You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A practical guide to using the climate law to get cheaper solar panels, heat pumps, and more.

Today marks the one year anniversary of the Inflation Reduction Act, the biggest investment in tackling climate change the United States has ever made. The law consists of dozens of subsidies to help individuals, households, and businesses adopt clean energy technologies. Many of these solutions will also help people save money on their energy bills, reduce pollution, and improve their resilience to disasters.
But understanding how much funding is available for what, and how to get it, can be pretty confusing. Many Americans are not even aware that these programs exist. A poll conducted by The Washington Post and the University of Maryland in late July found that about 66% of Americans say they have heard “little” or “nothing at all” about the law’s incentives for installing rooftop solar panels, and 77% have heard little or nothing about subsidies for heat pumps. This tracks similar polling that Heatmap conducted last winter, suggesting not much has changed since then.
Below is Heatmap’s guide to the IRA’s incentives for cutting your carbon footprint at home. If you haven’t heard much about how the IRA can help you decarbonize your life, this guide is for you. If you have heard about the available subsidies, but aren’t sure how much they are worth or where to begin, I’ll walk you through it. (And if you’re looking for information about the electric vehicle tax credit, my colleague at Heatmap Robinson Meyer has you covered with this buyer’s guide.)
Get one great climate story in your inbox every day:
There’s funding for almost every solution you can think of to make your home more energy efficient and reduce your fossil fuel use, whether you want to install solar panels, insulate your attic, replace your windows, or buy electric appliances. If you need new wiring or an electrical panel upgrade before you can get heat pumps or solar panels, there’s some money available for that, too.
The IRA created two types of incentives for home energy efficiency improvements: Unlimited tax credits that will lower the amount you owe when you file your taxes, and $8.8 billion in rebates that function as up-front discounts or post-installation refunds on equipment and services.
The tax credits are available now, but the rebates are not. The latter will be administered by states, which must apply for funding and create programs before the money can go out. The Biden administration began accepting applications at the end of July and expects states to begin rolling out their programs later this year or early next.
The home tax credits are available to everyone that owes taxes. The rebates, however, will have income restrictions (more on this later).
“The Inflation Reduction Act is not a limited time offer,” according to Ari Matusiak, the CEO of the nonprofit advocacy group Rewiring America. The rebate programs will only be available until the money runs out, but, again, none of them have started yet. Meanwhile, there’s no limit on how many people can claim the tax credits, and they’ll be available for at least the next decade. That means you don’t need to rush and replace your hot water heater if you have one that works fine. But when it does break down, you’ll have help paying for a replacement.
You might want to hold off on buying new appliances or getting insulation — basically any improvements inside your house. There are tax credits available for a lot of this stuff right now, but you’ll likely be able to stack them with rebates in the future.
However, if you’re thinking of installing solar panels on your roof or getting a backup battery system, there’s no need to wait. The rebates will not cover those technologies.
A few other caveats: There’s a good chance your state, city, or utility already offers rebates or other incentives for many of these solutions. Check with your state’s energy office or your utility to find out what’s available. Also, it can take months to get quotes and line up contractors to get this kind of work done. If you want to be ready when the rebates hit, it’s probably a good idea to do some of the legwork now.
If you do nothing else this year, consider getting a professional home energy audit. This will cost several hundred dollars, depending on where you live, but you’ll be able to get 30% off or up to $150 back under the IRA’s home improvement tax credit. Doing an audit will help you figure out which solutions will give you the biggest bang for your buck, and how to prioritize them once more funding becomes available. The auditor might even be able to explain all of the existing local rebate programs you’re eligible for.
The Internal Revenue Service will allow you to work with any home energy auditor until the end of this year, but beginning in 2024, you must hire an auditor with specific qualifications in order to claim the credit.
Let’s start with what’s inside your home. In addition to an energy audit, the Energy Efficiency Home Improvement Credit offers consumers 30% off the cost (after any other subsidies, and excluding labor) of Energy Star-rated windows and doors, insulation, and air sealing.
There’s a maximum amount you can claim for each type of equipment each year:
$600 for windows
$500 for doors
$1,200 for air sealing and insulation
The Energy Efficiency Home Improvement Credit also covers heat pumps, heat pump water heaters, and electrical panel upgrades, including the cost of installation for those systems. You can get:
$2,000 for heat pumps
$600 for a new electrical panel
Yes, homeowners can only claim up to $3,200 per year under this program until 2032.
Also, one downside to the Energy Efficiency Home Improvement Credit is that it does not carry over. If you spend enough on efficiency to qualify for the full $3,200 in a given year, but you only owe the federal government $2,000 for the year, your bill will go to zero and you will miss out on the remaining $1,200 credit. So it could be worth your while to spread the work out.
The other big consumer-oriented tax credit, the Residential Clean Energy Credit, offers homeowners 30% off the cost of solar panels and solar water heaters. It also covers battery systems, which store energy from the grid or from your solar panels that you can use when there’s a blackout, or sell back to your utility when the grid needs more power.
The subsidy has no limits, so if you spend $35,000 on solar panels and battery storage, including labor, you’ll be eligible for the full 30% refund, or $10,500. The credit can also be rolled over, so if your tax liability that year is only $5,000, you’ll be able to claim more of it the following year, and continue doing so until you’ve received the full value.
Geothermal heating systems are also covered under this credit. (Geothermal heat pumps work similarly to regular heat pumps, but they use the ground as a source and sink for heat, rather than the ambient air.)
Here’s what we know right now. The IRA funded two rebate programs. One, known as the Home Energy Performance-Based Whole House Rebates, will provide discounts to homeowners and landlords based on the amount of energy a home upgrade is predicted to save.
Congress did not specify which energy-saving measures qualify — that’s something state energy offices will decide when they design their programs. But it did cap the total amount each household could receive, based on income. For example, if your household earns under 80% of the area median income, and you make improvements that cut your energy use by 35%, you’ll be eligible for up to $8,000. If your household earns more than that, you can get up to $4,000.
There’s also the High-Efficiency Electric Home Rebate Program, which will provide discounts on specific electric appliances like heat pumps, an induction stove, and an electric clothes dryer, as well as a new electrical panel and wiring. Individual households can get up to $14,000 in discounts under this program, although there are caps on how much is available for each piece of equipment. This money will only be available to low- and moderate-income households, or those earning under 150% of the area median income.
Renters with a household income below 150% of the area median income qualify for rebates on appliances that they should be able to install without permission from their landlords, and that they can take with them if they move. For example, portable appliances like tabletop induction burners, clothes dryers, and window-unit heat pumps are all eligible for rebates.
It’s also worth noting that there is a lot of funding available for multifamily building owners. If you have a good relationship with your landlord, you might want to talk to them about the opportunity to make lasting investments in their property. Under the performance-based rebates program, apartment building owners can get up to $400,000 for energy efficiency projects.
For the most part, yes. But the calculus gets tricky when it comes to heat pumps.
Experts generally agree that no matter where you live, switching from an oil or propane-burning heating system or electric resistance heaters to heat pumps will lower your energy bills. Not so if you’re switching over from natural gas.
Electric heat pumps are three to four times more efficient than natural gas heating systems, but electricity is so much more expensive than gas in some parts of the country that switching from gas to a heat pump can increase your overall bills a bit. Especially if you also electrify your water heater, stove, and clothes dryer.
That being said, Rewiring America estimates that switching from gas to a heat pump will lower bills for about 60% of households. Many utilities offer tools that will help you calculate your bills if you make the switch.
The good news is that all the measures I’ve discussed in this article are expected to cut carbon emissions and pollution, even if most of your region’s electricity still comes from fossil fuels. For some, that might be worth the monthly premium.
Tax Credit #1 offers 30% off the cost of energy audits, windows, doors, insulation, air sealing, heat pumps, electrical panels, with a $3200-per-year allowance and individual item limits.
Tax Credit #2 offers 30% off the cost of solar panels, solar water heaters, batteries, and geothermal heating systems.
Rebate Program #1 will offer discounts on whole-home efficiency upgrades depending on how much they reduce your energy use, with an $8,000 cap for lower-income families and a $4,000 cap for everyone else.
Rebate Program #2 is only for low- and moderate- income households, and will offer discounts on specific electric appliances, with a $14,000 cap.
Read more about the Inflation Reduction Act:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Rob talks with McMaster University engineering professor Greig Mordue, then checks in with Heatmap contributor Andrew Moseman on the EVs to watch out for.
It’s been a huge few weeks for the electric vehicle industry — at least in North America.
After a major trade deal, Canada is set to import tens of thousands of new electric vehicles from China every year, and it could soon invite a Chinese automaker to build a domestic factory. General Motors has also already killed the Chevrolet Bolt, one of the most anticipated EV releases of 2026.
How big a deal is the China-Canada EV trade deal, really? Will we see BYD and Xiaomi cars in Toronto and Vancouver (and Detroit and Seattle) any time soon — or is the trade deal better for Western brands like Volkswagen or Tesla which have Chinese factories but a Canadian presence? On this week’s Shift Key, Rob talks to Greig Mordue, a former Toyota executive who is now an engineering professor at McMaster University in Hamilton, Ontario, about how the deal could shake out. Then he chats with Heatmap contributor Andrew Moseman about why the Bolt died — and the most exciting EVs we could see in 2026 anyway.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Over the weekend there was a new tariff threat from President Trump — he seems to like to do this on Saturday when there are no futures markets open — a new tariff threat on Canada. It is kind of interesting because he initially said that he thought if Canada could make a deal with China, they should, and he thought that was good. Then over the weekend, he said that it was actually bad that Canada had made some free trade, quote-unquote, deal with China.
Do you think that these tariff threats will affect any Carney actions going forward? Is this already priced in, slash is this exactly why Carney has reached out to China in the first place?
Greig Mordue: I think it all comes under the headline of “deep sigh,” and we’ll see where this goes. But for the first 12 months of the U.S. administration, and the threat of tariffs, and the pullback, and the new threat, and this going forward, the public policy or industrial policy response from the government of Canada and the province of Ontario, where automobiles are built in this country, was to tread lightly. And tread lightly, generally means do nothing, and by doing nothing stop the challenges.
And so doing nothing led to Stellantis shutting down an assembly plant in Brampton, Ontario; General Motors shutting an assembly plant in Ingersoll, Ontario; General Motors reducing a three-shift operation in Oshawa, Ontario to two shifts; and Ford ragging the puck — Canadian term — on the launch of a new product in their Oakville, Ontario plant. So doing nothing didn’t really help Canada from a public policy perspective.
So they’re moving forward on two fronts: One is the resetting of relationships with China and the hope of some production from Chinese manufacturers. And two, the promise of automotive industrial policy in February, or at some point this spring. So we’ll see where that goes — and that may cause some more restless nights from the U.S. administration. We’ll see.
Mentioned:
Canada’s new "strategic partnership” with China
The Chevy Bolt Is Already Dead. Again.
The EVs Everyone Will Be Talking About in 2026
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.
A federal judge in Massachusetts ruled that construction on Vineyard Wind could proceed.
The Vineyard Wind offshore wind project can continue construction while the company’s lawsuit challenging the Trump administration’s stop work order proceeds, judge Brian E. Murphy for the District of Massachusetts ruled on Tuesday.
That makes four offshore wind farms that have now won preliminary injunctions against Trump’s freeze on the industry. Dominion Energy’s Coastal Virginia offshore wind project, Orsted’s Revolution Wind off the coast of New England, and Equinor’s Empire Wind near Long Island, New York, have all been allowed to proceed with construction while their individual legal challenges to the stop work order play out.
The Department of the Interior attempted to pause all offshore wind construction in December, citing unspecified “national security risks identified by the Department of War.” The risks are apparently detailed in a classified report, and have been shared neither with the public nor with the offshore wind companies.
Vineyard Wind, a joint development between Avangrid Renewables and Copenhagen Infrastructure Partners, has been under construction since 2021, and is already 95% built. More than that, it’s sending power to Massachusetts customers, and will produce enough electricity to power up to 400,000 homes once it’s complete.
In court filings, the developer argued it was urgent the stop work order be lifted, as it would lose access to a key construction boat required to complete the project on March 31. The company is in the process of replacing defective blades on its last handful of turbines — a defect that was discovered after one of the blades broke in 2024, scattering shards of fiberglass into the ocean. Leaving those turbine towers standing without being able to install new blades created a safety hazard, the company said.
“If construction is not completed by that date, the partially completed wind turbines will be left in an unsafe condition and Vineyard Wind will incur a series of financial consequences that it likely could not survive,” the company wrote. The Trump administration submitted a reply denying there was any risk.
The only remaining wind farm still affected by the December pause on construction is Sunrise Wind, a 924-megawatt project being developed by Orsted and set to deliver power to New York State. A hearing for an injunction on that order is scheduled for February 2.
Noon Energy just completed a successful demonstration of its reversible solid-oxide fuel cell.
Whatever you think of as the most important topic in energy right now — whether it’s electricity affordability, grid resilience, or deep decarbonization — long-duration energy storage will be essential to achieving it. While standard lithium-ion batteries are great for smoothing out the ups and downs of wind and solar generation over shorter periods, we’ll need systems that can store energy for days or even weeks to bridge prolonged shifts and fluctuations in weather patterns.
That’s why Form Energy made such a big splash. In 2021, the startup announced its plans to commercialize a 100-plus-hour iron-air battery that charges and discharges by converting iron into rust and back again. The company’s CEO, Mateo Jaramillo, told The Wall Street Journal at the time that this was the “kind of battery you need to fully retire thermal assets like coal and natural gas power plants.” Form went on to raise a $240 million Series D that same year, and is now deploying its very first commercial batteries in Minnesota.
But it’s not the only player in the rarified space of ultra-long-duration energy storage. While so far competitor Noon Energy has gotten less attention and less funding, it was also raising money four years ago — a more humble $3 million seed round, followed by a $28 million Series A in early 2023. Like Form, it’s targeting a price of $20 per kilowatt-hour for its electricity, often considered the threshold at which this type of storage becomes economically viable and materially valuable for the grid.
Last week, Noon announced that it had completed a successful demonstration of its 100-plus-hour carbon-oxygen battery, partially funded with a grant from the California Energy Commission, which charges by breaking down CO2 and discharges by recombining it using a technology known as a reversible solid-oxide fuel cell. The system has three main components: a power block that contains the fuel cell stack, a charge tank, and a discharge tank. During charging, clean electricity flows through the power block, converting carbon dioxide from the discharge tank into solid carbon that gets stored in the charge tank. During discharge, the system recombines stored carbon with oxygen from the air to generate electricity and reform carbon dioxide.
Importantly, Noon’s system is designed to scale up cost-effectively. That’s baked into its architecture, which separates the energy storage tanks from the power generating unit. That makes it simple to increase the total amount of electricity stored independent of the power output, i.e. the rate at which that energy is delivered.
Most other batteries, including lithium-ion and Form’s iron-air system, store energy inside the battery cells themselves. Those same cells also deliver power; thus, increasing the energy capacity of the system requires adding more battery cells, which increases power whether it’s needed or not. Because lithium-ion cells are costly, this makes scaling these systems for multi-day energy storage completely uneconomical.
In concept, Noon’s ability to independently scale energy capacity is “similar to pumped hydro storage or a flow battery,” Chris Graves, the startup’s CEO, told me. “But in our case, many times higher energy density than those — 50 times higher than a flow battery, even more so than pumped hydro.” It’s also significantly more energy dense than Form’s battery, he said, likely making it cheaper to ship and install (although the dirt cheap cost of Form’s materials could offset this advantage.)
Noon’s system would be the first grid-scale deployment of reversible solid-oxide fuel cells specifically for long-duration energy storage. While the technology is well understood, historically reversible fuel cells have struggled to operate consistently and reliably, suffering from low round trip efficiency — meaning that much of the energy used to charge the battery is lost before it’s used — and high overall costs. Graves conceded Noon has implemented a “really unique twist” on this tech that’s allowed it to overcome these barriers and move toward commercialization, but that was as much as he would reveal.
Last week’s demonstration, however, is a big step toward validating this approach. “They’re one of the first ones to get to this stage,” Alexander Hogeveen Rutter, a manager at the climate tech accelerator Third Derivative, told me. “There’s certainly many other companies that are working on a variance of this,” he said, referring to reversible fuel cell systems overall. But none have done this much to show that the technology can be viable for long-duration storage.
One of Noon’s initial target markets is — surprise, surprise — data centers, where Graves said its system will complement lithium-ion batteries. “Lithium ion is very good for peak hours and fast response times, and our system is complementary in that it handles the bulk of the energy capacity,” Graves explained, saying that Noon could provide up to 98% of a system’s total energy storage needs, with lithium-ion delivering shorter streams of high power.
Graves expects that initial commercial deployments — projected to come online as soon as next year — will be behind-the-meter, meaning data centers or other large loads will draw power directly from Noon’s batteries rather than the grid. That stands in contrast to Form’s approach, which is building projects in tandem with utilities such as Great River Energy in Minnesota and PG&E in California.
Hogeveen Rutter, of Third Derivative, called Noon’s strategy “super logical” given the lengthy grid interconnection queue as well as the recent order from the Federal Energy Regulatory Commission intended to make it easier for data centers to co-locate with power plants. Essentially, he told me, FERC demanded a loosening of the reins. “If you’re a data center or any large load, you can go build whatever you want, and if you just don’t connect to the grid, that’s fine,” Hogeveen Rutter said. “Just don’t bother us, and we won’t bother you.”
Building behind-the-meter also solves a key challenge for ultra-long-duration storage — the fact that in most regions, renewables comprise too small a share of the grid to make long-duration energy storage critical for the system’s resilience. Because fossil fuels still meet the majority of the U.S.’s electricity needs, grids can typically handle a few days without sun or wind. In a world where renewables play a larger role, long-duration storage would be critical to bridging those gaps — we’re just not there yet. But when a battery is paired with an off-grid wind or solar plant, that effectively creates a microgrid with 100% renewables penetration, providing a raison d’être for the long-duration storage system.
“Utility costs are going up often because of transmission and distribution costs — mainly distribution — and there’s a crossover point where it becomes cheaper to just tell the utility to go pound sand and build your power plant,” Richard Swanson, the founder of SunPower and an independent board observer at Noon, told me. Data centers in some geographies might have already reached that juncture. “So I think you’re simply going to see it slowly become cost effective to self generate bigger and bigger sizes in more and more applications and in more and more locations over time.”
As renewables penetration on the grid rises and long-duration storage becomes an increasing necessity, Swanson expects we’ll see more batteries like Noon’s getting grid connected, where they’ll help to increase the grid’s capacity factor without the need to build more poles and wires. “We’re really talking about something that’s going to happen over the next century,” he told me.
Noon’s initial demo has been operational for months, cycling for thousands of hours and achieving discharge durations of over 200 hours. The company is now fundraising for its Series B round, while a larger demo, already built and backed by another California Energy Commission grant, is set to come online soon.
While Graves would not reveal the size of the pilot that’s wrapping up now, this subsequent demo is set to deliver up to 100 kilowatts of power at once while storing 10 megawatt-hours of energy, enough to operate at full power for 100 hours. Noon’s full-scale commercial system is designed to deliver the same 100-hour discharge duration while increasing the power output to 300 kilowatts and the energy storage capacity to 30 megawatt-hours.
This standard commercial-scale unit will be shipping container-sized, making it simple to add capacity by deploying additional modules. Noon says it already has a large customer pipeline, though these agreements have yet to be announced. Those deals should come to light soon though, as Swanson says this technology represents the “missing link” for achieving full decarbonization of the electricity sector.
Or as Hogeveen Rutter put it, “When people talk about, I’m gonna get rid of all my fossil fuels by 2030 or 2035 — like the United Kingdom and California — well this is what you need to do that.”