You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
You’ve probably noticed — even Trump has noticed — but the reason why is as complicated as the grid itself.

You’re not imagining things: Electricity prices are surging.
Electricity rates, which have increased steadily since the pandemic, are now on a serious upward tear. Over the past 12 months, power prices have increased more than twice as fast as inflation, according to recent government data. They will likely keep rising in years to come as new data centers and factories connect to the power grid.
That surge is a major problem for the economy — and for President Trump. On the campaign trail, Trump vowed to cut Americans’ electricity bills in half within his first year in office. “Your electric bill — including cars, air conditioning, heating, everything, your total electric bill — will be 50% less. We’re going to cut it in half,” he said.
Now Trump has mysteriously stopped talking about that pledge, and on Tuesday he blamed renewables for rising electricity rates. Even Trump’s Secretary of Energy Chris Wright has acknowledged that costs are doing the opposite of what the president has promised.
Trump’s promise to cut electricity rates in half was always ridiculous. But while his administration is likely making the electricity crisis worse, the roots of our current power shock did not begin in January.
Why has electricity gotten so much more expensive over the past five years? The answer, despite what the president might say, isn’t renewables. It has far more to do with the part of the power grid you’re most familiar with: the poles and wires outside your window.
Before we begin, a warning: Electricity prices are weird.
In most of the U.S. economy, markets set prices for goods and services in response to supply and demand. But electricity prices emerge from a complicated mix of regulation, fuel costs, and wholesale auction. In general, electricity rates need to cover the costs of running the electricity system — and that turns out to be a complicated task.
You can split costs associated with the electricity system into three broad segments. The biggest and traditionally the most expensive part of the grid is generation — the power plants and the fuels needed to run them. The second category is transmission, which moves electricity across long distances and delivers it to local substations. The final category is distribution, the poles and wires that get electricity the “the last mile” to homes and businesses. (You can think of transmission as the highways for electricity and distribution as the local roads.)
In some states, especially those in the Southeast and Mountain West, monopoly electricity companies run the entire power grid — generation, transmission, and distribution. A quasi-judicial body of state officials regulates what this monopoly can do and what it can charge consumers. These monopoly utilities are supposed to make long-term decisions in partnership with these state commissions, and they must get their permission before they can raise electricity rates. But when fuel costs go up for their power plants — such as when natural gas or oil prices spike — they can often “pass through” those costs directly to consumers.
In other states, such as California or those in the Mid-Atlantic, electricity bills are split in two. The “generation” part of the bill is set through regulated electricity auctions that feature many different power plants and power companies. The market, in other words, sets generation costs. But the local power grid — the infrastructure that delivers electricity to customers — cannot be handled by a market, so it is managed by utilities that cover a particular service area. These local “transmission and distribution” utilities must get state regulators’ approval when they raise rates for their part of the bill.
The biggest driver of the power grid’s rising costs is … the power grid itself.
Historically, generation — building new power plants, and buying the fuel to run them — has driven the lion’s share of electricity rates. But since the pandemic, the cost of building the distribution system has ballooned.
Electricity costs are “now becoming a wires story and less of an electrons story,” Madalsa Singh, an economist at the University of California Santa Barbara, told me. In 2023, distribution made up nearly half of all utility spending, up from 37% in 2019, according to a recent Lawrence Berkeley National Laboratory report.

Where are these higher costs coming from? When you look under the hood, the possibly surprising answer is: the poles and wires themselves. Utilities spent roughly $6 billion more on “overhead poles, towers, and conductors” in 2023 than in 2019, according to the Lawrence Berkeley report. Spending on underground power lines — which are especially important out West to avoid sparking a wildfire — increased by about $4 billion over the same period.
Spending on transformers also surged. Transformers, which connect different circuits on the grid and keep the flow of electricity constant, are a crucial piece of transmission and distribution infrastructure. But they’ve been in critically short supply more or less since the supply chain crunch of the pandemic. Utility spending on transformers has more than doubled since 2019, according to Wood Mackenzie.
At least some of the costs are hitting because the grid is just old, Singh said. As equipment reaches the end of its life, it needs to be upgraded and hardened. But it’s not completely clear why that spike in distribution costs is happening now as opposed to in the 2010s, when the grid was almost as old and in need of repair as it was now.
Some observers have argued that for-profit utilities are “goldplating” distribution infrastructure, spending more on poles and wires because they know that customers will ultimately foot the bill for them. But when Singh studied California power companies, she found that even government-run utilities — i.e. utilities without private investors to satisfy — are now spending more on distribution than they used to, too. Distribution costs, in other words, seem to be going up for everyone.
Sprawling suburbs in some states may be driving some of those costs, she added. In California, people have pushed farther out into semi-developed or rural land in order to find cheaper housing. Because investor-owned utilities have a legal obligation to get wires and electricity to everyone in their service area, these new and more distant housing developments might be more expensive to connect to the grid than older ones.
These higher costs will usually appear on the “transmission and distribution” part of your power bill — the “wires” part, if it is broken out. What’s interesting is that as a share of total utility investment, virtually all of the cost inflation is happening on the distribution side of that ledger. While transmission costs have fluctuated year to year, they have hovered around 20% of total utility investment since 2019, according to the Lawrence Berkeley Labs report.
Higher transmission spending might eventually bring down electricity rates because it could allow utilities to access cheaper power in neighboring service areas — or connect to distant solar or wind projects. (If renewables were driving up power prices as the president claims, you might see it here, in the “transmission” part of the bill.) But Charles Hua, the founder and executive director of the think tank PowerLines, said that even now, most utilities are building out their local grids, not connecting to power projects that are farther away.
The second biggest driver of higher electricity costs is disasters — natural and otherwise.
In California, ratepayers are now partially footing the bill for higher insurance costs associated with the risk of a grid-initiated wildfire, Sam Kozel, a researcher at E9 Insight, told me. Utilities also face higher costs whenever they rebuild the grid after a wildfire because they install sensors and software in their infrastructure that might help avoid the next blaze.
Similar stories are playing out elsewhere. Although the exact hazards vary region by region, some utilities and power grids have had to pay steep costs to rebuild from disasters or prevent the likelihood of the next one occurring.
In the Southeast, for instance, severe storms and hurricanes have knocked out huge swaths of the distribution grid, requiring emergency line crews to come in and rebuild. Those one-time, storm-induced costs then get recovered through higher utility rates over time.
Why have costs gone up so much this decade? Wildfires seem to grow faster now because of climate change — but wildfires in California are also primed to burn by a century of built-up fuel in forests. The increased disaster costs may also be partially the result of the bad luck of where storms happen to hit. Relatively few hurricanes made landfall in the U.S. during the 2010s — just 13, most of which happened in the second half of the decade. Eleven hurricanes have already come ashore in the 2020s.
Because fuel costs are broadly seen as outside a utility’s control, regulators generally give utilities more leeway to pass those costs directly through to customers. So when fuel prices go up, so do rates in many cases.
The most important fuel for the American power grid is natural gas, which produces more than 40% of American electricity. In 2022, surging demand and rising European imports caused American natural gas prices to increase more than 140%. But it can take time for a rise of that magnitude to work its way to consumers, and it can take even longer for electricity prices to come back down.
Although natural gas prices returned to pre-pandemic levels by 2023, utilities paid 30% more for fuel and energy that year than they did in 2019, according to Lawrence Berkeley National Lab. That’s because higher fuel costs do not immediately get processed in power bills.
The ultimate impact of these price shocks can be profound. North Carolina’s electricity rates rose from 2017 to 2024, for instance, largely because of natural gas price hikes, according to an Environmental Defense Fund analysis.
The final contributor to higher power costs is the one that has attracted the most worry in the mainstream press: There is already more demand for electricity than there used to be.
A cascade of new data centers coming onto the grid will use up any spare electron they can get. In some regions, such as the Mid-Atlantic’s PJM power grid, these new data centers are beginning to drive up costs by increasing power prices in the capacity market, an annual auction to lock in adequate supply for moments of peak demand. Data centers added $9.4 billion in costs last year, according to an independent market monitor.
Under PJM’s rules, it will take several years for these capacity auction prices to work their way completely into consumer prices — but the process has already started. Hua told me that the power bill for his one-bedroom apartment in Washington, D.C., has risen over the past year thanks largely to these coming demand shocks. (The Mid-Atlantic grid implemented a capacity-auction price cap this year to try to limit future spikes.)
Across the country, wherever data centers have been hooked up to the grid but have not supplied or purchased their own around-the-clock power, costs will probably rise for consumers. But it will take some time for those costs to be felt.
In order to meet that demand, utilities and power providers will need to build more power plants, transmission lines, and — yes — poles and wires in the years to come. But recent Trump administration policies will make this harder. The reconciliation bill’s termination of wind and solar tax credits, its tariffs on electrical equipment, and a new swathe of anti-renewable regulations will make it much more expensive to add new power capacity to the strained grid. All those costs will eventually hit power bills, too, even if it takes a few years.
“We're just getting started in terms of price increases, and nothing the federal administration is doing ‘to assure American energy dominance’ is working in the right direction,” Kozel said. “They’re increasing all the headwinds.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The fourth-generation gas-cooled reactor company ZettaJoule is setting up shop at an unnamed university.
The appeal of next-generation nuclear technology is simple. Unlike the vast majority of existing reactors that use water, so-called fourth-generation units use coolants such as molten salt, liquid metal, or gases that can withstand intense heat such as helium. That allows the machines to reach and maintain the high temperatures necessary to decarbonize industrial processes, which currently only fossil fuels are able to reach.
But the execution requirements of these advanced reactors are complex, making skepticism easy to understand. While the U.S., Germany, and other countries experimented with fourth-generation reactors in earlier decades, there is only one commercial unit in operation today. That’s in China, arguably the leader in advanced nuclear, which hooked up a demonstration model of a high-temperature gas-cooled reactor to its grid two years ago, and just approved building another project in September.
Then there’s Japan, which has been operating its own high-temperature gas-cooled reactor for 27 years at a government research site in Ibaraki Prefecture, about 90 minutes north of Tokyo by train. Unlike China’s design, it’s not a commercial power reactor. Also unlike China’s design, it’s coming to America.
Heatmap has learned that ZettaJoule, an American-Japanese startup led by engineers who worked on that reactor, is now coming out of stealth and laying plans to build its first plant in Texas.
For months, the company has quietly staffed up its team of American and Japanese executives, including a former U.S. Nuclear Regulatory Commission official and a high-ranking ex-administrator from the industrial giant Mitsubishi. It’s now preparing to decamp from its initial home base in Rockville, Maryland, to the Lone Star State as it prepares to announce its debut project at an as-yet-unnamed university in Texas.
“We haven’t built a nuclear reactor in many, many decades, so you have only a handful of people who experienced the full cycle from design to operations,” Mitsuo Shimofuji, ZettaJoule’s chief executive, told me. “We need to complete this before they retire.”
That’s where the company sees its advantage over rivals in the race to build the West’s first commercial high-temperature gas reactor, such as Amazon-backed X-energy or Canada’s StarCore nuclear. ZettaJoule’s chief nuclear office, Kazuhiko Kunitomi, oversaw the construction of Japan’s research reactor in the 1990s. He’s considered Japan’s leading expert in high-temperature gas reactors.
“Our chief nuclear officer and some of our engineers are the only people in the Western world who have experience of the whole cycle from design to construction to operation of a high temperature gas reactor,” Shimofuji said.
Like X-energy’s reactor, ZettaJoule’s design is a small modular reactor. With a capacity of 30 megawatts of thermal output and 12 megawatts of electricity, the ZettaJoule reactor qualifies as a microreactor, a subcategory of SMR that includes anything 20 megawatts of electricity or less. Both companies’ reactors will also run on TRISO, a special kind of enriched uranium with cladding on each pellet that makes the fuel safer and more efficient at higher temperatures.
While X-energy’s debut project that Amazon is financing in Washington State is a nearly 1-gigawatt power station made up of at least a dozen of the American startup’s 80-megawatt reactors, ZettaJoule isn’t looking to generate electricity.
The first new reactor in Texas will be a research reactor, but the company’s focus is on producing heat. The reactor already working in Japan, which produces heat, demonstrates that the design can reach 950 degrees Celsius, roughly 25% higher than the operating temperature of China’s reactor.
The potential for use in industrial applications has begun to attract corporate partners. In a letter sent Monday to Ted Garrish, the U.S. assistant secretary of energy in charge of nuclear power — a copy of which I obtained — the U.S. subsidiary of the Saudi Arabian oil goliath Aramco urged the Trump administration to support ZettaJoule, and said that it would “consider their application to our operations” as the technology matures. ZettaJoule is in talks with at least two other multinational corporations.
The first new reactor ZettaJoule builds won’t be identical to the unit in Japan, Shimofuji said.
“We are going to modernize this reactor together with the Japanese and U.S. engineering partners,” he said. “The research reactor is robust and solid, but it’s over-engineered. What we want to do is use the safety basis but to make it more economic and competitive.”
Once ZettaJoule proves its ability to build and operate a new unit in Texas, the company will start exporting the technology back to Japan. The microreactor will be its first product line.
“But in the future, we can scale up to 20 times bigger,” Shimofuji said. “We can do 600 megawatts thermal and 300 megawatts electric.”
Another benefit ZettaJoule can tap into is the sweeping deal President Donald Trump brokered with Japanese Prime Minister Sanae Takaichi in October, which included hundreds of billions of dollars for new reactors of varying sizes, including the large-scale Westinghouse AP1000. That included financing to build GE Vernova Hitachi Nuclear Energy’s 300-megawatt BWRX-300, one of the West’s leading third-generation SMRs, which uses a traditional water-cooled design.
Unlike that unit, however, ZettaJoule’s micro-reactor is not a first-of-a-kind technology, said Chris Gadomski, the lead nuclear analyst at the consultancy BloombergNEF.
“It’s operated in Japan for a long, long time,” he told me. “So that second-of-a-kind is an attractive feature. Some of these companies have never operated a reactor. This one has done that.”
A similar dynamic almost played out with large-scale reactors more than two decades ago. In the late 1990s, Japanese developers built four of GE and Hitachi’s ABWR reactor, a large-scale unit with some of the key safety features that make the AP1000 stand out compared to its first- and second-generation predecessors. In the mid 2000s, the U.S. certified the design and planned to build a pair in South Texas. But the project never materialized, and America instead put its resources into Westinghouse’s design.
But the market is different today. Electricity demand is surging in the near term from data centers and in the long term from electrification of cars and industry. The need to curb fossil fuel consumption in the face of worsening climate change is more widely accepted than ever. And China’s growing dominance over nuclear energy has rattled officials from Tokyo to Washington.
“We need to deploy this as soon as possible to not lose the experienced people in Japan and the U.S.,” Shimofuji said. “In two or three years time, we will get a construction permit ideally. We are targeting the early 2030s.”
If every company publicly holding itself to that timeline is successful, the nuclear industry will be a crowded field. But as history shows, those with the experience to actually take a reactor from paper to concrete may have an advantage.
It’s now clear that 2026 will be big for American energy, but it’s going to be incredibly tense.
Over the past 365 days, we at The Fight have closely monitored numerous conflicts over siting and permitting for renewable energy and battery storage projects. As we’ve done so, the data center boom has come into full view, igniting a tinderbox of resentment over land use, local governance and, well, lots more. The future of the U.S. economy and the energy grid may well ride on the outcomes of the very same city council and board of commissioners meetings I’ve been reporting on every day. It’s a scary yet exciting prospect.
To bring us into the new year, I wanted to try something a little different. Readers ask me all the time for advice with questions like, What should I be thinking about right now? And, How do I get this community to support my project? Or my favorite: When will people finally just shut up and let us build things? To try and answer these questions and more, I wanted to give you the top five trends in energy development (and data centers) I’ll be watching next year.
The best thing going for American renewable energy right now is the AI data center boom. But the backlash against developing these projects is spreading incredibly fast.
Do you remember last week when I told you about a national environmental group calling for data center moratoria across the country? On Wednesday, Senator Bernie Sanders called for a nationwide halt to data center construction until regulations are put in place. The next day, the Working Families Party – a progressive third party that fields candidates all over the country for all levels of government – called for its candidates to run in opposition to new data center construction.
On the other end of the political spectrum, major figures in the American right wing have become AI skeptics critical of the nascent data center buildout, including Florida Governor Ron DeSantis, Missouri Senator Josh Hawley, and former Trump adviser Steve Bannon. These figures are clearly following the signals amidst the noise; I have watched in recent months as anti-data center fervor has spread across Facebook, with local community pages and groups once focused on solar and wind projects pivoting instead to focus on data centers in development near them.
In other words, I predicted just one month ago, an anti-data center political movement is forming across the country and quickly gaining steam (ironically aided by the internet and algorithms powered by server farms).
I often hear from the clean energy sector that the data center boom will be a boon for new projects. Renewable energy is the fastest to scale and construct, the thinking goes, and therefore will be the quickest, easiest, and most cost effective way to meet the projected spike in energy demand.
I’m not convinced yet that this line of thinking is correct. But I’m definitely sure that no matter the fuel type, we can expect a lot more transmission development, and nothing sparks a land use fight more easily than new wires.
Past is prologue here. One must look no further than the years-long fight over the Piedmont Reliability Project, a proposed line that would connect a nuclear power plant in Pennsylvania to data centers in Virginia by crossing a large swathe of Maryland agricultural land. I’ve been covering it closely since we put the project in our inaugural list of the most at-risk projects, and the conflict is now a clear blueprint.
In Wisconsin, a billion-dollar transmission project is proving this thesis true. I highly recommend readers pay close attention to Port Washington, where the release of fresh transmission line routes for a massive new data center this week has aided an effort to recall the city’s mayor for supporting the project. And this isn’t even an interstate project like Piedmont.
While I may not be sure of the renewable energy sector’s longer-term benefits from data center development, I’m far more confident that this Big Tech land use backlash is hitting projects right now.
The short-term issue for renewables developers is that opponents of data centers use arguments and tactics similar to those deployed by anti-solar and anti-wind advocates. Everyone fighting data centers is talking about ending development on farmland, avoiding changes to property values, stopping excess noise and water use, and halting irreparable changes to their ways of life.
Only one factor distinguishes data center fights from renewable energy fights: building the former potentially raises energy bills, while the latter will lower energy costs.
I do fear that as data center fights intensify nationwide, communities will not ban or hyper-regulate the server farms in particular, but rather will pass general bans that also block the energy projects that could potentially power them. Rural counties are already enacting moratoria on solar and wind in tandem with data centers – this is not new. But the problem will worsen as conflicts spread, and it will be incumbent upon the myriad environmentalists boosting data center opponents to not accidentally aid those fighting zero-carbon energy.
This week, the Bureau of Land Management approved its first solar project in months: the Libra facility in Nevada. When this happened, I received a flood of enthusiastic and optimistic emails and texts from sources.
We do not yet know whether the Libra approval is a signal of a thaw inside the Trump administration. The Interior Department’s freeze on renewables permitting decisions continues mostly unabated, and I have seen nothing to indicate that more decisions like this are coming down the pike. What we do know is that ahead of a difficult midterm election, the Trump administration faces outsized pressure to do more to address “affordability,” Democrats plan to go after Republicans for effectively repealing the Inflation Reduction Act and halting permits for solar and wind projects, and there’s a grand bargain to be made in Congress over permitting reform that rides on an end to the permitting freeze.
I anticipate that ahead of the election and further permitting talks in Congress, the Trump administration will mildly ease its chokehold on solar and wind permits because that is the most logical option in front of them. I do not think this will change the circumstances for more than a small handful of projects sited on federal lands that were already deep in the permitting process when Trump took power.
It’s impossible to conclude a conversation about next year’s project fights without ending on the theme that defined 2025: battery fire fears are ablaze, and they’ll only intensify as data centers demand excess energy storage capacity.
The January Moss Landing fire incident was a defining moment for an energy sector struggling to grapple with the effects of the Internet age. Despite bearing little resemblance to the litany of BESS proposals across the country, that one hunk of burning battery wreckage in California inspired countless communities nationwide to ban new battery storage outright.
There is no sign this trend will end any time soon. I expect data centers to only accelerate these concerns, as these facilities can also catch fire in ways that are challenging to address.
Plus a resolution for Vineyard Wind and more of the week’s big renewables fights.
1. Hopkins County, Texas – A Dallas-area data center fight pitting developer Vistra against Texas attorney general Ken Paxton has exploded into a full-blown political controversy as the power company now argues the project’s developer had an improper romance with a city official for the host community.
2. La Plata County, Colorado – This county has just voted to extend its moratorium on battery energy storage facilities over fire fears.
3. Dane County, Wisconsin – The city of Madison appears poised to ban data centers for at least a year.
4. Goodhue County, Minnesota – The Minnesota Center for Environmental Advocacy, a large environmentalist organization in the state, is suing to block a data center project in the small city of Pine Island.
5. Hall County, Georgia – A data center has been stopped down South, at least for now.
6. Dukes County, Massachusetts – The fight between Vineyard Wind and the town of Nantucket seems to be over.