You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
You’ve probably noticed — even Trump has noticed — but the reason why is as complicated as the grid itself.

You’re not imagining things: Electricity prices are surging.
Electricity rates, which have increased steadily since the pandemic, are now on a serious upward tear. Over the past 12 months, power prices have increased more than twice as fast as inflation, according to recent government data. They will likely keep rising in years to come as new data centers and factories connect to the power grid.
That surge is a major problem for the economy — and for President Trump. On the campaign trail, Trump vowed to cut Americans’ electricity bills in half within his first year in office. “Your electric bill — including cars, air conditioning, heating, everything, your total electric bill — will be 50% less. We’re going to cut it in half,” he said.
Now Trump has mysteriously stopped talking about that pledge, and on Tuesday he blamed renewables for rising electricity rates. Even Trump’s Secretary of Energy Chris Wright has acknowledged that costs are doing the opposite of what the president has promised.
Trump’s promise to cut electricity rates in half was always ridiculous. But while his administration is likely making the electricity crisis worse, the roots of our current power shock did not begin in January.
Why has electricity gotten so much more expensive over the past five years? The answer, despite what the president might say, isn’t renewables. It has far more to do with the part of the power grid you’re most familiar with: the poles and wires outside your window.
Before we begin, a warning: Electricity prices are weird.
In most of the U.S. economy, markets set prices for goods and services in response to supply and demand. But electricity prices emerge from a complicated mix of regulation, fuel costs, and wholesale auction. In general, electricity rates need to cover the costs of running the electricity system — and that turns out to be a complicated task.
You can split costs associated with the electricity system into three broad segments. The biggest and traditionally the most expensive part of the grid is generation — the power plants and the fuels needed to run them. The second category is transmission, which moves electricity across long distances and delivers it to local substations. The final category is distribution, the poles and wires that get electricity the “the last mile” to homes and businesses. (You can think of transmission as the highways for electricity and distribution as the local roads.)
In some states, especially those in the Southeast and Mountain West, monopoly electricity companies run the entire power grid — generation, transmission, and distribution. A quasi-judicial body of state officials regulates what this monopoly can do and what it can charge consumers. These monopoly utilities are supposed to make long-term decisions in partnership with these state commissions, and they must get their permission before they can raise electricity rates. But when fuel costs go up for their power plants — such as when natural gas or oil prices spike — they can often “pass through” those costs directly to consumers.
In other states, such as California or those in the Mid-Atlantic, electricity bills are split in two. The “generation” part of the bill is set through regulated electricity auctions that feature many different power plants and power companies. The market, in other words, sets generation costs. But the local power grid — the infrastructure that delivers electricity to customers — cannot be handled by a market, so it is managed by utilities that cover a particular service area. These local “transmission and distribution” utilities must get state regulators’ approval when they raise rates for their part of the bill.
The biggest driver of the power grid’s rising costs is … the power grid itself.
Historically, generation — building new power plants, and buying the fuel to run them — has driven the lion’s share of electricity rates. But since the pandemic, the cost of building the distribution system has ballooned.
Electricity costs are “now becoming a wires story and less of an electrons story,” Madalsa Singh, an economist at the University of California Santa Barbara, told me. In 2023, distribution made up nearly half of all utility spending, up from 37% in 2019, according to a recent Lawrence Berkeley National Laboratory report.

Where are these higher costs coming from? When you look under the hood, the possibly surprising answer is: the poles and wires themselves. Utilities spent roughly $6 billion more on “overhead poles, towers, and conductors” in 2023 than in 2019, according to the Lawrence Berkeley report. Spending on underground power lines — which are especially important out West to avoid sparking a wildfire — increased by about $4 billion over the same period.
Spending on transformers also surged. Transformers, which connect different circuits on the grid and keep the flow of electricity constant, are a crucial piece of transmission and distribution infrastructure. But they’ve been in critically short supply more or less since the supply chain crunch of the pandemic. Utility spending on transformers has more than doubled since 2019, according to Wood Mackenzie.
At least some of the costs are hitting because the grid is just old, Singh said. As equipment reaches the end of its life, it needs to be upgraded and hardened. But it’s not completely clear why that spike in distribution costs is happening now as opposed to in the 2010s, when the grid was almost as old and in need of repair as it was now.
Some observers have argued that for-profit utilities are “goldplating” distribution infrastructure, spending more on poles and wires because they know that customers will ultimately foot the bill for them. But when Singh studied California power companies, she found that even government-run utilities — i.e. utilities without private investors to satisfy — are now spending more on distribution than they used to, too. Distribution costs, in other words, seem to be going up for everyone.
Sprawling suburbs in some states may be driving some of those costs, she added. In California, people have pushed farther out into semi-developed or rural land in order to find cheaper housing. Because investor-owned utilities have a legal obligation to get wires and electricity to everyone in their service area, these new and more distant housing developments might be more expensive to connect to the grid than older ones.
These higher costs will usually appear on the “transmission and distribution” part of your power bill — the “wires” part, if it is broken out. What’s interesting is that as a share of total utility investment, virtually all of the cost inflation is happening on the distribution side of that ledger. While transmission costs have fluctuated year to year, they have hovered around 20% of total utility investment since 2019, according to the Lawrence Berkeley Labs report.
Higher transmission spending might eventually bring down electricity rates because it could allow utilities to access cheaper power in neighboring service areas — or connect to distant solar or wind projects. (If renewables were driving up power prices as the president claims, you might see it here, in the “transmission” part of the bill.) But Charles Hua, the founder and executive director of the think tank PowerLines, said that even now, most utilities are building out their local grids, not connecting to power projects that are farther away.
The second biggest driver of higher electricity costs is disasters — natural and otherwise.
In California, ratepayers are now partially footing the bill for higher insurance costs associated with the risk of a grid-initiated wildfire, Sam Kozel, a researcher at E9 Insight, told me. Utilities also face higher costs whenever they rebuild the grid after a wildfire because they install sensors and software in their infrastructure that might help avoid the next blaze.
Similar stories are playing out elsewhere. Although the exact hazards vary region by region, some utilities and power grids have had to pay steep costs to rebuild from disasters or prevent the likelihood of the next one occurring.
In the Southeast, for instance, severe storms and hurricanes have knocked out huge swaths of the distribution grid, requiring emergency line crews to come in and rebuild. Those one-time, storm-induced costs then get recovered through higher utility rates over time.
Why have costs gone up so much this decade? Wildfires seem to grow faster now because of climate change — but wildfires in California are also primed to burn by a century of built-up fuel in forests. The increased disaster costs may also be partially the result of the bad luck of where storms happen to hit. Relatively few hurricanes made landfall in the U.S. during the 2010s — just 13, most of which happened in the second half of the decade. Eleven hurricanes have already come ashore in the 2020s.
Because fuel costs are broadly seen as outside a utility’s control, regulators generally give utilities more leeway to pass those costs directly through to customers. So when fuel prices go up, so do rates in many cases.
The most important fuel for the American power grid is natural gas, which produces more than 40% of American electricity. In 2022, surging demand and rising European imports caused American natural gas prices to increase more than 140%. But it can take time for a rise of that magnitude to work its way to consumers, and it can take even longer for electricity prices to come back down.
Although natural gas prices returned to pre-pandemic levels by 2023, utilities paid 30% more for fuel and energy that year than they did in 2019, according to Lawrence Berkeley National Lab. That’s because higher fuel costs do not immediately get processed in power bills.
The ultimate impact of these price shocks can be profound. North Carolina’s electricity rates rose from 2017 to 2024, for instance, largely because of natural gas price hikes, according to an Environmental Defense Fund analysis.
The final contributor to higher power costs is the one that has attracted the most worry in the mainstream press: There is already more demand for electricity than there used to be.
A cascade of new data centers coming onto the grid will use up any spare electron they can get. In some regions, such as the Mid-Atlantic’s PJM power grid, these new data centers are beginning to drive up costs by increasing power prices in the capacity market, an annual auction to lock in adequate supply for moments of peak demand. Data centers added $9.4 billion in costs last year, according to an independent market monitor.
Under PJM’s rules, it will take several years for these capacity auction prices to work their way completely into consumer prices — but the process has already started. Hua told me that the power bill for his one-bedroom apartment in Washington, D.C., has risen over the past year thanks largely to these coming demand shocks. (The Mid-Atlantic grid implemented a capacity-auction price cap this year to try to limit future spikes.)
Across the country, wherever data centers have been hooked up to the grid but have not supplied or purchased their own around-the-clock power, costs will probably rise for consumers. But it will take some time for those costs to be felt.
In order to meet that demand, utilities and power providers will need to build more power plants, transmission lines, and — yes — poles and wires in the years to come. But recent Trump administration policies will make this harder. The reconciliation bill’s termination of wind and solar tax credits, its tariffs on electrical equipment, and a new swathe of anti-renewable regulations will make it much more expensive to add new power capacity to the strained grid. All those costs will eventually hit power bills, too, even if it takes a few years.
“We're just getting started in terms of price increases, and nothing the federal administration is doing ‘to assure American energy dominance’ is working in the right direction,” Kozel said. “They’re increasing all the headwinds.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The move would mark a significant escalation in Trump’s hostility toward climate diplomacy.
The United States is departing the United Nations Framework Convention on Climate Change, the overarching treaty that has organized global climate diplomacy for more than 30 years, according to the Associated Press.
The withdrawal, if confirmed, marks a significant escalation of President Trump’s war on environmental diplomacy beyond what he waged in his first term.
Trump has twice removed the U.S. from the Paris Agreement, a largely nonbinding pact that commits the world’s countries to report their carbon emissions reduction goals on a multi-year basis. He most recently did so in 2025, after President Biden rejoined the treaty.
But Trump has never previously touched the UNFCCC. That older pact was ratified by the Senate, and it has served as the institutional skeleton for all subsequent international climate diplomacy, including the Paris Agreement.
The United States was a founding member of the UN Framework Convention on Climate Change. It first joined the treaty in 1992, when President George H.W. Bush signed the pact and lawmakers unanimously ratified it.
Every other country in the world belongs to the UNFCCC. By withdrawing from the treaty, the U.S. would likely be locked out of the Conference of the Parties, the annual UN summit on climate change. It could also lose any influence over UN spending to drive climate adaptation in developing countries.
It remains unclear whether another president could rejoin the framework convention without a Senate vote.
As of 6 p.m. Eastern on Wednesday, the AP report cited a U.S. official who spoke on condition of anonymity because the news had not yet been announced.
The Trump administration has yet to confirm the departure. On Wednesday afternoon, the White House posted a notice to its website saying that the U.S. would leave dozens of UN groups, including those that “promote radical climate policies,” without providing specifics. The announcement was taken down from the White House website after a few minutes.
The White House later confirmed the departure from 31 UN entities in a post on the social network X, but did not list the groups in question.
Bloom Energy is riding the data center wave to new heights.
Fuel cells are back — or at least one company’s are.
Bloom Energy, the longtime standard-bearer of the fuel cell industry, has seen its share of ups and downs before. Following its 2018 IPO, its stock price shot up to over $34 before falling to under $3 a share in October 2019, then soared to over $42 in the COVID-era market euphoria before falling again to under $10 in 2024. Its market capitalization has bounced up and down over the years, from an all time low of less than $1 billion in 2019 and further struggles in early 2020 after it was forced to restate years of earnings thanks to an accounting error after already struggling to be profitable, up again to more than $7 billion in 2021 amidst a surge of interest in backup power.
The stock began soaring (again) in the middle of last year as anything and everything plausibly connected to artificial intelligence was going vertical. Today, Bloom Energy is trading at more than $111 a share, with a market cap north of $26 billion — and that’s after a dramatic fall from its all-time high price of over $135 per share, reached in November. By contrast, Southwest Airlines is worth around $22 billion; Edison International, the parent company of Southern California Edison, is worth about $22.5 billion.
This is all despite Bloom recording regular losses according to generally accepted accounting principles, although its quarterly revenue has risen by over 50%, and its reported non-GAAP and adjusted margins and profits have grown considerably. The company has signed deals or deployed its fuel cells with Oracle, the utility AEP, Amazon Web Services, gas providers, the network infrastructure company Equinix, the real estate developer Brookfield, and the artificial intelligence infrastructure company CoreWeave, Bloom’s chief executive and founder, KR Sridhar, said in its October earnings call.
While fuel cells have been pitched for decades as a way to safely use hydrogen for energy, fuel cells can also run on natural gas or biogas, which the company has seized on as a way to ride the data center boom. Bloom leadership has said that the company will double its manufacturing capacity by the end of this year, which it says will “support” a projected four-fold annual revenue increase. “The AI build-outs and their power demands are making on-site power generated by natural gas a necessity,” Sridhar said during the earnings call.
To get a sense of how euphoric perception of Bloom Energy has been, Morgan Stanley bumped its price target from $44 dollars a share to $85 on September 16 — then just over a month later, bumped it again to $155, calling the company “one of our favorite ‘time to power’ stocks given its available capacity and near-term expansion plans.”
Bloom has also won plaudits from semiconductor and data center industry analysts. The research firm SemiAnalysis described Bloom’s fuel cells as a “a fairly niche solution [that] is now taking an increasingly large share of the pie.”
It’s been a long journey from green tech darling to AI infrastructure for Bloom Energy — and fuel cells as a technology.
Bloom was founded in 2001, originally as Ion America, and quickly attracted high profile Silicon Valley investors. By 2010, fuel cells (and Bloom) were still being pitched as the generation source of the future, with The New York Times reporting in 2010 that Bloom had “spent nearly a decade developing a new variety of solid oxide fuel cell, considered the most efficient but most technologically challenging fuel-cell technology.” That product launch followed some $400 million in funding, and Bloom would hit an almost $3 billion valuation in 2011.
By 2016, however, when the company first filed with the Securities and Exchange Commission to sell shares to the public, it was being described by the Wall Street Journal as “a once-ballyhooed alternative energy startup,” in an article that said the fuel cell industry had been an “elusive target for decades, with a succession of companies unable to realize its business potential.” The company finally went public in 2018 at a valuation of $1.6 billion.
Then came the AI boom.
Fuel cells don’t use combustion to generate power, instead combining oxygen ions with hydrogen from natural gas and generating emissions of carbon dioxide and water, albeit without the particulate pollution of other forms of fossil-fuel-based electricity generation. This makes the process of getting permits from the Environmental Protection Agency “significantly smoother and easier than that of combustion generators,” SemiAnalysis wrote in a report.
In today’s context, Bloom’s fuel cells are yet another on-site, behind-the-meter natural gas power solution for data centers. “The rapid expansion of AI data centers in the U.S. is colliding with grid bottlenecks, driving operators to adopt BTM generation for speed-to-power and resilience to their modularity, fast deployment, and ability to handle volatile AI workloads,” Jefferies analyst Dushyant Ailani wrote in a note to clients. “Natural gas reciprocating engines, Batteries, and Bloom fuel cells are emerging as a preferred solution due to their modularity, fast deployment, and ability to handle volatile AI workloads.”
SemiAnalysis estimates that capital expenditure for Bloom fuel cells are substantially higher than those for gas turbines on a kilowatt-hour basis — $3,000 to $4,000 for fuel cells, compared to between $1,500 and $2,500 for turbines. But where the company excels is in speed. “The big turbines are sold out for four or five years,” Maheep Mandloi, an analyst at Mizuho Securities, told me. “The smaller ones for behind the meter for one to two years. These guys can deliver, if needed, within 90 days.”
Like other data center-related companies, Bloom has faced some local opposition, though not a debilitating amount. In Hilliard, Ohio, the state siting board overrode concerns about the deployment of more than 200 fuel cells at an AWS facility.
Bloom is also far from the only company that has realigned itself to ride the AI wave. Caterpillar, which makes simple turbine systems largely for the oil and gas industry, has become a data center darling, while the major turbine manufacturers Mitsubishi, Siemens Energy, and GE Vernova have all seen dramatic increases in their stock price in the last year. Korean industrial conglomerate Doosan is now developing a new large-scale turbine. Even the supersonic jet startup Boom is developing a gas turbine for data centers.
While artificial intelligence — or at least artificial intelligence companies — promises unforeseen technological and scientific advancements, so far it’s being powered by the technological and scientific advancements of the past.
On AI forecasts, California bills, and Trump’s fusion push
Current conditions: The intense rain pummeling Southern California since the start of the new year has subsided, but not before boosting Los Angeles’ total rainfall for the wet season that started in October a whopping 343% above the historical average • The polar vortex freezing the Great Lakes and Northeast is moving northward, allowing temperatures in Chicago to rise nearly 20 degrees Fahrenheit • The heat wave in southern Australia is set to send temperatures soaring above 113 degrees.

It’s not the kind of thing anyone a decade ago would have imagined: a communique signed by most of Western Europe’s preeminent powers condemning Washington’s efforts to seize territory from a fellow NATO ally. But in the days since the United States launched a surprise raid on Venezuela and arrested its long-time leader Nicolás Maduro, President Donald Trump has stepped up his public lobbying of Denmark to cede sovereignty over Greenland to the U.S. Senator Thom Tillis, the North Carolina Republican, and Senator Jeanne Shaheen, the Democrat from New Hampshire, put out a rare bipartisan statement criticizing the White House’s pressure campaign on Denmark, “one of our oldest and most reliable allies.” While Stephen Miller, Trump’s hard-line deputy chief of staff, declined to rule out an invasion of Greenland during a TV appearance this week, The Wall Street Journal reported Tuesday that Secretary of State Marco Rubio told lawmakers that the goal of the administration’s recent threats against the autonomously-governed Arctic island were to press Denmark into a sale.
The U.S. unsuccessfully tried acquiring Greenland multiple times during the 20th century, and invaded the island during World War II to prevent the Nazis from gaining a North American foothold after Denmark fell in the blitzkrieg. Indeed, Washington purchased the U.S. Virgin Islands, its second largest Caribbean territory, shortly after the 1898 Spanish-American war that brought Puerto Rico under American control. But the national-security logic of taking Greenland now, when the U.S. already maintains a military base there, is difficult to parse. “Greenland already is in the U.S. sphere of influence,” Columbia University political scientist Elizabeth N. Saunders wrote in a post on Bluesky. “It’s far cheaper for the U.S., in material, security, and reputational terms, to have Denmark continue administering Greenland and work within NATO on security.” One potential reason Trump might want the territory, as Heatmap’s Jael Holzman wrote last fall, is to access Greenland’s mineral wealth. But the logistics of getting rare earths out of both the ground and the Arctic to refineries in the U.S. are challenging. Meanwhile, in other imperialistic activities, Trump said Tuesday evening in a post on Truth Social that Venezuela would cede between 30 million and 50 million barrels of oil to the U.S., though the legal mechanism for such a transfer remains murky, according to The New York Times.
I told you last month about the in-house market monitor at the PJM Interconnection, the country’s largest power grid, urging federal regulators to prevent more data centers coming online within its territory until it can sort out how to reliably supply them with electricity. As Heatmap’s Matthew Zeitlin wrote days later, “everyone wants to know PJM’s data center plan.” On Tuesday, E&E News reported that PJM is expected to ratchet down its forecasts for how much power demand artificial intelligence will add on the East Coast. When the grid operator’s latest analysis of future needs comes out later this month, PJM Chief Operating Officer Stu Bresler said during a call last month that the projections for mid-2027 will be “appreciably lower” than the current forecast.
The merger of the parent company of Trump’s TruthSocial website and the nuclear fusion developer TAE Technologies, as I reported in this newsletter last month, is “flabbergasting” to analysts. And yet the pair’s partnership is advancing. On Tuesday, the companies announced that site selection was underway for a pilot-scale power plant set to begin construction later this year. The first facility would generate just 50 megawatts of electricity. But the companies said future plants are expected to pump out as much as 500 megawatts of power.
Meanwhile, the rival startup widely seen as the frontrunner to build America’s first fusion plant unveiled new deals of its own. Over at the CES 2026 electronics show in Las Vegas on Tuesday, Commonwealth Fusion Systems — which analysts say is taking a more simplified and straightforward pathway to commercializing fusion power than TAE — touted a new deal with microchip giant Nvidia and told the crowd at the conference that it had installed the first magnet at its pilot reactor, TechCrunch reported.
Sign up to receive Heatmap AM in your inbox every morning:
Scott Wiener, the California state senator making a bid for Representative Nancy Pelosi’s long-held House seat, introduced two new bills he said were designed to ease rising energy costs. The first bill is meant to “get rid of a bunch of that red tape” that makes installing a heat pump expensive and challenging in the state, the Democrat explained in a video posted on Bluesky. The second piece of legislation would clear the way for renters to install small, plug-in solar panels on apartment balconies. “Right now, in California, it is way, way, way too hard, if not impossible, to install these kinds of units,” Wiener said. “We have to make energy more affordable for people.”
Sunrun is forming a new joint venture with the green infrastructure investor HASI to finance deployment of at least 300 megawatts of solar across what the companies billed as “more than 40,000 home power plants across the country.” As part of the deal, which closed last month, HASI will invest $500 million over an 18-month period into the new company, allowing the nation’s largest solar installer to “retain a significant long-term ownership position” in the projects. As I reported for exclusively Heatmap in October, a recent analysis by the nonprofit Permit Power, which advocates for easing red tape on rooftop solar, found that the cost of solar panels in the U.S. was far higher than in Australia or Germany due to bureaucratic rules. The HASI investment will help bring down the costs for Sunrun directly as it installs more panels.
Total U.S. utility-scale solar installations for 2025 were on track last month to beat the previous year, as I reported in this newsletter. But the phaseout of federal tax credits next year is set to dim the industry somewhat as projects race to start construction before the expiration date.
In another session at CES 2026, the electric transportation company Donut Labs claimed it’s made an affordable, energy-dense solid state battery that’s powering a new motorcycle and charges in just five minutes. The startup hasn’t yet produced any independent verification of those promises. But the company is known for what InsideEVs called its “sci-fi wheel-in electric motor” for its bikes.