory. It’s the first comprehensive assessment of the degree to which Trump’s second term, early as it is, could impede the energy transition. While total U.S. emissions are not expected to go up in the coming decade, the report projects greatly diminished progress compared to the path we were on a year ago.
That point is most clearly illustrated by the following finding: For the past two decades, the U.S. has been reducing emissions by an average of 1% per year. In the coming decade, Rhodium projects that Trump’s policies could reduce this rate by more than half.
Last year’s report, produced at the absolute peak of U.S. climate policy, modeled the effect of clean energy tax credits in the Inflation Reduction Act, new regulations on cars, trucks, power plants, and oil and gas operations, Biden’s freeze on new liquified natural gas export facilities, and a number of state-level policies. While these actions were not expected to be enough to fulfill Biden’s promise to the rest of the world under the Paris Agreement to cut emissions by 50% to 52% by 2030 compared to 2005, they represented America’s first credible show of climate leadership on the global stage. The report estimated that by 2035, we would be able to reduce greenhouse gas emissions 38% to 56%.
Now the low end of that spectrum has become overly optimistic. Rhodium has revised its estimate downwards to reflect revisions to the tax credits in the One Big Beautiful Bill Act — namely, the early end of subsidies for wind, solar, and EVs. The new report also takes into account tariffs, which primarily serve to reduce industrial activity in the U.S. in the near term, Congress’ cancellation of California’s vehicle emissions waivers, and Trump’s efforts to roll back greenhouse gas regulations. The result is that Rhodium expects emissions to decline by 26% to 35% by 2035.
The gap between this projection and last year’s represents about 800 million to 1.3 billion metric tons of carbon. On the high end, that’s roughly equivalent to the emissions from California, Texas, and Michigan combined.
The estimates are expressed as a range because the report looks at what would happen under three different scenarios. The highest emissions scenario models a world where oil and gas prices remain low, clean technology costs remain high, and the economy grows faster than current projections. The low emissions scenario is the opposite — it shows how Trump’s policies will affect our trajectory if oil and gas prices are higher, clean technologies see steeper cost declines and performance improvements, and economic growth is more aligned with current projections. The mid-emissions scenario splits the difference.
The most significant policies for shifting our emissions trajectory, according to Ben King, one of the report’s authors, are the combination of tax credits and regulations affecting the power sector. The regulations, in particular, mean the difference between having almost no coal plants on the grid by 2040 and retaining as many as 77 gigawatts of coal power by that date. “That’s still a massive decline in the amount of coal relative to what we have today,” King said, “but it is a very different-looking grid than if those regulations were to stay in place.”
Whether coal plants are replaced by clean energy or natural gas largely depends on the cost of each. Somewhat counterintuitively, the report projects less coal in the high emissions scenario because low natural gas prices mean that gas plants supplant both coal and renewables.
Even the forms of clean energy that the Trump administration supports, such as nuclear and geothermal, are not expected to play a significant role in reducing emissions over the next 15 years. For example, in the low emissions scenario, where oil and gas prices are high, about 2 gigawatts of new advanced nuclear is added to the grid in the 2030s. But because the tax credit for existing nuclear plants is set to expire in 2032, the models project that 2 gigawatts to 5 gigawatts of nuclear power will shut down in the 2030s, more than canceling out the additions.
The effect of unwinding transportation-related regulations and incentives is more straightforward — fewer EVs, higher emissions. Last year’s report projected that up to 72% of all light duty vehicle sales would be electric by 2032. The new report expects light duty EV sales to make up just 43% of the total, at most, by 2040. This is almost entirely due to the loss of greenhouse gas rules. If those remained in place, EV sales could reach 71% by 2040.
Perhaps the only bright side in the report is a section on household energy costs. The loss of tax credits for renewables and home efficiency upgrades will raise electricity bills compared to the projections in last year’s report. But despite that, Rhodium expects overall household energy costs to decrease in the coming decades — in all scenarios. That’s primarily due to the switch to electric vehicles, which lowers transportation costs for EV drivers and puts downward pressure on the cost of gasoline for everyone else.
No modeling exercise is perfect, and this one contains a number of caveats. One of the biggest points of uncertainty right now is how much energy demand from data centers will grow. The authors modeled just one pathway for data centers, with power demand nearly doubling by 2030 and more than tripling by 2040. But they note that analyst estimates fall as much as 80% higher or 80% lower. If demand turns out to be higher, “it would effectively turn up the dial on the trends that we’re seeing already,” King said.
Another area of uncertainty is that the Trump administration is working overtime to find creative new ways to stymie wind and solar development, as my colleague Jael Holzman has documented. It could turn out that these moves are even more effective than what Rhodium has captured in this report, King told me. With tariffs changing on a weekly, sometimes even daily basis, it was also difficult to capture how much of an impact they will have on technology prices, he said. Lastly, there’s a human behavior element that’s difficult for models to project.
“In the absence of government support, this is all going to happen on the basis of what private investors see as wise moves moving forward,” King said. “I don’t know the extent to which they might look at the uncertainty that the Trump administration is introducing for some of these technologies, and say, ‘Gosh, I’m going to avoid that for the foreseeable future, and maybe even beyond.’”
You might even call the Energy Secretary ... Chris Wrong.
I resent, as a rule, any news story about a politician’s social media presence. The social media post is simultaneously the lowest form of political communication and, for the journalist, the lowest hanging fruit. It is too easy to sit at your laptop, read tweets, and then write about them.
But I speak for hundreds of engineers, policy wonks, and hangers-on across the world of energy and climate when I ask: What the heck is happening with Chris Wright’s Twitter account?
Chris Wright is the current Secretary of Energy; before his appointment, he was the chief executive officer of Liberty Energy, the country’s second largest fracking company. He has been by far the most publicity-seeking member of President Trump’s energy policy team. He has helped oversee the president’s somewhat contradictory goals of seeking to reduce energy costs for Americans, support domestic fossil fuel companies, get OPEC to drill more, export as much natural gas as possible, and block the construction of new large-scale transmission lines and wind farms.
His substantive policy work is the focus of many other articles on Heatmap. For now, I want to focus on his and his department’s unpredictably confused political communications.
It began with the Department of Energy on the social network X. Several weeks ago, I started to conclude that the official agency account must have at least two authors. One of these people is familiar with how federal agencies usually speak — even if they add a small Trumpian flourish:
The other enjoys capitalizing verbs and has only a vague grasp of economic history:
One could nitpick here — “planes,” in the mid-1800s? — but there is no need to do so. As time has gone on, the official Energy Department account has begun to make more meaningful errors.
On Monday, for instance, the official DOE account proclaimed: “6 gigawatts of AMERICAN NUCLEAR ENERGY added to our grid!”
Six gigawatts of new nuclear energy is a lot. It took 11 years to build two new nuclear reactors at Plant Vogtle in Georgia, and that project added only 2.2 gigawatts. But the U.S. did not really add 6 gigawatts. In reality, the Tennessee Valley Authority had signed a confidential memo to eventually develop up to 6 gigawatts of modular nuclear reactor capacity. The memo contained no project timeline or financial terms. These 6 gigawatts remain, in other words, largely hypothetical.
As X users will know, some especially erroneous posts now get a “community note,” a community correction of sorts containing “important context” or an outright fact check written by other users. These notes are supposed to contain a link to an authoritative source. The Energy Department “6 gigawatts” tweet is the first post I’ve ever seen to get a community note linking to a news story also linked to in the post itself.
But this is not the end of the foolishness. Take this claim, from last week:
This is just not a very sophisticated thing to say. It is true that wind and solar pose a distinct reliability challenge for power grids, and that grid engineers have expended time and effort thinking about how to manage that challenge. It is even true that advocates sometimes downplay these challenges. But it is not true that these technologies — or the power they generate — are “essentially worthless.” Grid-scale batteries, for instance, exist; they can store energy during the day and then release it onto the grid at times of peak demand. Transmission lines — like the sizable Grain Belt Express project, which was due to receive a federal loan guarantee until Wright canceled the funding — can also help manage these resources.
But perhaps such errors are forgivable when they come from an official account. What’s odd is that the secretary’s own account has made even stranger errors:
I had to reread this post several times to make sure I understood it correctly. Even then, I didn’t believe I had the right interpretation until the internet energy pundit Alex Epstein clarified it.
At first, I thought Wright was making some technical argument about how solar panels will never be able to meet total global energy demand. This would not have been true, but at least it would have been sort of interesting. No, per Epstein, what Wright was trying to communicate is that if you coated the world in solar panels, you would only produce electricity. And since electricity makes up 20% of the world’s total energy use today, “you would” — as Wright says “only be producing 20% of global energy.”
Never mind that if you did cover the world with solar panels (which would, to be clear, be a very bad idea), you would in fact produce vastly more energy than the global economy consumes today. Never mind that if you even covered half or a quarter of the world with solar panels (still a bad idea), you would obviously shift the economics of electricity — so that you could then, for instance, use the excess power to synthesize liquid fuel replacements for use in cars, ships, planes, etc. Never mind that, by one estimate, a single solar farm the size of New Mexico would meet the world’s electricity demand. (Building this would also be a bad idea, but not nearly as bad as the others.)
No, Wright is not saying any of that. What Wright is saying is the far more inane thought that solar panels only generate electricity, and the global economy does not only run on electricity. Thank you for that insight, Mr. Secretary.
Perhaps Wright does not know much about renewables; he was, after all, a fracking executive until recently. But his account is also curiously mistaken about fossil fuels:
This tweet is somehow wrong twice — it understates our own accomplishments. The United States is already the world’s powerhouse of natural gas. It has held that position since the first Obama administration, when it surpassed Russia to become the leading producer of natural gas globally. It became the world’s largest exporter of liquified natural gas in 2023.
Natural gas, however, is not the world’s fastest growing source of energy; it is merely the fastest growing source of fossil fuel energy. The fastest growing energy source — of any kind — is solar photovoltaics. Solar generation grew by an astounding 30% from 2023 to 2024, according to the International Energy Agency. By a slightly different metric, renewables (which include wind) grew by 6% last year, while natural gas grew by 2.7%, per the IEA.
It is worth reading some of the replies to Wright’s solar tweet; what you see are plenty of Trump-friendly (or at least Trump-agnostic) accounts raising their eyebrows at his clownishness. Fossil nerds, based tech bros, even AI experts are raising their eyebrows and asking: Surely the Energy Secretary couldn’t be this, well, ignorant?
I can’t claim to know what’s happening in Wright’s mind. But I do know what’s happening with his policy — and this weak messaging, in my view, points to the intractability of Wright’s position. On the one hand, Wright leads the Trump administration’s energy policy, and that policy is now dominated by a culture war against any type of electricity generation that doesn’t, in some way, “own the libs” — meaning coal, natural gas, and nuclear. The government has arbitrarily halted offshore wind construction, blocked hundreds of millions in funding, and yanked approvals away from nearly complete projects. Even if Wright believes that offshore wind is ill-advised, this kind of interference with businesses and contracts is even more costly — it is not how someone acts when he is focused on energy affordability above all.
On the other hand, Wright represents that quadrant of the modern Republican Party that remains focused (however feebly) on technological development and economic growth. This cohort champions artificial intelligence and American re-industrialization; they want an abundance of cheap energy; they fear a rising China. They are also alert and informed enough to realize that China must be doing something right — otherwise it wouldn’t be industrializing so quickly — and that a country that can add 256 gigawatts of electricity in six months without breaking a sweat will probably find some useful way to use it.
Between these two poles, Wright must scurry. So he insists that the Trump administration is working to add as much electricity capacity as possible for AI, and brags that AI turns electricity into intelligence, then qualifies that only some types of electricity generation are good for AI:
He says that AI “is going to massively empower the human mind” and transform the economy, but adds implicitly that this can only come under certain conditions, which don’t involve power lines that irritate farmers, wind farms that trouble the president, or the fastest-growing new source of power on the planet. He calls AI “the Manhattan Project of our time” and says that therefore the government needs to get out of the way.
It is an act that has worked, up to a point, so far. But Wright’s public performance of his complicated role can only go on for so long. Everyone who enters the Trump administration imagines that they will do so with their public image and integrity intact. Not everyone can pull it off.