Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

Why It’s Hard to Build EVs for Range Instead of Power

If you want an EV with great range, just drive slowly.

An electric car.
Heatmap Illustration/Getty Images

The last gas car I owned was underpowered. Equipped with a four-speed stick shift and an undeserved spoiler, the 1994 Ford Escort eked out all of 100 horsepower. It got you there, but it huffed a little on the way.

My current vehicle has no such struggles. The Tesla Model 3 accelerates happily thanks to its 269 horsepower, a figure that lives toward the lower end of modern EVs. It zips away from a red light thanks to the physics of a battery-powered car.

“The nice thing about electric vehicles is, they can provide full torque at zero speed, which internal combustion vehicles can't do. And that's one of the reasons why they have those improvements in terms of acceleration,” says Heath Hofmann, a professor of electrical engineering at the University of Michigan who has consulted with companies including Tesla.

The tale of my two cars is the story of the last half-century of auto engineering. Carmakers got good at delivering more power, so much so that someone behind the wheel of a family car today has as much horsepower at their feet as some sports cars of the late ‘80s and early 90s. Americans came to expect it. And now, in the burgeoning EV space, automakers chase Tesla’s success in selling electric vehicles on muscle and sex appeal by cranking out a new slate of EVs with lightning-fast zero-to-sixty times.

The green machines meant to reduce our transportation carbon emissions have become speed demons. But the specter of Americans driving mostly amped-up, super-heavy electric vehicles that are more dangerous to everyone around them has led many experts — including the chief of the National Transportation Safety Board — to fret about the direction of the EV revolution. It’s enough to make you wonder whether the swole EV could, or should, be tamed.

All that quickness comes in handy during a highway merge, sure. But like a lot of current combustion cars, the new electric vehicles are overpowered for daily driving situations, capable of acceleration bursts and top speeds that are impractical or illegal on public roads. At the same time, they also have a range problem. Extending how far they travel per charge would enhance driving quality of life, allowing people to drive further, and use their energy for ancillary applications, with less anxiety about running out.

Could the car companies churn out EVs that are optimized to go far instead of fast? Well, they could. Hofmann explains that an EV’s power depends not only on how much energy it can draw from the battery at a given time, but also on its drivetrain components, especially its electric motors. The most straightforward way to rein in an electric vehicle — to emphasize range and battery life at the expense of acceleration — would be to give it smaller motors that simply wouldn't allow for inefficient, aggressive driving. It’s (roughly) analogous to putting a smaller engine in a combustion car as opposed to a snarling, gas-guzzling block.

There are a couple of problems with that, though, starting with the car market. Last week, GM CEO Mary Barra said that electric cars under $40,000 still aren’t profitable, which is why there are so few. Vehicles that command prices above that mark are typically big, powerful machines, not economy cars whose zoom-zoom has been curtailed. Americans won’t pony up for wimpy cars.

Hofmann says there’s also an engineering quirk to consider. It turns out, he tells me, that larger electric motors tend to be more efficient than smaller ones. As a result, you might actually save a little energy by having big motors in your car, but using them conservatively, than by installing small motors that constrain your lead-footedness.

This leads us back to a familiar axiom: It’s not the car, but the driver. Much of the old wisdom about efficient driving is as true for EVs as it was for gas-burners: Driving slower saves energy, as does properly inflated tires, maintaining a constant speed instead of frequently stopping and starting, and turning down energy-sucking applications like climate control. Many new EVs reveal this truth in real time: They calculate exactly how many miles of battery life you cost yourself by driving 10 mph over the speed limit or running the air conditioning at full blast.

Speed is the big one, Hofmann says. Given that larger motors can be more efficient than small ones, the best thing to do for promoting EV range and efficiency may be to give drivers the power and hope they use it cautiously. The top-down way to make EVs go farther and drive safer would be for governments to change speed limit laws or mandate vehicles be electronically prevented from exceeding certain speeds, which unearths draconian memories of the “I Can’t Drive 55” 1970s and 80s.

It works. When I’ve driven my own EV on slower state highways — and stuck to the speed limit — I’ve been taken aback by how much I stretch the battery. That doesn’t mean a nation of speed limit flouters would happily comply.

“Really, if you wanted to force the cars to be efficient, you would limit them to go no faster than 55 miles an hour, right? Not too many people are gonna be okay with that,” Hofmann says.

Blue
Andrew Moseman profile image

Andrew Moseman

Andrew Moseman has covered science, technology, and transportation for publications such as The Atlantic, Inverse, Insider, Outside, and MIT Technology Review. He was previously digital director of Popular Mechanics and now serves as online communications editor at Caltech. He is based in Los Angeles.

Technology

Carbon Removal’s Stamp of Approval

The Department of Energy is advancing 24 companies in its purchase prize contest. What these companies are getting is more important than $50,000.

Heirloom DAC.
Heatmap Illustration/Heirloom Carbon

The Department of Energy is advancing its first-of-a-kind program to stimulate demand for carbon removal by becoming a major buyer. On Tuesday, the agency awarded $50,000 to each of 24 semifinalist companies competing to suck carbon dioxide out of the atmosphere on behalf of the U.S. government. It will eventually spend $30 million to buy carbon removal credits from up to 10 winners.

The nascent carbon removal industry is desperate for customers. At a conference held in New York City last week called Carbon Unbound, startup CEOs brainstormed how to convince more companies to buy carbon removal as part of their sustainability strategies. On the sidelines, attendees lamented to me that there were hardly even any potential buyers at the conference — what a missed opportunity.

Keep reading...Show less
Yellow
Economy

Tom Steyer Is Baffled By Warren Buffett’s Oil Bets

“In the case of fossil fuels, he doesn’t seem to recognize how quickly our ability to develop and deploy clean energy is growing — and how cheap that energy is becoming.”

Tom Steyer and Warren Buffett.
Heatmap Illustration/Getty Images

If you’re looking for a relatively optimistic read on the fight against climate change, Tom Steyer’s new book is out today. Called Cheaper, Better Faster: How We’ll Win the Climate War, it dives into the billionaire’s perspective on the state of the climate crisis and the clean energy solutions helping the world decarbonize. Steyer’s perspective is informed by the many hats he wears — investor, philanthropist, long shot 2020 presidential candidate, Yale man, and co-founder of the investment firm Galvanize Climate Solutions.

I chatted with Steyer a few weeks ago about his book, his guiding investment principles, and how and why people become environmentalists. Here are three things I found noteworthy:

Keep reading...Show less
Blue
Climate

How Floods Are Contributing to Pregnancy Loss in India

“She was traumatized by the flood and wasn’t getting a nutrient-rich diet for several weeks.”

A pregnant woman and flooding.
Heatmap Illustration/Getty Images

Ashwini Khandekar was in her first few months of pregnancy when the flood came. This was July 2021, the peak of the annual monsoon season, when a downpour destroyed more than 300 houses in Ganeshwadi, a village 400 kilometers south of Mumbai in India’s Maharashtra state. Authorities instructed Khandekar and her husband to evacuate, she told me, “but I couldn’t leave my house because all the evacuation centers were full. I had nowhere to go.” Though in the end her home was spared, for the next 15 days, Khandekar lived in constant fear, praying until the waters finally abated.

Four months later, Khandekar went to the doctor for a prenatal checkup. Her child, she learned, showed signs of anencephaly, a condition in which the fetal brain and skull fail to develop normally. Usually, babies born with anencephaly die within a few hours, and most pregnancies end in miscarriage. To cross-check the doctor’s claims, Khandekar visited eight more hospitals. Everyone confirmed the same. “I was heartbroken,” she said.

Keep reading...Show less
Blue